GENERALIZED HYERS-ULAM-RASSIAS TYPE STABILITY OF THE 2k-VARIABLE ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN BANACH SPACES AND BANACH SPACES

LY VAN AN

Faculty of Mathematics Teacher Education, Tay Ninh University, Ninh Trung, Ninh Son, Tay Ninh Province, Vietnam. Email address: lyvanan145@gmail.com.

ABSTRACT. In this paper we use the direct method to proved two the generalized additive functional inequalities with 2k-variables and their Hyers-Ulam-Rassias stability. First are investigated in Banach spaces and the last are investigated in non-Archimedean Banach spaces. We will show that the solutions of the inequalities are additive mappings. These are the main results of this paper.

Mathematics subject classification: Primary 46S10, 47H10, 39B62, 39B72, 39B52, 12J25.

Keywords: Cauchy functional equation, additive functional inequality, additive β -functional inequalities, Banach space, non-Archimedian Banach space, Hyers-Ulam-Rassias stability.

1. Introduction

Let X_1 and X_2 be a normed spaces on the same field \mathbb{K} , and $F: X_1 \to X_2$. We use the notation $\|\cdot\|$ for all the norm on both X_1 and X_2 . In this paper, we investisgate some additive functional inequality when X_1 and X_2 is a Banach spaces or X_1 is a non-Archimedean normed space and X_2 is a non-Archimedean Banach space.

In fact, when X_1 and X_2 is Banach spaces we solve and prove the Hyers-Ulam-Rassias type stability of forllowing additive functional inequality.

$$\left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right) \right\|_{\mathbf{X}_{2}}$$
(1.1)

and when X_1 is a non-Archimedean normed space and X_2 is a non-Archimedean Banach spaces we solve and prove the Hyers-Ulam stability of forllowing additive functional inequality.

$$\left\| F\left(\frac{1}{k^2} \sum_{j=1}^k x_{k+j} + \frac{1}{k} \sum_{j=1}^k x_j\right) - \frac{1}{k} \sum_{j=1}^k F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^k F\left(x_j\right) \right\|_{\mathbf{X}_2} \\
\leq \left\| F\left(\frac{1}{k} \sum_{j=1}^k x_{k+j} + \sum_{j=1}^k x_j\right) - \sum_{j=1}^k F\left(\frac{x_{k+1}}{k}\right) - \sum_{j=1}^k F\left(x_j\right) \right\|_{\mathbf{X}_2}, \quad (1.2)$$

The study of the functional equation stability originated from a question of S.M. Ulam, concerning the stability of group homomorphisms. Let $(\mathbf{G}, *)$ be a group and let (\mathbf{G}', \circ, d) be a metric group with metric $d(\cdot, \cdot)$. Geven $\epsilon > 0$, does there exist a $\delta > 0$ such that if $f: \mathbf{G} \to \mathbf{G}'$ satisfies

$$d\left(f(x*y),f(x)\circ f(y)\right)<\delta$$

for all $x, y \in \mathbf{G}$ then there is a homomorphism $h : \mathbf{G} \to \mathbf{G}'$ with

$$d\bigg(f\Big(x\Big),h\Big(x\Big)\bigg) < \epsilon$$

for all $x \in \mathbf{G}$?, if the answer, is affirmative, we would say that equation of homomophism $h(x*y) = h(y) \circ h(y)$ is stable. The concept of stability for a functional equation arises when we replace functional equation by an inequality which acts as a perturbation of the equation. Thus the stability question of functional equations is that how do the solutions of the inequality differ from those of the given function equation? Hyers [10] gave a first affirmative answes the question of Ulam as follows:

Theorem 1.1. (D. H. Hyers 1941) Let $\epsilon \geq 0$ and let f be a function where **X** and **Y** are Banach space, such that

$$\left\| f(x+y) - f(x) - f(y) \right\| \le \epsilon,$$

for all $x, y \in \mathbf{X}$ and some $\epsilon \geq 0$. Then there exists a unique additive mapping $T : \mathbf{X} \to \mathbf{Y}$, satisfying

$$||f(x) - T(x)|| \le \epsilon, \forall x \in \mathbf{X}.$$

Next Th. M. Rassias [19] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded:

Theorem 1.2. (Th. M. Rassias.) Consider \mathbf{E}, \mathbf{E}' to be two Banach spaces, and let $f: \mathbf{E} \to \mathbf{E}'$ be a mapping such that f(tx) is continous in t for each fixed x. Assume that there exist $\theta > 0$ and $p \in [0,1]$ such that

$$\left\| f\left(x+y\right) - f\left(x\right) - f\left(y\right) \right\| \le \epsilon \left(\left\|x\right\|^p + \left\|y\right\|^p \right), \forall x, y \in \mathbb{E}.$$

then there exists a unique linear $L: \mathbf{E} \to \mathbf{E}'$ satisfies

$$\left\| f(x) - L(x) \right\| \le \frac{2\theta}{2 - 2^p} \|x\|^p, x \in \mathbf{E}.$$

After that, Hyers' Theorem was generalized by Aoki[1] additive mappings and by Rassias [19] for linear mappings considering an unbouned Cauchy diffrence. Ageneralization of the Rassias theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The Hyers-Ulam stability for functional inequalities have been investigated such as in [6, 20], Gilány showed that is if satisfies the functional inequality

$$\left\| 2f\left(x\right) + 2f\left(y\right) - f\left(xy^{-1}\right) \right\| \le \left\| f\left(xy\right) \right\|$$

then f satisfies the Jordan-von Newman functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1}). (1.3)$$

Gilányi [9] and Fechner [6] proved the Hyers-Ulam-Rassia stability of the functional inequality.

