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ABSTRACT. In this paper we use the direct method to proved two the generalized ad-
ditive functional inequalities with 2k-variables and their Hyers-Ulam-Rassias stability.
First are investigated in Banach spaces and the last are investigated in non-Archimedean
Banach spaces. We will show that the solutions of the inequalities are additive mappings.
These are the main results of this paper.
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1. INTRODUCTION

Let X; and X3 be a normed spaces on the same field K, and F' : X; — X5. We use
for all the norm on both X; and X,. In this paper, we investisgate

the notation H

some additive functional inequality when X; and X is a Banach spaces or X; is a non-
Archimedean normed space and X5 is a non-Archimedean Banach space.

In fact, when X; and X5 is Banach spaces we solve and prove the Hyers-Ulam-Rassias
type stability of forllowing additive functional inequality.

(e ) 2 () el
(Fge i) a5 i)

<

(1)

and when X; is a non-Archimedean normed space and X5 is a non-Archimedean Banach
spaces we solve and prove the Hyers-Ulam stability of forllowing additive functional in-
equality.
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The study of the functional equation stability originated from a question of S.M.
Ulam, concerning the stability of group homomorphisms. Let (G, *) be a group and

let (G’, o, d) be a metric group with metric d<~, ) Geven € > 0, does there exist a § > 0
such that if f: G — G’ satisfies

(1) 56 56)) <0

for all x,y € G then there is a homomorphism h : G — G’ with

(1) () <+

for all z € G 7, if the answer, is affirmative, we would say that equation of homomophism
h(m * y) = h(y) o h<y> is stable. The concept of stability for a functional equation arises

when we replace functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equations is that how do the solutions
of the inequality differ from those of the given function equation? Hyers [10] gave a first
affirmative answes the question of Ulam as follows:

Theorem 1.1. (D. H. Hyers 1941) Let € > 0 and let f be a function where X and Y are

Banach space, such that
[#(e+v)=1(z) =1 ()] <

for all x,y € X and some € > 0. Then there exists a unique additive mappingT : X =Y,

satisfying

(=) =7(2)
Next Th. M. Rassias [19] provided a generalization of Hyers” Theorem which allows the
Cauchy difference to be unbounded:

Theorem 1.2. (Th. M. Rassias.) Consider E,E' to be two Banach spaces, and let
f:E — E be a mapping such that f(tx) is continous in t for each fized x. Assume that
there exist 0 > 0 and p € [0, 1] such that

<e Ve X

(e +9) 1) 16 =l + o) vve
then there exists a unique linear L : E — E' satifies
20
_ P
‘f(:c) L(:c) < 5o 2pH:cH ,x € E.

After that, Hyers’ Theorem was generalized by Aoki[l] additive mappings and by Ras-
sias [19] for linear mappings considering an unbouned Cauchy diffrence. Ageneralization
of the Rassias theorem was obtained by Gavruta [7] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias’ approach.

The Hyers-Ulam stability for functional inequalities have been investigated such as in
[6, 20], Gildny showed that is if satisfies the functional inequality

() 25(5) - (o) < o)
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then f satisfies the Jordan-von Newman functional equation

2f<x> —|—2f<y) = f(xy) +f<xy_1>. (1.3)
Gilanyi [9] and Fechner [6] proved the Hyers-Ulam-Rassia stability of the functional in-
equality.
Choonkil Park [15] obtained the solutions of the additive functional inequality. Recently,
in [2, 5, 15] the authors studied the Hyers-Ulam-Rassia stability for the following func-
tional inequalities in Banach space and non-Archimedean Banach space:

(5) w0
b(5) - 409 - 20

S R(CIRC IR CORTE
(1.6)

<

flz+y) = f(2) - Fw) (1.4)

and

and
(e523) () w0l b)) 0]
Final
b(5e) -2 (5e) 15| o
and
erix)_%if(%) < f(ix)—if(m)‘ (1.9)

In this paper, we solve and proved the Hyers-Ulam-Rassias type stability for two
additive functional inequalities (1.1)-(1.2), ie the additive functional inequalities with
2k —variables . Under suitable assumptions on spaces X; and X5, we will prove that the
mappings satisfying the additive functional inequatilies (1.1) or (1.2). Thus, the results
in this paper are generalization of those in [2, 5, 15, 16, 17, 18] for functional inequatilies
with 2k — variables.

