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Abstract - This study analyses the effects of chemical reaction, slip effect and heat source on the MHD flow of blood through an 

inclined permeable artery with stenosis under body acceleration present. The blood is treated as a non-Newtonian electrically 

conduction fluid with accumulated substances of fatty substance in the blood cells creating porosity at the artery walls. The 

mathematical model for the blood flow is developed with inclusion of buoyancy force for both energy and diffusion with 

variations in heat and mass transfer having an effect on the blood flow. The partial differential equation of the governing model 

is transformed to ordinary differential equation using the boundary conditions. Variations in parameters all had effects on the 

blood flow, temperature and diffusion. Results showed that chemical reaction, magnetic field and slip reduces the blood flow 

while the body acceleration, heat source and pressure gradient increases the blood flow. 

Keywords - Magneto hydro dynamic (MHD), Slip Boundary, Chemical Reaction, Heat Source, Body Acceleration, Inclined 

porous artery. 

I. INTRODUCTION 

Blood is transported through the arteries of the blood vessels to various parts of the body from the heart as it beats. The nature of 

the vessel is elastic making it to possess some permeability and also porous. The blood flowing through the reddish arteries from 

the heart carries both nutrients and rich oxygen to the tissues in the body and removes waste products and carbon dioxide 

through the blood vessels, hence sustaining and keeping the tissues of the body healthy, Blessy and Summan [1].  Further 

findings revealed that the blood flowing through an artery in a human system is a problem of fluid dynamics with hemodynamics 

dealing with the progression and development of the stenosis in the arteries resulting to cardiovascular diseases. Ku [2] review 

showed that the cardiovascular system flow loops internally with circulation of blood taking place through the multiple branches 

with unsteady and viscous forces acting on the fluid. An abnormal response biologically called arteriosclerosis is created by an 

uncommon condition hemodynamically. The stenosis formed results to turbulent and reduced flow of blood with thrombosis 

occurring at the stenosis throat due to high shear stress which could block the flow of blood to the brain or the heart. As the heart 

beats, blood accelerates through the arteries creating a pressure gradient which causes the blood to flow in a pulsatile pattern. 

Allen et al. [3] studied the relevance of non-pulsatile and pulsatile blood flow in blood pump design. The pressure experiences 

pulsatile changes with blood flow accelerated (systole) and blood flow deceleration (diastole) such that at the walls of the artery, 

the energy stored keeps a pressure gradient that is positive, Pellerito [4]. Plaques in form of accumulated fats and others remain 

at the wall of the arteries which causes arteriosclerosis which blocks the arteries and prevent the free flow of blood past the 

arteries. Kumar [5] did a study on the pulsatile blood flow model of two-fluid passing through an artery that is narrow with 

stenosis present at the wall using a mathematical model for analysis. The erythrocyte is suspended at the Herschel Burlkley 

Newtonian fluid while the plasma is suspended at the peripheral Newtonian fluid layer. Results showed that for the two fluid 

model the increase in shear stress and flow resistance is low compared to a model of single fluid of Herschel Burlkley model 

with the functioning of the disease of the arterial system enhanced by the peripheral layer. Nehad et al. [6] studied the influence 

of a pulsatile pressure gradient with the magnatic field placed transversely on the blood flow that is unsteady flowing past 

cylindrical channel that is tapered and inclined. Slip induced at the wall of the artery plays a significant effect during blood flow 

since it helps in reducing the blood flow as a result of the relative movement between the external layers of the fluid and the 

surface of the artery wall. Lukendra et al. [7] did a study on the pulsatile blood flow past a permeable porous artery with mild 
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stenosis that is inclined and tapered with the results showing that an increase in the slip velocity results to an increase in the axial 

blood flow velocity and volumetric flow rate while the reverse was observed when the magnetic field was increased. Eldesoky 

[8] did a study on pulsatile unsteady incompressible blood flow past a medium that is porous influenced by a slip and body 

acceleration with magnetic field effect present with the results showing the important role of slip condition on spurt, skin shear 

and hysteresis. Body acceleration is the sudden change in the velocity of the Body that is moving. This sudden change could 

have a significant effect on the blood flowing through the artery with the presence of stenosis at the wall of the artery.  Das and 