Choonkil Park [15] obtained the solutions of the additive functional inequality. Recently, in [2, 5, 15] the authors studied the Hyers-Ulam-Rassia stability for the following functional inequalities in Banach space and non-Archimedean Banach space:

$$\left\| f\left(x+y\right) - f\left(x\right) - f(y) \right\| \le \left\| f\left(\frac{x+y}{2}\right) - \frac{1}{2}f\left(x\right) - \frac{1}{2}f\left(y\right) \right\| \tag{1.4}$$

and

$$\left\| f\left(\frac{x+y}{2}\right) - \frac{1}{2}f\left(x\right) - \frac{1}{2}f\left(y\right) \right\| \le \left\| f\left(x+y\right) - f\left(x\right) - f\left(y\right) \right\|. \tag{1.5}$$

Next

$$\left\| f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right\| \le \left\| f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - \frac{1}{2}f\left(\frac{x+y}{2}\right) - \frac{1}{2}f\left(z\right) \right\|$$

$$\tag{1.6}$$

and

$$\left\| f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - \frac{1}{2}f\left(\frac{x+y}{2}\right) - \frac{1}{2}f\left(z\right) \right\| \le \left\| f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right\|. \tag{1.7}$$

Final

$$\left\| f\left(\sum_{i=1}^{n} x_i\right) - \sum_{i=1}^{n} f\left(x_i\right) \right\| \le \left\| f\left(\frac{1}{n}\sum_{i=1}^{n} x_i\right) - \frac{1}{n}\sum_{i=1}^{n} f\left(x_i\right) \right\|$$
(1.8)

and

$$\left\| f\left(\frac{1}{n}\sum_{i=1}^{k}x_i\right) - \frac{1}{n}\sum_{i=1}^{n}f\left(x_n\right) \right\| \le \left\| f\left(\sum_{i=1}^{n}x_i\right) - \sum_{i=1}^{n}f\left(x_i\right) \right\|$$
 (1.9)

In this paper, we solve and proved the Hyers-Ulam-Rassias type stability for two additive functional inequalities (1.1)-(1.2), ie the additive functional inequalities with 2k-variables. Under suitable assumptions on spaces $\mathbf{X_1}$ and $\mathbf{X_2}$, we will prove that the mappings satisfying the additive functional inequatilies (1.1) or (1.2). Thus, the results in this paper are generalization of those in [2, 5, 15, 16, 17, 18] for functional inequatilies with 2k-variables.

The paper is organized as followns:

In section preliminaries we remind some basic notations in [11, 13, 15, 16, 17, 18] such as We only redefine the solution definition of the equation of the additive function.

Section 3: is devoted to prove the Hyers-Ulam stability of the additive functional inequalities (1.1) when we assume that X_1 and X_2 is a Banach spaces.

Section 4: is devoted to prove the Hyers-Ulam stability of the additive additive functional inequalities (1.2) when X_1 is a non-Archimedean normed space and X_2 is a non-Archimedean Banach space.

2. Preliminaries

2.1. **non-Archimedean normed spaces.** In this subsection we recall some basic notations from [12, 15] such as non-Archimedean fields, non-Archimedean normed spaces and non-Archimedean Banach spaces.

A valuation is a function $|\cdot|$ from a field \mathbb{K} into $[0, \infty)$ such that 0 is the unique element having the 0 valuation,

$$\begin{vmatrix} r \end{vmatrix} = 0 \Leftrightarrow r = 0$$
$$|r \cdot s| := |r| |s|, \forall r, s \in \mathbb{K}$$

and the triangle inequality holds, i.e.,

$$|r+s| \le |r| + |s|, \forall r, s \in \mathbb{K}.$$

A field \mathbb{K} is called a valued field if \mathbb{K} carries a valuation. The usual absolute values of \mathbb{R} and \mathbb{C} are examples of valuation. Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the strong triangle inequality is replaced by

$$|r+s| \le max\{|r|,|s|\}, \forall r,s \in \mathbb{K},$$

then the function $|\cdot|$ is called a non-Archimedean valuation. Clearly, |1| = |-1| = 1 and $|n| \le 1, \forall n \in \mathbb{N}$. A trivial example of a non-Archimedean valuation is the function $|\cdot|$ talking everything except for 0 into 1 and |0| = 0. In this paper, we assume that the base field is a non-Archimedean field with $|2| \ne 1$, hence call it simply a field.

Definition 2.1. Let be a vecter space over a filed K with a non-Archimedean $|\cdot|$. A function $||\cdot||: X \to [0,\infty)$ is said a non-Archimedean norm if it satisfies the following conditions:

- (1) ||x|| = 0 if and only if x = 0;
- (2) $||rx|| = |r|||x|| (r \in \mathbb{K}, x \in X);$
- (3) $||x+y|| \le \max \{||x||, ||y||\} x, y \in X \text{ hold.}$ Then $(X, ||\cdot||)$ is called a norm -Archimedean norm space.

Definition 2.2.

A sequence $\{x_n\}$ in a norm -Archimedean (n,β) -normed space **X** is a Cauchy sequence if and only if $\{x_n - x_m\} \to 0$.