The paper is organized as followns:

In section preliminaries we remind some basic notations in [11, 13, 15, 16, 17, 18] such as
We only redefine the solution definition of the equation of the additive function.

Section 3: is devoted to prove the Hyers-Ulam stability of the additive functional inequal-
ities (1.1) when we assume that X; and X5 is a Banach spaces.

Section 4: is devoted to prove the Hyers-Ulam stability of the addive additive func-
tional inequalities (1.2) when Xj is a non-Archimedean normed space and Xj is a non-
Archimedean Banach space.
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2. PRELIMINARIES

2.1. non-Archimedean normed spaces. In this subsection we recall some basic nota-
tions from [12, [15] such as non-Archimedean fields, non-Archimedean normed spaces and
non-Archimedean Banach spaces.

A valuation is a function ‘ . ‘ from a field K into [0, o) such that 0 is the unique element
having the 0 valuation,

=0<r=0

r

r-s| == |r||s],Vr,s € K
and the triangle inequality holds, i.e.,
‘r%—s‘ < M + |s‘,Vr,s € K.

A field K is called a valued field if K carries a valuation. The usual absolute values of
R and C are examples of valuation. Let us consider a valuation which satisfies a stronger
condition than the triangle inequality. If the strong triangle inequality is replaced by

,|S‘},VT,8 e K,

‘7“ + s‘ < max{‘r

then the function ! . ‘ is called a non-Archimedean valuation. Clearly,

1 =]=1=1
and |n| < 1,Vn € N. A trivial example of a non-Archimedean valuation is the function
| . ‘ talking everything except for 0 into 1 and |0| = (. In this paper, we assume that the
base field is a non-Archimedean field with |2| # 1, hence call it simply a field.

Definition 2.1. Let be a vecter space over a filed K with a non -Archimedean ) . ’ A
function H : H X — [O, oo) is said a non -Archimedean norm if it satisfies the follwing
conditions:

(1) xH = 0 if and only if x = 0;

(2) m‘H = ’r’”x”(r e K,z e X);

@ [l o] < macf o o] v v
Then <X ,H . H) is called a norm -Archimedean norm space.

Definition 2.2.

A sequence {:En} in a norm -Archimedean (n, ﬁ) -normed space X is a Cauchy sequence

if and only if {xn — xm} — 0.

Definition 2.3. Let {a:n} be a sequence in a norm -Archimedean normed space X.

o
(1) A sequence {xn} in a non -Archimedean space is a Cauchy sequence iff the
n=1
sequence < Ty — Tn, converges to zero.

n=1
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(2) The sequence xn} is said to be convergent if, for any € > 0, there are a positive
integer N and x € X such that

for all n,m > N. The we call x€ X a limit of sequence x,, and denote lim,,_,,, x, =
x.

T —:L'H <eVn >N,

(3) If every sequence Cauchy in X converger, then the norm -Archimedean normed
space X is called a norm -Archimedean Bnanch space.

2.2. Solutions of the equation. The functional equation

flz+y) = fz) +1(y)

is called the Cauchuy equation. In particular, every solution of the Cauchuy equation is
said to be an additive mapping.

3. ADDITIVER FUNCTIONAL INEQUALITY IN BANACH SPACE

Now, we study the solutions of (1.1). Note that for these inequalitie, Xjand X is
a Banach spaces. Under this setting, we can show that the mapping satisfying (1.1) is
additive. These results are give in the following.