Saha, [9] developed a mathematical model to study the pulsatile blood flow past a medium that is porous with body acceleration 

influenced by a magnetic field place transversely with the blood considered to be electrically conducting fluid and a Newtonian 

fluid with the study having a key role in biomedical engineering. Varun et al. [10] did a similar work with [9] but a cauterized 

artery with perturbation method used for the solution with the results showing that the axial velocity of the blood flow decreased 

with the increase in body acceleration. Prakash et al. [11] did a study analyzing the heat source effect on MHD flow of blood 

past an artery that is bifurcated with the blood treated as an unsteady Newtonian fluid. Kumar et al. [12] developed a 

mathematical model to study the effect of chemical reaction and heat source on MHD flow of blood through an artery that is 

bifurcated with an applied magnetic field. The blood is assumed to be a fluid that conducts electricity and is a Newtonian fluid. 

Omamoke and Amos [13] did a study analyzing chemical and heat source effects on MHD free convective flow of fluid past and 

inclined surface that is porous with the results showing that both heat source and chemical reaction increase increases the 

velocity profile. Omamoke et al. [14] studied the effect of heat source and thermal radiation on MHD flow of blood with a 

magnetic field applied with the research suggesting possible treatment for tumor and low blood pressure. Also, Omamoke and 

Amos [15] did further inclusion of chemical reaction effect to [14] to observe the effect on the blood flow. The research 

objectives is to study the effects of chemical reaction, heat source, body acceleration, induced slip and others on the blood flow 

velocity to ascertain possible treatment for hypothermia, hyperthermia and tumor growth. 

Formulation of the Problem 

 

Figure 1: Geometry of the Blood Flow through the inclined artery 

The blood which flows from the heart to various body muscles through the arteries is treated as a non-Newtonian electrically 

conducting viscous fluid with the walls of the artery been porous and stenosis present at the artery walls. From Figure 1, the 

artery is inclined at  ∅ positioned at 𝑑 with the length and height of stenosis defined as 𝑙0 and 𝛿 . The blood is flowing in the axial 

direction 𝑧 with the magnetic field  𝐵0  placed perpendicularly to the artery whose radius and stenosis radius is 𝑅0 and 𝑅(𝑧). The 

flow of the blood through the artery is assumed to be steady and unsteady with the governing equations developed for the 

momentum, energy and diffusion of the blood. 

The stenosis formed in the artery is dependent on the location and height of the constriction at the wall of the artery. An 

electromagnetic force F⃗   is created when the magnetic field is applied on blood since it is an electrical conducting fluid. 

F⃗ = q(E⃗⃗ + V⃗⃗ × B⃗⃗ )      (1) The current density J  is expressed as 
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J = σ(E⃗⃗ + V⃗⃗ × B⃗⃗ )                                                                                                            (2)  

The total magnetic field intensity B = B0 + Bl. A combination of the electric force and the magnetic force on the blood flow 

with electrical conductivity produces the Lorentz force with the electric field intensity vector E⃗⃗  negligible.  

j = σ(V⃗⃗ × B⃗⃗ )                                                                                  (3)  

For small Reynolds number with the current density J , the electromagnetic force F becomes  

J × B⃗⃗ = −σB0
2u                                                                                                (4) 

Where |B0| = B0, F is the body force in the axial direction, u⃗ = (0,0, u) is the velocity vector distribution, B⃗⃗ = (0, B0, 0) is the 

magnetic field vector with the blood flow assumed to be steady and unsteady, axially symmetric and laminar with the study 

restricted to a one-dimensional blood flow in the axial direction of a coronary artery which is cylindrical in nature. 

The flow geometry of the segmented stenotic artery with symmetrical shape in dimensional form proposed by Sankar [5] and 

Kumar et al. [12] is,  

R(z′) = {
𝑑′(z) −

δ′

2
[1 + cos

2π

l0
{z′ − d′ −

l′0

2
}]

𝑑′(z)                                                          
} , d′ ≤ z′ ≤ d′ + l′0            (5) 

The greatest height (R) of the stenosis happens at the center of the artery, Nadeem et al. [22] 

Where ξ = tan∅ and  z = d +
L0

s
(

1
s−1)