Definition 2.3. Let $\{x_n\}$ be a sequence in a norm -Archimedean normed space X.

(1) A sequence $\left\{x_n\right\}_{n=1}^{\infty}$ in a non-Archimedean space is a Cauchy sequence iff the sequence $\left\{x_{n+1}-x_n\right\}_{n=1}^{\infty}$ converges to zero.

(2) The sequence $\{x_n\}$ is said to be convergent if, for any $\epsilon > 0$, there are a positive integer N and $x \in X$ such that

$$||x_n - x|| \le \epsilon . \forall n \ge N,$$

for all $n,m \ge N$. The we call $x \in X$ a limit of sequence x_n and denote $\lim_{n\to\infty} x_n = x$.

- (3) If every sequence Cauchy in X converger, then the norm -Archimedean normed space X is called a norm -Archimedean Bnanch space.
- 2.2. Solutions of the equation. The functional equation

$$f(x+y) = f(x) + f(y)$$

is called the Cauchuy equation. In particular, every solution of the Cauchuy equation is said to be an *additive mapping*.

3. Additiver functional inequality in Banach space

Now, we study the solutions of (1.1). Note that for these inequalitie, \mathbf{X}_1 and \mathbf{X}_2 is a Banach spaces. Under this setting, we can show that the mapping satisfying (1.1) is additive. These results are give in the following.

Lemma 3.1. A mapping $F: \mathbf{X}_1 \to \mathbf{X}_2$ satisfies

$$\left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right) \right\|_{\mathbf{X}_{2}}$$
(3.1)

for all $x_i, x_{k+1} \in \mathbf{X}_1$ for all $j = 1 \to k$ if and only if $F : \mathbf{X}_1 \to \mathbf{X}_2$ is additive.

Proof. Assume that $F: \mathbf{X}_1 \to \mathbf{X}_2$ satisfies (3.1). Letting $x_j = x_{k+j} = 0, j = 1 \to k$ in (3.1), we get

$$\left(\left|2k-1\right|-1\right)\left\|F\left(0\right)\right\|_{\mathbf{X}_{2}}\leq0.$$

So F(0) = 0. Thus

Letting $x_{k+j} = 0$ and $x_j = x$ for all $j = 1 \to k$ in (3.1), we get

$$\left\| F(kx) - kF(x) \right\|_{\mathbf{X}_2} \le 0 \tag{3.2}$$

and so F(kx) = kF(x) for all $x \in X_1$.

Thus

$$F\left(\frac{x}{k}\right) = \frac{1}{k}F(x) \tag{3.3}$$

for all $x \in \mathbf{X_1}$ It follows from (3.1) and (3.3) that:

$$\left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| \frac{1}{k} F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+1}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right) \right\|_{\mathbf{X}_{2}}$$

$$= \frac{1}{k} \left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+1} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F(x_{j}) \right) \right\|_{\mathbf{X}_{2}} (3.4)$$

and so

$$F\left(\frac{1}{k}\sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_j\right) = \sum_{j=1}^{k} F\left(\frac{x_{k+1}}{k}\right) + \sum_{j=1}^{k} F(x_j)$$

for all $x_j, x_{k+j} \in \mathbf{X_1}$ for all $j = 1 \to k$. Hence $F : \mathbf{X_1} \to \mathbf{X_2}$ is additive. The coverse is obviously true.

Theorem 3.2. Let $\varphi: \mathbf{X_1^{2k}} \to [0, \infty)$ be a function and let $F: \mathbf{X_1} \to \mathbf{X_2}$ be mapping such that

$$\varphi\left(x_{1}, x_{2}, ..., x_{k}, x_{k+1}, x_{k+2}, ..., x_{2k}\right) = \sum_{j=1}^{\infty} k^{j} \psi\left(\frac{x_{1}}{k^{j}}, \frac{x_{2}}{k^{j}}, ..., \frac{x_{k}}{k^{j}}, \frac{x_{k+1}}{k^{j}}, \frac{x_{k+2}}{k^{j}}, ..., \frac{x_{2k}}{k^{j}}\right) < \infty$$

$$(3.5)$$

$$\left\| F\left(\frac{1}{k}\sum_{j=1}^{k}x_{k+j} + \sum_{j=1}^{k}x_{j}\right) - \sum_{j=1}^{k}F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k}F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k^{2}}\sum_{j=1}^{k}x_{k+j} + \frac{1}{k}\sum_{j=1}^{k}x_{j}\right) - \frac{1}{k}\sum_{j=1}^{k}F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k}\sum_{j=1}^{k}F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$+ \psi\left(x_{1}, x_{2}, ..., x_{k}, x_{k+1}, x_{k+2}, ..., x_{2k}\right) \tag{3.6}$$

for all $x_j, x_{k+j} \in \mathbb{X}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q: \mathbf{X}_1 \to \mathbf{X}_2$ such that

$$\|F(x) - Q(x)\|_{\mathbf{X}_2} \le \frac{1}{k}\varphi(x, x, ..., x, 0, 0..., 0)$$
 (3.7)

for all $x \in \mathbf{X_1}$.