Lemma 3.1. A mapping F : X; — Xy satilies

FngkﬂJrg%) _§F<x2ﬂ> _iF(xj)

Jj=1 Xo
1< 1 g 1 z 1o
kg
(e inn) () i)
j=1 j=1 j=1 J=1 X
(3.1)
forall xj,xpy; € Xy forall j =1 — k if and only of F': Xy — Xy is additive.
Proof. Assume that F' : X; — X satisfies (3.1]).
Letting x; = 234; = 0,7 =1 — k in (3.1]), we get
(ke =1 =2)]F ()], =0
Xo
So F(0) =0,
Thus
Letting xj4; = 0 and z; = x for all j =1 — k in (3.1]), we get
HF(k;x) - k:F(x)‘ <0 (3.2)
X2

and so F(kx) = kF (x) for all x € X;.
Thus
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for all z € X; It follows from (3.1) and (3.3]) that:
k

F(%éwi%)—ZF(%—W

X2

j=1 j=1 Xa

1 1 k k . k

k+
- F(szkﬂ ; z) - ZF( k) - w) 3
j=1 j=1 j=1 7=1 Xo

and so

1 i - $k+1
for all z;,zp1; € Xy forall j =1 — k. Hence F : X1 — Xg is addltlve.
The coverse is obviously true. 0

Theorem 3.2. Let ¢ : X2k — [0, oo) be a function and let F' : X; — Xy be mapping
such that

951 332 T Tp41 Tg42 Lok

vy E, 7, 7, ceey ﬁ> < 0

00
(p(.’L‘l,{L'Q,...,ZL’k,{L‘]H_l,{L‘]H_g,...,ZL’Qk> E

(3.5)

k k k k
j=1 j=1 j=1 j=1
1 o 1 g

+ 1/)(x1, X9y ooy Thoy Tkt 15 Tkt 2y -+, T2k

X2

i () ixr

?vl»—*

Xo

(3.6)

N——

for all xj, x5 € X, for all j =1 — k. Then there exists a unique additive mapping
Q : X; — Xy such that

|7 (=) - ()],
Proof. Letting z; = x; = 0 for all j =1 — k in (3.6)), we get

(fae= o[~ 0)
F(0) =o.
Letting x4; =0, z; = x for all j =1 — k in (3.6]), we get

<% ( z, ...,x,0,0...,O) (3.7)

for all z € Xy.

<0. (3.8)

X2

So

< %2/1(551:13000) (3.9)

Xa
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F(x) _ kF(%) < %w(% % fooo)

k
X
Hence
RE(Z) —pmp( 2
() -+ (5)
Xo
m—1 T T
J ) gt
j=l Xo
] — A A v T
< — KFiyl—,—,...,—,0,0,...,0 3.10
_kj§1 ¢(kj7kj> akja 3 Yy ey ) ( )

for all nonnegative integers m and [ with m > [ and all z € X;. It follows from (3.10))
that the sequence {k"F < ﬂ) } is a cauchy sequence for all x € X;. Since X5 is complete

space, the sequence ¢ K" F'( & } coverges.
So one can define the mapping @) : X; — X5 by
Q(v) = lim k f(k)

for all z € Xy. Moreover, letting [ = 0 and passing the limit m — oo in (3.10]), we get
B0
Now, It follows from (3.5)) and (3.6 that

(S5 50) (%) - 5ot

X2
b T 1< b T F T
_ N n k+j k+j J
— lim F(anﬂ%—ﬁ' mj>—ZF<an>—ZF(ﬁ>
Jj=1 Jj=1 Jj=1 j=1 X
b T 1< T 1< T
. n k+j k+j J
< Jlim & F( 2 an%)‘; <_k"+1>_EZF<k_n>
Jj=1 Jj=1 j=1 Xo
n (Tl T2 T Tg41 Tr42 o)
R Ve i S )
b T 1 i T 1<
o k+] k+j
_ F( ' m) EXF ( ) > (s) (3.11)
7j=1 J=1 J=1 Xo
for all z;, x51; € X4, for all j =1 — k.
So
L. k k .
k k
H@( *J+Zxa)—2@< k”)—Z@(wJ
Jj=1 Jj=1 Xo
a: 1 @ 1~ [z 1 <
kﬂ k+j
<fo(Shrins) ine(f) ixel)| e
j=1 j=1 j=1 J=1 Xo

for all z;,x,4; € Xy, for all j =1 — k. By Lemma (3.1), the mapping @ : X; — X3 is
additive.
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Next, suppose that T": X; — Xa be another additive mapping satisfying (3.7). Then we

have
x x
(i) 1()