   For s ≥ 2 

The mathematical expressions for the dimensional governing equations are 

ρ
∂u′

∂t′
= −

∂p′

∂z′ + ρG(t) +
μ

r′

∂

∂r′
(r′ ∂u′

∂r′
) − σcB0

2u′ + g sin∅ −
μ

kp
′ u′ + ρgBT(T

′ − T0) + ρgBC(C
′ − C0)      (6) 

ρCp

kp
′ [

∂T′

∂t′
] =

∂2T′

∂r′
2 +

1

r′

∂T′

∂r′
+

Q0T′

ρCp
                  (7) 

ϑ
∂C′

∂t′
= ϑD′ [

∂2C′

∂r′
2 +

1

r′

∂C′

∂r′
] − E′(C′ − C0)                                                       (8) 

The initial and boundary slip conditions in dimensional are 

{

∂u′

∂r′
= −h′u′, T′ = T′

𝑎 , C
′ = Ca

′ at r′ = R′(z)   

∂u′

∂r′
= 0,

∂θ′

∂r′
= 0,

∂C′

∂r′
= 0            at r′ = 0             

}                                                                                        (10) 

The pressure gradient in dimensional form is expressed as 

−
∂p′

∂z′ = P0
′ + Pl

′ cos(wpt
′);  t′ ≥ 0                                                                                                     (11) 

Where wp = 2πfp  and wb = 2πfb 

The body acceleration in dimensional form 

G′(t) = G0
′ cos(wbt

′ + φ);  t′ ≥ 0                      (12) 
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The dimensionless variable is introduced include. 

d(z′) = R0 +  ξz′ ; δ =
δ′

𝑅0
, u =

u′

u0
; l0 =

l0
′

R0
′ ; l1 =

𝑑′

R0
′ ; r =

r′

R0
′ ; z =

z′

R0
′ ; b =

wb

wp
;  t = wpt

′; R(z) =
R′(z)

R0
′ ; P =

R0
′ ρ′

u0μ
; Re =

ρωR0
′ 2

μ
; θ =

T′−T0

Tw
′ −T0

; 𝜃𝑎 =
T′

𝑎−T0

Tw
′ −T0

; C =
C′−C∞

Cw
′ −C∞

; C𝑎 =
C′

𝑎−C∞

Cw
′ −C∞

; N2 =
R0

′ 2
𝑄0

ρcpkp
′ ;  M2 =

σR0
′ 2

B0
2

μ
;  Pe =

ρR0
′ 2

cp

kp
′ ;  Sc =

ϑ

D′ ; Kr =
E′R0

′ 2

ϑD′ ; Gr =

gρR0
′ 2

βTθ(Tw−T0)

u0μ
; GC =

gρR0
′ 2

βC(Cw−C0)

u0μ
; Pl =

Pl
′R0

′ 2

u0μ
; P0 =

P0
′ R0

′ 2

u0μ
; G0 =

ρG0
′ R0

′ 2

u0μ
; fr =

u0μ

gR0
′ 2 ; D =

D′

D0
; k =

kp
′

R0
′ 2 ; h = h′R0

′ ; 

                                                                                                        (13) 

The dimensionless flow geometry with stenosis is expressed as, Sankar [5] and Kumar et al. [12] 

R(z) = {
(1 +  ξz) −

δ

2
[1 + cos

2π

l0
{z − l1 −

l0

2
}]

(1 +  ξz)                                                     
} , l1 ≤ z ≤ l1 + l0       (14) 

The dimensionless Pressure gradient 

−
∂p

∂z
= P0 + 𝑃𝑙 cos(wp𝑡);  t ≥ 0          (15) 

The body acceleration in dimensionless form 

G(t) = G0 cos(wbt + φ);   t ≥ 0          (16) 

The blood flow momentum, temperature and concentration equation in dimensionless form is written as for third consideration 

as: 

Re
∂u

∂t
= P0 + PL cos t + G0 cos(bt + φ) + (

∂2u

∂r2
+

1

r

∂u

∂r
) − (M2 +

1

K
)u +

sin ∅

Fr
+ Grθ + GcC  (17)  

Pe
∂θ

∂t
=

∂2θ

∂r2
+

1

r

∂θ

∂r
+ N2θ           (18) 

ScRe
∂C

∂t
=

∂2C

∂r2
+

1

r

∂C

∂r
− KrC          (19) 

The initial and boundary slip conditions are 

{

∂u

∂r
= −hu, θ = θa, C = Ca at r = R(z)