Proof. Letting $x_j = x_{k+j} = 0$ for all $j = 1 \to k$ in (3.6), we get

$$\left(\left|2k-1\right|-1\right)\left\|F\left(0\right)\right\|_{\mathbf{X}_{2}} \le 0. \tag{3.8}$$

So

$$F(0) = 0.$$

Letting $x_{k+j} = 0$, $x_j = x$ for all $j = 1 \to k$ in (3.6), we get

$$\|F(kx) - kF(x)\|_{\mathbf{X}_2} \le \frac{1}{k} \psi(x, x, ..., x, 0, 0, ..., 0)$$
 (3.9)

LY VAN AN / IJMTT, 67(9), 183-197, 2021

$$\left\| F\left(x\right) - kF\left(\frac{x}{k}\right) \right\|_{\mathbf{X}_{2}} \le \frac{1}{k} \psi\left(\frac{x}{k}, \frac{x}{k}, ..., \frac{x}{k}, 0, 0, ..., 0\right)$$

Hence

$$\left\| k^{l} F\left(\frac{x}{k^{l}}\right) - k^{m} F\left(\frac{x}{k^{m}}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \sum_{j=l}^{m-1} \left\| k^{j} F\left(\frac{x}{k^{j}}\right) - k^{j+1} F\left(\frac{x}{k^{j+1}}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \frac{1}{k} \sum_{j=l+1}^{m} k^{j} \psi\left(\frac{x}{k^{j}}, \frac{x}{k^{j}}, \dots, \frac{x}{k^{j}}, 0, 0, \dots, 0\right)$$

$$(3.10)$$

for all nonnegative integers m and l with m > l and all $x \in \mathbf{X_1}$. It follows from (3.10) that the sequence $\left\{k^n F\left(\frac{x}{k^n}\right)\right\}$ is a cauchy sequence for all $x \in \mathbf{X_1}$. Since $\mathbf{X_2}$ is complete space, the sequence $\left\{k^n F\left(\frac{x}{k^n}\right)\right\}$ coverges.

So one can define the mapping $Q: \mathbf{X}_1 \to \mathbf{X}_2$ by

$$Q(x) := \lim_{n \to \infty} k^n f\left(\frac{x}{k^n}\right)$$

for all $x \in \mathbf{X_1}$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.10), we get (3.7).

Now, It follows from (3.5) and (3.6) that

$$\left\| Q\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} Q\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} Q\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$= \lim_{n \to \infty} k^{n} \left\| F\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{n+1}} + \frac{1}{k^{n}} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k^{n+1}}\right) - \sum_{j=1}^{k} F\left(\frac{x_{j}}{k^{n}}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \lim_{n \to \infty} k^{n} \left\| F\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{n+2}} + \frac{1}{k^{n}} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k^{n+1}}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{j}}{k^{n}}\right) \right\|_{\mathbf{X}_{2}}$$

$$+ \lim_{n \to \infty} k^{n} \psi\left(\frac{x_{1}}{k^{j}}, \frac{x_{2}}{k^{j}}, \dots, \frac{x_{k}}{k^{j}}, \frac{x_{k+1}}{k^{j}}, \frac{x_{k+2}}{k^{j}}, \dots, \frac{x_{2k}}{k^{j}}\right)$$

$$= \left\| F\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$
(3.11)

for all $x_j, x_{k+j} \in \mathbf{X_1}$, for all $j = 1 \to k$. So

$$\left\| Q \left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j} \right) - \sum_{j=1}^{k} Q \left(\frac{x_{k+j}}{k} \right) - \sum_{j=1}^{k} Q \left(x_{j} \right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| Q \left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j} \right) - \frac{1}{k} \sum_{j=1}^{k} Q \left(\frac{x_{k+j}}{k} \right) - \frac{1}{k} \sum_{j=1}^{k} Q \left(x_{j} \right) \right\|_{\mathbf{X}_{2}} \tag{3.12}$$

for all $x_j, x_{k+j} \in \mathbf{X_1}$, for all $j = 1 \to k$. By Lemma (3.1), the mapping $Q : \mathbf{X_1} \to \mathbf{X_2}$ is additive.

Next, suppose that $T: \mathbf{X_1} \to \mathbf{X_2}$ be another additive mapping satisfying (3.7). Then we have

$$\|Q(x) - T(x)\|_{\mathbb{Y}} = k^{n} \|Q\left(\frac{x}{k^{n}}\right) - T\left(\frac{x}{k^{n}}\right)\|_{\mathbb{Y}}$$

$$\leq k^{n} \left(\|Q\left(\frac{x}{k^{n}}\right) - f\left(\frac{x}{k^{n}}\right)\|_{\mathbb{Y}} + \|T\left(\frac{x}{k^{n}}\right) - f\left(\frac{x}{k^{n}}\right)\|_{\mathbb{Y}}\right)$$

$$\leq k^{n} \left(\frac{1}{k^{n}} \varphi\left(\frac{x}{k^{n}}, \frac{x}{k^{n}}, ..., \frac{x}{k^{n}}, 0, 0, ..., 0\right) + \frac{1}{k^{n}} \varphi\left(\frac{x}{k^{n}}, \frac{x}{k^{n}}, ..., \frac{x}{k^{n}}, 0, 0, ..., 0\right)$$

$$= k^{n} \cdot \frac{2}{k} \varphi\left(\frac{x}{k^{n}}, \frac{x}{k^{n}}, ..., \frac{x}{k^{n}}, 0, 0, ..., 0\right)$$

$$\leq k^{n} \varphi\left(\frac{x}{k^{n}}, \frac{x}{k^{n}}, ..., \frac{x}{k^{n}}, 0, 0, ..., 0\right)$$
(3.13)

which tends to zero as $n \to \infty$ for all $x \in \mathbf{X_1}$. So we can conclude that Q(x) = T(x) for all $x \in \mathbf{X_1}$. This proves the uniqueness of Q. Thus the mapping $Q : \mathbf{X_1} \to \mathbf{X_2}$ is a unique additive mapping satisfying (3.7).