Jo(z) -7 ()], =+

Y
n N Y N Y
Y Y
n( 1 T T T 1 T T T
<k <ﬁ¢(ﬁ,ﬁ,...,ﬁ,o,o,...,o)+kn o kn,..,ﬁ,o,o,...,o)>
n 2 1 X x
:k 'Egﬁ(k—n,ﬁ,...,ﬁ,[),(],...,[))
gk%(%,%,...,g—n,o,o,...,o) (3.13)

which tends to zero asn — oo for all x € X;. So we can conclude that Q(a:) = T(x)

for all z € Xy. This proves the uniqueness of (). Thus the mapping @) : X; — X5 is a
unique additive mapping satisfying (3.7)). O

Corollary 3.3. Let r > 1 and 6 be nonnegative real numbers and F' : X1 — Xg be a
mapping satisfying

(15 ) -5 (%) -5

j=1 Xo
1 & 1< 1~ [z 1<
k+j
s iss) () i)
j=1 j=1 j=1 J=1 X
k r k r
j=1 X1 j=1 X1

for all xj,xp1; € Xy, for all j = 1 — k. Then there exists a unique additive mapping
Q : X1 — Xy such that

2k6
< 2

X2

() -a(s)

(3.15)

for all v € X4

Theorem 3.4. Let ¢ : X2k — [0, oo) be a function and let F' : X1 — Xy be mapping
such that

(,0([)31, Loy ooy Thy Lt 13T 42y «ovs $2k>

kar;l, Kag,.okleg, K xpyq, K 2o, ..., kjilfgk) < 0

wl,_;

(3.16)
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k k k
j=1 j=1 1 j

k

J

J
1< 1< 1< T 1<
k+j
<frleseeiss) () i)
j=1 j=1 j=1 J=1 X2
+¢<l‘17$27---al‘k,l‘kﬂ,xku,---,Izk) (3.17)

for all zj,z; € X, for all j =1 — k. Then there exists a unique additive mapping
Q : X1 — Xy such that

RORC(O]

1
< Egp(x,x,...,x,O,O,...,O) (3.18)

X2
, for all v € Xy.

Proof. Letting z; = x1; = 0 for all j =1 — k in (3.17), we get

(fae o[ 1))
F(O) —0.

Letting x4, =0, z; =z for all j =1 — k in (3.17)), we get

<0. 3.19
= (3.19)

So

Fke) =kF (o) <v(w2,..2.0,0,..0) (3.20)
Xo
thus
1 1
F(a:) ——F(kx) < —w(x,x,...,x,o,(),...,0>
k k
X2
Hence
1 } 1 .
EF(I{ ) — k_mF(k z)
X2
m—1 1 1
' +1
< Z EF(I{%) — WF(]{;J x)
Jj=l X,
_Ezlkj—l—lqvb( x, Kz, ... k2, 0,0,.., ) (3.21)
]:

for all nonnegative integers m and [ with m > [ and all z € X;. It follows from (3.21]

that the sequence {klnF (k:"x) } is a cauchy sequence for all z € X;. Since X5 is complete

space, the sequence {k%F (k;”a:)} coverges.
So one can define the mapping @) : X; — X5 by

Q(x) = lim %F(k’"m)

n—oo kN
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for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in (3.21)), we get
(13.18)).

We use the similar manner to the proof of Theorem 3.2 for the rest of the proof.