∂u

∂r
= 0,

∂θ

∂r
= 0,

∂C

∂r
= 0 at r = 0             

}             (20) 

Solution to the Problem 

The Frobenius method is applied to solve analytically the governing nonlinear second order differential equation with the 

solutions gotten for the steady and pulsatile blood flow velocity, temperature and mass diffusion in non-dimensional, expressed 

as. 

u(r, t) = u0(r) + up(r)εe
iwt          (21) 

θ(r, t) = θ0(r) + θp(r)εe
iwt          (22) 

C(r, t) = C0(r) + Cp(r)εe
iwt          (23) 
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The steady and pulsatile state for the concentration is expressed below as 

∂2C0

∂r2
+

1

𝑟

∂C0

∂r
− KrC0 = 0              (24) 

∂2Cp

∂r2
+

1

𝑟

∂Cp

∂r
− α2Cp = 0              (25) 

α2 = Kr − iωPe     

The steady and pulsatile state for the temperature is expressed below as 

∂2θ0

∂r2
+

1

𝑟

∂θ0

∂r
+ N2θ0 = 0              (26) 

∂2θp

∂r2
+

1

𝑟

∂θp

∂r
+ α1θp = 0              (27) 

Where α1 = N2 − iωPe 

The steady and pulsatile state for the blood flow velocity is expressed below as 

∂2u0

∂r2
+

1

𝑟

∂u0

∂r
− β1u0 = −G − Grθ0 − GcC0           (28) 

∂2up

∂r2
+

1

𝑟

∂up

∂r
− β2up = −F − Grθ𝑝 − GcC𝑝            (29) 

 β1 = M2 +
1

K
;  G = P0 +

sin ∅

Fr
; β2 = M2 +

1

K
+ Reiω and F = Pl cos t + G0 cos(bt + φ) 

The steady state and pulsatile state solutions for both the concentration, temperature and flow velocity is gotten by adopting 

Funch’s theorem, also known as the Frobenius power series expressed as 

C0(𝑟) = ∑ 𝑎𝑛𝑟𝑛+𝑘∞
𝑛=0  Where 𝑎𝑛 , 𝑘 ∈ 𝐶1         (30) 

Cp(𝑟) = ∑ 𝑏𝑚𝑟𝑚+𝑘∞
𝑛=0  Where 𝑏𝑚 , 𝑘 ∈ 𝐶2          (31) 

θ0(𝑟) = ∑ 𝑐𝑛𝑟𝑛+𝑘∞
𝑛=0  Where 𝑐𝑛 , 𝑘 ∈ 𝐶3         (32) 

θp(𝑟) = ∑ 𝑑𝑚𝑟𝑚+𝑘∞
𝑛=0  Where 𝑑𝑚 , 𝑘 ∈ 𝐶4         (33) 

u0 = ∑ 𝑒𝑛𝑟𝑛+𝑘∞
𝑛=0  Where 𝑒𝑛, 𝑘 ∈ 𝐶3         (34) 

up = ∑ 𝑓𝑚𝑟𝑚+𝑘∞
𝑚=0  Where 𝑓𝑚 , 𝑘 ∈ 𝐶4         (35) 

The mathematical expression for the concentration in steady state is  

𝐶0 = 𝐶1 [1 +
Kr 𝑟2

22 +
Kr2  𝑟4

2242 +
Kr3 𝑟6

224262 +
Kr4 𝑟8

22426282 + ⋯] + 𝐷1 [ln 𝑟 (1 +
Kr 𝑟2

22 +
Kr2 𝑟4

2242 +
Kr3 𝑟6

224262 +
Kr4 𝑟8

22426282 + ⋯) + (−
Kr 𝑟2

22 −

3Kr2 𝑟4

2342 −
Kr3 𝑟6

4363 +
Kr4 𝑟8

256383 − ⋯)]          (36) 

With 𝐷1 = 0 and applying the boundary condition in equation (20) to equation (36), then 

𝐶0 = 𝐶1 [1 +
Kr 𝑟2

22 +
Kr2  𝑟4

2242 +
Kr3 𝑟6

224262 +
Kr4 𝑟8

22426282 + ⋯]        (37) 
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𝐶1 =
𝐶𝑅