Corollary 3.3. Let r > 1 and θ be nonnegative real numbers and $F: \mathbf{X_1} \to \mathbf{X_2}$ be a mapping satisfying

$$\left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$+ \theta \left(\sum_{j=1}^{k} \left\| x_{i} \right\|_{\mathbf{X}_{1}}^{r} + \sum_{j=1}^{k} \left\| x_{k+i} \right\|_{\mathbf{X}_{1}}^{r}\right) \tag{3.14}$$

for all $x_j, x_{k+j} \in \mathbf{X_1}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q: \mathbf{X_1} \to \mathbf{X_2}$ such that

$$\left\| F\left(x\right) - Q\left(x\right) \right\|_{\mathbf{X}_{2}} \le \frac{2k\theta}{k^{r} - k} \left\| x \right\|^{r} \tag{3.15}$$

for all $x \in \mathbf{X_1}$

Theorem 3.4. Let $\varphi: \mathbf{X_1^{2k}} \to [0, \infty)$ be a function and let $F: \mathbf{X_1} \to \mathbf{X_2}$ be mapping such that

$$\varphi\left(x_{1}, x_{2}, ..., x_{k}, x_{k+1}, x_{k+2}, ..., x_{2k}\right)$$

$$= \sum_{j=1}^{\infty} \frac{1}{k^{j}} \psi\left(k^{j} x_{1}, k^{j} x_{2}, ..., k^{j} x_{k}, k^{j} x_{k+1}, k^{j} x_{k+2}, ..., k^{j} x_{2k}\right) < \infty$$
(3.16)

$$\left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$+ \psi\left(x_{1}, x_{2}, ..., x_{k}, x_{k+1}, x_{k+2}, ..., x_{2k}\right) \tag{3.17}$$

for all $x_j, x_{k+j} \in \mathbb{X}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q: \mathbf{X}_1 \to \mathbf{X}_2$ such that

$$\|F(x) - Q(x)\|_{\mathbf{X}_2} \le \frac{1}{k}\varphi(x, x, ..., x, 0, 0, ..., 0)$$
 (3.18)

, for all $x \in \mathbf{X_1}$.

Proof. Letting $x_j = x_{k+j} = 0$ for all $j = 1 \to k$ in (3.17), we get

$$\left(\left|2k-1\right|-1\right)\left\|F\left(0\right)\right\|_{\mathbf{X}_{2}} \le 0. \tag{3.19}$$

So

$$F(0) = 0.$$

Letting $x_{k+j} = 0$, $x_j = x$ for all $j = 1 \to k$ in (3.17), we get

$$\|F(kx) - kF(x)\|_{\mathbf{X}_2} \le \psi(x, x, ..., x, 0, 0, ..., 0)$$
 (3.20)

thus

$$\left\| F(x) - \frac{1}{k} F(kx) \right\|_{\mathbf{X}_0} \le \frac{1}{k} \psi(x, x, ..., x, 0, 0, ..., 0)$$

Hence

$$\left\| \frac{1}{k^{l}} F(k^{l} x) - \frac{1}{k^{m}} F(k^{m} x) \right\|_{\mathbf{X}_{2}}$$

$$\leq \sum_{j=l}^{m-1} \left\| \frac{1}{k^{j}} F(k^{j} x) - \frac{1}{k^{j+1}} F(k^{j+1} x) \right\|_{\mathbf{X}_{2}}$$

$$\leq \frac{1}{k} \sum_{j=l}^{m} \frac{1}{k^{j+1}} \psi(k^{j} x, k^{j} x, ..., k^{j} x, 0, 0, ..., 0)$$
(3.21)

for all nonnegative integers m and l with m>l and all $x\in \mathbf{X_1}$. It follows from (3.21) that the sequence $\left\{\frac{1}{k^n}F\left(k^nx\right)\right\}$ is a cauchy sequence for all $x\in \mathbf{X_1}$. Since $\mathbf{X_2}$ is complete space, the sequence $\left\{\frac{1}{k^n}F\left(k^nx\right)\right\}$ coverges. So one can define the mapping $Q:\mathbf{X_1}\to\mathbf{X_2}$ by

$$Q(x) := \lim_{n \to \infty} \frac{1}{k^n} F(k^n x)$$

for all $x \in \mathbb{X}$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.21), we get (3.18).

We use the similar manner to the proof of Theorem 3.2 for the rest of the proof.