U

Corollary 3.5. Let r < 1 and 6 be nonnegative real numbers and F : X; — X be a
mapping satisfying

(15 ) -5 (%) -5 r()

Jj=1

Xo
Flk 1< 1kka+j 1’“F
Bt o) - P\ ) - ()
Jj=1 Jj=1 Jj=1 Jj=1 Xo
k r
+0<Z ) (3.22)

j=1
for all xj,xp1; € Xq, for all j =1 — k. Then there exists a unique additive mapping

Q : Xy — Xy such that
JORTIO

<

r k

2

J=1

T; Tkti

2k0 H

X2

(3.23)

for all x € X4

4. ADDITIVE FUNCTIONAL INEQUALITY IN NON-ARCHIMEDEAN BANACH SPACE

Now, we study the solutions of (1.2). Note that for these inequalitie, X; is a non-
Archimedean normed space and X5 is a non-Archimedean Banach spaces. Under this
setting, we can show that the mapping satisfying (1.2) is additive. These results are give
in the following. Assume that where k is a fixed positive integer with }k‘ # 1.

Lemma 4.1. A mapping F : X1 — Xy satilies F(0) =0
k k k k
1 1 1 T 1
F(ﬁzkarj—i_Eij)_EZ < k—H)_EZ ( ))
i=1 j=1 =1 =1
1< T
k
(1S 3o - Sor(%) S r(e)
j=1 j=1

(4.1)

X2

for all xj, xpy; € Xy for all j =1 =k if and only if F': X; — Xy is additive.

Proof. Assume that F': X; — X, satisfies (4.1)).
Letting o1 =, xj41 = 234, = 0,7 =1 — k in (3.1]), we obtain

|7 () - 27

<0
Xo
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and so F(%) = %F(x)Thus
1< 1< 1< Thrj 1<
F(EZ%‘WZ%) . EZF< : ) ‘%ZF(%‘))
Jj=1 Jj=1 Jj=1 Jj=1 X5
11 b 1 Ths 1<
=Pl st 2 ) | = 2 _EZF@)
j=1 =1 j=1 =1 X,
1 R : Ths i
=[Gl F (o Xw | - X F (5 ) - F(w)
Jj=1 j=1 j=1 j=1 X
T S N A T .
<||F kakﬂ —i—Zx] ZF ? ZF(&:J) (4.2)
j=1 j=1 j=1 j=1 X

for all z;,z;1; € X, for all j =1 — k. Since ‘k‘ <1

1 F k k ' k
F(E;xkﬂjtjz:;xj) —;F(%) —;F<x]‘> =0

for all z;, x5y, € Xy for all j =1 — k. On the other hand the converse is obviously
true. U

Theorem 4.2. Let ¢ : X2 — [0, oo) be a function and let F' : X1 — Xy be mapping
with F'(0) = 0 satisfying

(e 9]

72 LI L1 L2 Lk Tkl Lk42 Lok
P\L1Ly X2y ovs Ty Thet 1y T2 -0 L2k | = | |¢(EJE77§777777?) < 00

j=1
(4.3)
k k k
1 1 1 Thy; 1
(e i%m) 15 (3) 53 )
j=1 j=1 j=1 J=1 Xo
1 k k k T k
k+j
< (2t ) - (2] - 3o ()
j=1 j=1 j=1 j=1 X3
+w(l'l,x27...,l‘k,xk+1,xk+2,...7$2k> (44)

for all xj,xp1; € Xy, for all j =1 — k. Then there exists a unique additive mapping
H : X, — Xy such that

Fr) = ()

< |k‘§0(x7077070770> (45)
X2

for all z € Xy.

Proof. Letting x; = ¢, xj41 = x5, =0 for all j =1 — k in (4.4), we get

() - ()

< [k[ (.0, ..0,0,0,...,0) (4.6)

Xa
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for all x € X; Hence

P _pE (L
4 () -+ (km
Smax{

< mam{|k‘l

m—1 T _.m i

Xa X2
T T m—1 X X

X2 X2

<y |k:\j“¢(%,o,...,0,0,0,...,0) (4.7)
=l

for all nonnegative integers m and [ with m > [ and all x € X;. It follows from (|4.7))
that the sequence {k"F (,%)} is a cauchy sequence for all x € X;. Since X5 is complete

space, the sequence {k”F (,%)} coverges.
So one can define the mapping H : X; — X5 by