[1+
Kr 𝑅2

22 +
Kr2 𝑅4

2242 +
Kr3 𝑅6

224262+
Kr4 𝑅8

22426282+⋯ ]
         (38) 

The mathematical expression for the concentration in pulsatile state is  

𝐶𝑝 = 𝐶2 [1 +
α2𝑟2

22 +
α2

2𝑟4

2242 +
α2

3𝑟6

224262 +
α2

4𝑟8

22426282 + ⋯] + 𝐷2 [ln 𝑟 (1 +
α2𝑟2

22 +
α2

2𝑟4

2242 +
α2

3𝑟6

224262 +
α2

4𝑟8

22426282 + ⋯) + (
α2𝑟2

22 +
3α2

2𝑟4

2342 +

α2
3𝑟6

4363 +
α2

4𝑟8

256383 − ⋯)]           (39) 

With 𝐷2 = 0 and applying the boundary condition in equation (20) to equation (39), then 

𝐶𝑃 = 𝐶2 [1 +
α2𝑟2

22 +
α2

2𝑟4

2242 +
α2

3𝑟6

224262 +
α2

4𝑟8

22426282 + ⋯]        (40) 

𝐶2 =
𝐶𝑅

[1+
α2𝑅2

22 +
α2

2𝑅4

2242 +
α2

3𝑅6

224262+
α2

4𝑅8

22426282+⋯ ]
         (41) 

The mathematical expression for the temperature in the steady state is  

𝜃0 = 𝐶3 [1 −
𝑁2𝑟2

22 +
𝑁4𝑟4

2242 −
𝑁6𝑟6

224262 +
𝑁8𝑟8

22426282 + ⋯] + 𝐷3 [ln 𝑟 (1 −
𝑁2𝑟2

22 +
𝑁4𝑟4

2242 −
𝑁6𝑟6

224262 +
𝑁8𝑟8

22426282 + ⋯) + (
𝑁2𝑟2

22 −
3𝑁4𝑟4

2342 +

𝑁6𝑟6

4363 +
𝑁8𝑟8

256383 − ⋯)]          (42)  

With 𝐷3 = 0 and applying the boundary condition in equation (20) to equation (42), then 

𝜃0 = 𝐶3 [1 −
𝑁2𝑟2

22 +
𝑁4𝑟4

2242 −
𝑁6𝑟6

224262 +
𝑁8𝑟8

22426282 + ⋯]        (43) 

𝐶3 =
𝜃𝑅

[1−
𝑁2𝑅2

22 +
𝑁4𝑅4

2242 −
𝑁6𝑅6

224262+
𝑁8𝑅8

22426282+⋯ ]
         (44) 

The mathematical expression for the temperature in the pulsatile state is expressed as 

𝜃𝑝 = 𝐶4 [1 −
α1𝑟2

22 +
α1

2𝑟4

2242 −
α1

3𝑟6

224262 +
α1

4𝑟8

22426282 + ⋯] + 𝐷4 [ln 𝑟 (1 −
α1𝑟2

22 +
α1

2𝑟4

2242 −
α1

3𝑟6

224262 +
α1

4𝑟8

22426282 + ⋯) + (
α1𝑟2

22 −
3α1

2𝑟4

2342 +

α1
3𝑟6

4363 +
α1

4𝑟8

256383 − ⋯)]           (45) 

With 𝐷4 = 0 and applying the boundary condition in equation (20) to equation (45), then 

𝜃𝑃 = 𝐶4 [1 −
α1𝑟2

22 +
α1

2𝑟4

2242 −
α1

3𝑟6

224262 +
α1

4𝑟8

22426282 + ⋯]        (46) 

𝐶4 =
𝜃𝑅

[1−
α1𝑅2

22 +
α1

2𝑅4

2242 −
α1

3𝑅6

224262+
α1

4𝑅8

22426282+⋯ ]
         (47) 

The expression for temperature in equation (23) is obtained by combining equation (37) and (40)  

C(r, t) = 𝐶1 [1 +
Kr 𝑟2

22 +
Kr2  𝑟4

2242 +
Kr3 𝑟6

224262 +
Kr4  𝑟8

22426282 + ⋯] + (𝐶2 [1 +
α2𝑟2

22 +
α2

2𝑟4

2242 +
α2

3𝑟6

224262 +
α2

4𝑟8

22426282 + ⋯]) εeiwt   

            (48) 