Corollary 3.5. Let r < 1 and θ be nonnegative real numbers and $F : \mathbf{X_1} \to \mathbf{X_2}$ be a mapping satisfying

$$\left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$+ \theta\left(\sum_{j=1}^{k} \left\| x_{i} \right\|^{r} + \sum_{j=1}^{k} \left\| x_{k+i} \right\|^{r}\right) \tag{3.22}$$

for all $x_j, x_{k+j} \in \mathbf{X_1}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q: \mathbf{X_1} \to \mathbf{X_2}$ such that

$$\left\| F\left(x\right) - Q\left(x\right) \right\|_{\mathbf{X}_{2}} \le \frac{2k\theta}{k - k^{r}} \left\| x \right\|^{r} \tag{3.23}$$

for all $x \in \mathbf{X_1}$

4. Additive functional inequality in non-Archimedean Banach space

Now, we study the solutions of (1.2). Note that for these inequalitie, \mathbf{X}_1 is a non-Archimedean normed space and \mathbf{X}_2 is a non-Archimedean Banach spaces. Under this setting, we can show that the mapping satisfying (1.2) is additive. These results are give in the following. Assume that where k is a fixed positive integer with $|k| \neq 1$.

Lemma 4.1. A mapping $F: \mathbf{X}_1 \to \mathbf{X}_2$ satisfies F(0) = 0

$$\left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}} \tag{4.1}$$

for all $x_j, x_{k+j} \in \mathbf{X}_1$ for all $j = 1 \to k$ if and only if $F : \mathbf{X}_1 \to \mathbf{X}_2$ is additive.

Proof. Assume that $F: \mathbf{X}_1 \to \mathbf{X}_2$ satisfies (4.1). Letting $x_1 = x$, $x_{j+1} = x_{k+j} = 0$, $j = 1 \to k$ in (3.1), we obtain

$$\left\| F\left(\frac{x}{k}\right) - \frac{1}{k}F\left(x\right) \right\|_{\mathbf{X_2}} \le 0$$

and so $F\left(\frac{x}{k}\right) = \frac{1}{k}F(x)$ Thus

$$\left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right) \right\|_{\mathbf{X}_{2}}$$

$$= \left\| F\left(\frac{1}{k} \left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right)\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right) \right\|_{\mathbf{X}_{2}}$$

$$= \left| \frac{1}{k} \right| \left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$(4.2)$$

for all $x_j, x_{k+j} \in \mathbf{X}_1$ for all $j = 1 \to k$. Since |k| < 1

$$F\left(\frac{1}{k}\sum_{j=1}^{k}x_{k+j} + \sum_{j=1}^{k}x_{j}\right) - \sum_{j=1}^{k}F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k}F\left(x_{j}\right) = 0$$

for all $x_j, x_{k+j} \in \mathbf{X}_1$ for all $j = 1 \to k$. On the other hand the converse is obviously true.

Theorem 4.2. Let $\varphi: \mathbf{X_1^{2k}} \to [0, \infty)$ be a function and let $F: \mathbf{X_1} \to \mathbf{X_2}$ be mapping with F(0) = 0 satisfying

$$\varphi\left(x_{1}, x_{2}, ..., x_{k}, x_{k+1}, x_{k+2}, ..., x_{2k}\right) = \sum_{j=1}^{\infty} \left| k^{j} \left| \psi\left(\frac{x_{1}}{k^{j}}, \frac{x_{2}}{k^{j}}, ..., \frac{x_{k}}{k^{j}}, \frac{x_{k+1}}{k^{j}}, \frac{x_{k+2}}{k^{j}}, ..., \frac{x_{2k}}{k^{j}}\right) \right| < \infty$$

$$(4.3)$$

$$\left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$+ \psi\left(x_{1}, x_{2}, ..., x_{k}, x_{k+1}, x_{k+2}, ..., x_{2k}\right) \tag{4.4}$$

for all $x_j, x_{k+j} \in \mathbf{X_1}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $H: \mathbf{X_1} \to \mathbf{X_2}$ such that

$$||F(x) - H(x)||_{\mathbf{X}_2} \le |k|\varphi(x, 0, ..., 0, 0, ..., 0)$$
 (4.5)

for all $x \in \mathbf{X_1}$.

Proof. Letting $x_1 = x$, $x_{j+1} = x_{k+j} = 0$ for all $j = 1 \to k$ in (4.4), we get

$$\left\| F(x) - kF(\frac{x}{k}) \right\|_{\mathbf{X}_2} \le |k| \psi(x, 0, ..., 0, 0, 0, ..., 0)$$
 (4.6)

for all $x \in \mathbf{X_1}$ Hence

$$\left\|k^{l}F\left(\frac{x}{k^{l}}\right)-k^{m}F\left(\frac{x}{k^{m}}\right)\right\|_{\mathbf{X}_{2}}$$

$$\leq \max\left\{\left\|k^{l}F\left(\frac{x}{k^{l}}\right)-k^{l+1}F\left(\frac{x}{k^{l+1}}\right)\right\|_{\mathbf{X}_{2}},\cdots,\left\|k^{m-1}F\left(\frac{x}{k^{m-1}}\right)-k^{m}F\left(\frac{x}{k^{m}}\right)\right\|_{\mathbf{X}_{2}}$$

$$\leq \max\left\{\left|k\right|^{l}\left\|F\left(\frac{x}{k^{j}}\right)-kF\left(\frac{x}{k^{j+1}}\right)\right\|_{\mathbf{X}_{2}},\cdots,\left|k\right|^{m-1}\left\|F\left(\frac{x}{k^{m-1}}\right)-kF\left(\frac{x}{k^{m}}\right)\right\|_{\mathbf{X}_{2}}$$

$$\leq \sum_{j=l}^{\infty}\left|k\right|^{j+1}\psi\left(\frac{x}{k^{j}},0,\ldots,0,0,0,\ldots,0\right)$$

$$(4.7)$$

for all nonnegative integers m and l with m > l and all $x \in \mathbf{X_1}$. It follows from (4.7) that the sequence $\left\{k^n F\left(\frac{x}{k^n}\right)\right\}$ is a cauchy sequence for all $x \in \mathbf{X_1}$. Since $\mathbf{X_2}$ is complete space, the sequence $\left\{k^n F\left(\frac{x}{k^n}\right)\right\}$ coverges.