H(z) == lim k"F(k )

n—oo

for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in . we get .
Now, It follows from (4.3} . ) and (| . ) that

b 1 1 : 1<
‘H<. xZ?*zZ%)—EZH(x2+J)‘EZH(f”ﬂ'>

Jj=1

Xo

k
1 ,
(e ) () S 5

j=1 Jj=1 Xao
Flx x b x
k+] k+j J
< Jim [k F( T g Zx]) _Z <kn+1> -2 ()
= Jj=1 Xo
1 Tk Tk41 Th42 $2k
},}EQOV{?\ V(T T Wk—n)
k k
L+ L+
_ < J+Z:cj> —ZF(#) => P () (4.8)
j=1 j=1 j=1 Xs
for all zj, xp1; € Xy, forall j =1 — k.
So
k k k
(S Ty Zx () S ()| <
! k k k ! -
Jj=1 j=1 J=1 X2
d fﬂkﬂ _ - Thtj | _ - ‘
—l—Zx] S H - > H(z (4.9)
j=1 j=1 j=1 Xs

for all j, xpy; € Xy, for all j =1 — k. By Lemma 4.1, the mapping H : X; — X3 is
additive.
Next, suppose that T': X; — X3 be another additive mapping satisfying (4.5)). Then we
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kﬂ<kf> _knT<kn>

have

J##(=) =7 (=)

X2 X2
xr xXr A
{en(E) -er(@)] () o))
1 n I
< mm go(ﬁ,o,...,o,o,...,o) (4.10)

which tends to zero asn — oo for all x € X;. So we can conclude that H(a:) = T(x)
for all x € X;. This proves the uniqueness of H. Thus the mapping H : X; — X3 is a
unique additive mapping satisfying (4.5]). O

Corollary 4.3. Let r < 1 and 6 be nonnegative real numbers and F : X1 — Xg be a
mapping with F(0) = 0 satisfying

A ER S L AT IS (e
k2;xk”+k2% _k; PC)

Jj=1 Xo

) (4.11)

for all xj,xp; € Xq, for all j =1 — k. Then there exists a unique additive mapping

H: X, — X5 such that
Flo)-u)|

H(i

j=1

‘k|r+1

<l -

for all x € X4

Theorem 4.4. Let ¢ : X2% — [0, oo) be a function and let F' : X; — Xy be mapping
with F(0) = 0 satisfying

go(l'l, L2y ooy ThysLpt 1y Lot 2y «evs .’L’Qk>

- ’k_ljwqﬁ(ijl; kj$2, cery ijCk, k:jka, k‘jfL‘k+2, cee /-Cj:L‘%) < 00 (413)
j=1
i Iom (2| 1w
k:z pn) o F () ()
Jj=1 Jj=1 Jj=1 Xo
k
( leﬁ'k:-H +Zx]> - ZF(mI;;J) — Z;F<xj>
=1 = X,

+¢<931,352,---,xk,$k+1,$k+2,---,$2k> (4.14)
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for all xj,xp1; € Xq, for all j =1 — k. Then there exists a unique additive mapping
H : X, — Xy such that

|#(x) = ()]

o < [k (2.0...0,0...0) (4.15)
for all x € X;.

Proof. Letting x1 = x, xj41 = xp4; = 0 for all j =1 — k in (4.14)), we get

1
F(a:) . EF(kx) < w<k‘x,0, ,0,0,0, ...,0) (4.16)
X2
for all x € X; We use the similar manner to th ]

Corollary 4.5. Let r > 1 and 6 be nonnegative real numbers and F : X; — X be a
mapping with F(0) = 0 satisfying
1 < 1< 1o~ (= 1<
k+j
g oty o | = 2 r( 52 ) - k()
j=1 j=1 j=1 Jj=1 X2
k

k k k
<|F %Zmﬁz% S R[] =S R (w)
7j=1 7j=1 7j=1 7j=1
k r k
2
X4 j=1

+0{ Y
j=1

for all xj,xp1; € Xq, for all j =1 — k. Then there exists a unique additive mapping
H : X, — Xy such that

Xo

x; (4.17)

Lti

r
Xy

r+1
ORIOIIE el (1.15)

for all v € X4
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