The expression for temperature in equation (22) is obtained by combining equation (43) and (48)  
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θ(r, t) = 𝐶3 [1 −
𝑁2𝑟2

22 +
𝑁4𝑟4

2242 −
𝑁6𝑟6

224262 +
𝑁8𝑟8

22426282 + ⋯] + (𝐶4 [1 −
α1𝑟2

22 +
α1

2𝑟4

2242 −
α1

3𝑟6

224262 +
α1

4𝑟8

22426282 + ⋯]) εeiwt   

            (49) 

The expression for the complementary solution for flow velocity in steady state from equation (28) is  

𝑢0𝑐 = 𝐶5 [1 +
𝛽1 𝑟2

22 +
𝛽1

2 𝑟4

2242 +
𝛽1

3 𝑟6

224262 +
𝛽1

4 𝑟8

22426282 + ⋯] + 𝐷5 [ln 𝑟 (1 +
𝛽1 𝑟2

22 +
𝛽1

2 𝑟4

2242 +
𝛽1

3 𝑟6

224262 +
𝛽1

4 𝑟8

22426282 + ⋯) + (−
𝛽1 𝑟2

22 −

3𝛽1
2 𝑟4

2342 −
𝛽1

3 𝑟6

4363 +
𝛽1

4 𝑟8

256383 − ⋯)]          (50) 

With 𝐷5 = 0 and applying the boundary condition in equation (20) to equation (50), then 

𝑢0𝑐 = 𝐶5 [1 +
𝛽1 𝑟2

22 +
𝛽1

2 𝑟4

2242 +
𝛽1

3 𝑟6

224262 +
𝛽1

4 𝑟8

22426282 + ⋯]       (51) 

The expression for the complementary solution for flow velocity in pulsatile state from equation (28) is  

𝑢0𝑝 = 𝑆0 + 𝑆1𝑟
2 + 𝑆2𝑟

4 + 𝑆3𝑟
6 + 𝑆4𝑟

8         (52) 

The flow velocity solution in equation (28) is the combination of equation (51) and (52). 

𝑢0 = 𝐶5 [1 +
𝛽1 𝑟2

22 +
𝛽1

2 𝑟4

2242 +
𝛽1

3 𝑟6

224262 +
𝛽1

4 𝑟8

22426282 + ⋯] + 𝑆0 + 𝑆1𝑟
2 + 𝑆2𝑟

4 + 𝑆3𝑟
6 + 𝑆4𝑟

8   (53) 

Where𝐶5 = − 

[ℎ(𝑆0+𝑆1𝑅2+𝑆2𝑅4+𝑆3𝑅6+𝑆4𝑅8)+2𝑆1𝑅+4𝑆2𝑅3+6𝑆3𝑅5+8𝑆4𝑅7]

[
𝛽1 𝑅2

2
+

𝛽1
2 𝑅3

224
+

𝛽1
3 𝑅5

22426
+

𝛽1
4 𝑅7

2242628
+⋯ ]+ℎ[1+

𝛽1 𝑅2

22 +
𝛽1

2 𝑅4

2242 +
𝛽1

3 𝑅6

224262+
𝛽1

4 𝑅8

22426282+⋯ ]

  

The expression of the complementary solution for the flow velocity in pulsatile state in equation (29) is  

𝑢𝑝𝑐 = 𝐶6 [1 +
𝛽2 𝑟2

22 +
𝛽2

2 𝑟4

2242 +
𝛽2

3 𝑟6

224262 +
𝛽2

4 𝑟8

22426282 + ⋯] + 𝐷6 [ln 𝑟 (1 +
𝛽2 𝑟2

22 +
𝛽2

2 𝑟4

2242 +
𝛽2

3 𝑟6

224262 +
𝛽2

4 𝑟8

22426282 + ⋯) + (−
𝛽2 𝑟2

22 −

3𝛽2
2 𝑟4

2342 −
𝛽2

3 𝑟6

4363 +
𝛽2

4 𝑟8

256383 − ⋯)]          (54) 

With 𝐷6 = 0 and applying the boundary condition in equation (20) to equation (54), then 

𝑢𝑝𝑐 = 𝐶6 [1 +
𝛽2 𝑟2

22 +
𝛽2

2 𝑟4

2242 +
𝛽2

3 𝑟6

224262 +
𝛽2

4 𝑟8

22426282 + ⋯]       (55) 

The expression of particular solution for the flow velocity in pulsatile state from equation (29) is  

𝑢𝑝𝑝 = 𝑇0 + 𝑇1𝑟
2 + 𝑇2𝑟

4 + 𝑇3𝑟
6 + 𝑇4𝑟

8         (56) 

The flow velocity solution in equation (28) is the combination of equation (55) and (56). 