So one can define the mapping $H: \mathbf{X}_1 \to \mathbf{X}_2$ by

$$H(x) := \lim_{n \to \infty} k^n F\left(\frac{x}{k^n}\right)$$

for all $x \in \mathbb{X}$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (4.7), we get (4.5). Now, It follows from (4.3) and (4.4) that

$$\left\| H\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} H\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} H\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$= \lim_{n \to \infty} |k|^{n} \left\| F\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{n+2}} + \frac{1}{k^{n+1}} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k^{n+1}}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{j}}{k^{n}}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \lim_{n \to \infty} |k|^{n} \left\| F\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{n+1}} + \frac{1}{k^{n}} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k^{n+1}}\right) - \sum_{j=1}^{k} F\left(\frac{x_{j}}{k^{n}}\right) \right\|_{\mathbf{X}_{2}}$$

$$+ \left| \lim_{n \to \infty} |k|^{n} \psi\left(\frac{x_{1}}{k^{n}}, \frac{x_{2}}{k^{n}}, \dots, \frac{x_{k}}{k^{n}}, \frac{x_{k+1}}{k^{n}}, \frac{x_{k+2}}{k^{n}}, \dots, \frac{x_{2k}}{k^{n}}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$= \left\| F\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$(4.8)$$

for all $x_j, x_{k+j} \in \mathbf{X_1}$, for all $j = 1 \to k$. So

$$\left\| H\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} H\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} H\left(x_{j}\right) \right\|_{\mathbf{X}_{2}} \le \left\| H\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} H\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} H\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$(4.9)$$

for all $x_j, x_{k+j} \in \mathbf{X_1}$, for all $j = 1 \to k$. By Lemma 4.1, the mapping $H : \mathbf{X_1} \to \mathbf{X_2}$ is additive.

Next, suppose that $T: \mathbf{X_1} \to \mathbf{X_2}$ be another additive mapping satisfying (4.5). Then we

have

$$\left\| H\left(x\right) - T\left(x\right) \right\|_{\mathbf{X}_{2}} = \left\| k^{n} H\left(\frac{x}{k^{n}}\right) - k^{n} T\left(\frac{x}{k^{n}}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \max \left\{ \left\| k^{n} H\left(\frac{x}{k^{n}}\right) - k^{n} F\left(\frac{x}{k^{n}}\right) \right\|_{\mathbf{X}_{2}}, \left\| k^{n} T\left(\frac{x}{k^{n}}\right) - k^{n} F\left(\frac{x}{k^{n}}\right) \right\|_{\mathbf{X}_{2}} \right\}$$

$$\leq \frac{1}{|k|} |k|^{n} \varphi\left(\frac{x}{k^{n}}, 0, ..., 0, 0, ..., 0\right) \tag{4.10}$$

which tends to zero as $n \to \infty$ for all $x \in \mathbf{X_1}$. So we can conclude that H(x) = T(x) for all $x \in \mathbf{X_1}$. This proves the uniqueness of H. Thus the mapping $H : \mathbf{X_1} \to \mathbf{X_2}$ is a unique additive mapping satisfying (4.5).

Corollary 4.3. Let r < 1 and θ be nonnegative real numbers and $F : \mathbf{X_1} \to \mathbf{X_2}$ be a mapping with F(0) = 0 satisfying

$$\left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$+ \theta\left(\sum_{j=1}^{k} \left\| x_{i} \right\|_{\mathbf{X}_{1}}^{r} + \sum_{j=1}^{k} \left\| x_{k+i} \right\|_{\mathbf{X}_{1}}^{r}\right) \tag{4.11}$$

for all $x_j, x_{k+j} \in \mathbf{X_1}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $H: \mathbf{X_1} \to \mathbf{X_2}$ such that

$$\left\| F\left(x\right) - H\left(x\right) \right\|_{\mathbf{X}_{2}} \le \frac{\left|k\right|^{r+1} \theta}{\left|k\right|^{r} - \left|k\right|} \left\|x\right\|^{r} \tag{4.12}$$

for all $x \in \mathbf{X_1}$

Theorem 4.4. Let $\varphi: \mathbf{X_1^{2k}} \to [0, \infty)$ be a function and let $F: \mathbf{X_1} \to \mathbf{X_2}$ be mapping with F(0) = 0 satisfying

$$\varphi\left(x_{1}, x_{2}, ..., x_{k}, x_{k+1}, x_{k+2}, ..., x_{2k}\right)$$

$$= \sum_{j=1}^{\infty} \frac{1}{|k^{j}|} \psi\left(k^{j} x_{1}, k^{j} x_{2}, ..., k^{j} x_{k}, k^{j} x_{k+1}, k^{j} x_{k+2}, ..., k^{j} x_{2k}\right) < \infty \quad (4.13)$$

$$\left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$+ \psi\left(x_{1}, x_{2}, ..., x_{k}, x_{k+1}, x_{k+2}, ..., x_{2k}\right) \tag{4.14}$$

for all $x_j, x_{k+j} \in \mathbf{X_1}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $H: \mathbf{X_1} \to \mathbf{X_2}$ such that

$$||F(x) - H(x)||_{\mathbf{X}_2} \le |k|\psi(x, 0, ..., 0, 0, ..., 0)$$
 (4.15)

for all $x \in \mathbf{X_1}$.

Proof. Letting $x_1 = x$, $x_{j+1} = x_{k+j} = 0$ for all $j = 1 \to k$ in (4.14), we get

$$\left\| F(x) - \frac{1}{k} F(kx) \right\|_{\mathbf{X}_2} \le \psi(kx, 0, ..., 0, 0, 0, ..., 0)$$
(4.16)

for all $x \in \mathbf{X_1}$ We use the similar manner to th

Corollary 4.5. Let r > 1 and θ be nonnegative real numbers and $F : \mathbf{X_1} \to \mathbf{X_2}$ be a mapping with F(0) = 0 satisfying

$$\left\| F\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$\leq \left\| F\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} F\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} F\left(x_{j}\right) \right\|_{\mathbf{X}_{2}}$$

$$+ \theta\left(\sum_{j=1}^{k} \left\| x_{i} \right\|_{\mathbf{X}_{1}}^{r} + \sum_{j=1}^{k} \left\| x_{k+i} \right\|_{\mathbf{X}_{1}}^{r}\right) \tag{4.17}$$

for all $x_j, x_{k+j} \in \mathbf{X_1}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $H : \mathbf{X_1} \to \mathbf{X_2}$ such that

$$\left\| F\left(x\right) - H\left(x\right) \right\|_{\mathbf{X}_{2}} \le \frac{\left|k\right|^{r+1} \theta}{\left|k\right| - \left|k\right|^{r}} \left\|x\right\|^{r} \tag{4.18}$$

for all $x \in \mathbf{X_1}$

References

- [1] Tosio Aoki. On the stability of the linear transformation in banach spaces. *Journal of the Mathematical Society of Japan*, 2(1-2):64–66, 1950.
- [2] Ly Van An. Hyers-Ulam stability of functional inequalities with three variable in Banach spaces and Non-Archemdean Banach spaces International Journal of Mathematical Analysis Vol.13, 2019, no. 11. 519-53014, 296-310.
- [3] A.Bahyrycz, M. Piszczek, Hyers stability of the Jensen function equation, Acta Math. Hungar.,142 (2014),353-365.
- [4] M.Balcerowski, On the functional equations related to a problem of z Boros and Z. Dróczy, Acta Math. Hungar.,138 (2013), 329-340.
- [5] H.Dimou¹, Y.ribou², S.Kabbaj³. Generalzed functional inequalities in Banach space, Volume 7(2), 202, Pages 337-349...ISSN:Online 2351-8227-Print 2605-6364.DOI:10.2478/mjpaa-2021-0022.
- [6] Włodzimierz Fechner. Stability of a functional inequality associated with the jordan–von neumann functional equation. *Aequationes Mathematicae*, 71(1):149–161, 2006.
- [7] Pascu Găvruta A generalization of the hyers-ulam-rassias stability of approximately additive mappings. *Journal of Mathematical Analysis and Applications*, 184(3):431–436, 1994.
- [8] Attila Gilányi. Eine zur parallelogrammgleichung äquivalente ungleichung. Aequationes Mathematicae, 62(3):303–309, 2001.

- [9] Attila Gilányi. On a problem by k. nikodem. Mathematical Inequalities and Applications, 5:707-710, 2002.
- [10] Donald H Hyers. On the stability of the linear functional equation. *Proceedings of the National Academy of Sciences of the United States of America*, 27(4):222, 1941.
- [11] . K. Hensel, Uber eine neue Begrundung der Theorie der algebraischen Zahlen, Jahres-ber Deutsch. Math. Verein, 6(1897), 8388 .
- [12] Jung Rye Lee, Choonkil Park, and Dong Yun Shin. Additive and quadratic functional in equalities in non-archimedean normed spaces. 2014.
- [13] M.S. Moslehian and M.Th. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math, 1 (2007), 325334.
- [14] W. P and J. Schwaiger, A system of two inhomogeneous linear functional equations, Acta Math. Hungar 140 (2013), 377-406 .
- [15] Choonkil Park. Functional inequalities in non-archimedean normed spaces. *Acta Mathematica Sinica*, English Series, 31(3):353–366, 2015.
- [16] Choonkil Park, Young Sun Cho, and Mi-Hyen Han. Functional inequalities associated with jordan-von neumann-type additive functional equations. *Journal of Inequalities and Applications*, 2007(1):041820, 2006.
- [17] Choonkil. Park. Additive β -functional inequalities, Journal of Nonlinear Science and Appl. 7(2014), 296-310.
- [18] Choonkil. Park. Additive ρ-functional inequalities and equations, Journal of Mathmatical inequalities Volum 9, Number 1 (2015), 17- 26 doi: 10.7153/jmi-09-02.
- [19] Themistocles M Rassias. On the stability of the linear mapping in banach spaces. *Proceedings of the American Mathematical Society*, 72(2):297–300, 1978.
- [20] Jürg Rätz. On inequalities associated with the jordan-von neumann functional equation. *Aequationes mathematicae*, 66(1):191–200, 2003.
- [21] Stanislaw M Ulam. A collection of mathematical problems, volume 8. Interscience Publishers, 1960.