𝑢𝑃 = 𝐶6 [1 +
𝛽2 𝑟2

22 +
𝛽2

2 𝑟4

2242 +
𝛽2

3 𝑟6

224262 +
𝛽2

4 𝑟8

22426282 + ⋯] + 𝑇0 + 𝑇1𝑟
2 + 𝑇2𝑟

4 + 𝑇3𝑟
6 + 𝑇4𝑟

8   (57) 

Where 𝐶6 = − 
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[ℎ(𝑇0+𝑇1𝑅2+𝑇2𝑅4+𝑇3𝑅6+𝑇4𝑅8)+2𝑇1𝑅+4𝑇2𝑅3+6𝑇3𝑅5+8𝑇4𝑅7]

[
𝛽2 𝑅2

2
+

𝛽2
2 𝑅3

224
+

𝛽2
3 𝑅5

22426
+

𝛽2
4 𝑅7

2242628
+⋯ ]+ℎ[1+

𝛽2 𝑅2

22 +
𝛽2

2 𝑅4

2242 +
𝛽2

3 𝑅6

224262+
𝛽2

4 𝑅8

22426282+⋯ ]

  

The blood flow velocity solution is obtained by substituting equation (53) and (57) into equation (21) is expressed as  

u(r, t) = 𝐶5 [1 +
𝛽1 𝑟2

22 +
𝛽1

2 𝑟4

2242 +
𝛽1

3 𝑟6

224262 +
𝛽1

4 𝑟8

22426282 + ⋯] + 𝑆0 + 𝑆1𝑟
2 + 𝑆2𝑟

4 + 𝑆3𝑟
6 + 𝑆4𝑟

8 + (𝐶6 [1 +
𝛽2 𝑟2

22 +
𝛽2

2 𝑟4

2242 +

𝛽2
3 𝑟6

224262 +
𝛽2

4 𝑟8

22426282 + ⋯] + 𝑇0 + 𝑇1𝑟
2 + 𝑇2𝑟

4 + 𝑇3𝑟
6 + 𝑇4𝑟

8)εeiwt      (58)  

The Solution for the Fluid Acceleration equation 

F(r, t) =
𝑑𝑢

𝑑𝑡
= 𝑖𝑤εeiwt (𝐶6 [1 +

𝛽2 𝑟2

22 +
𝛽2

2 𝑟4

2242 +
𝛽2

3 𝑟6

224262 +
𝛽2

4 𝑟8

22426282 + ⋯] +
4𝑇1

𝛽2
+

𝐺𝑟𝐶2

𝛽2
+

𝐺𝑐𝐶4

𝛽2
+ 𝑇1𝑟

2 + 𝑇2𝑟
4 + 𝑇3𝑟

6 + 𝑇4𝑟
8) +

εeiwt 𝑃𝑙

𝛽2
(𝑖𝑤 cos 𝑡 − sin 𝑡) + εeiwt 𝐺0

𝛽2
(𝑖𝑤 cos (𝑏𝑡 + 𝜑) − 𝑏 sin(𝑏𝑡 + 𝜑))      (59) 

The Solution for the Wall Shear Stress equation 

𝑑𝑢

𝑑𝑟
= 𝐶5 [

𝛽1 𝑟

2
+

𝛽1
2 𝑟3

224
+

𝛽1
3 𝑟5

22426
+

𝛽1
4 𝑟7

2242628
+ ⋯] + 2𝑆1𝑟 + 4𝑆2𝑟

3 + 6𝑆3𝑟
5 + 8𝑆4𝑟

7 + (𝐶10 [
𝛽2 𝑟

22 +
𝛽2

2 𝑟3

224
+

𝛽2
3 𝑟5

22426
+

𝛽2
4 𝑟7

2242628
+

⋯] + 2𝑇1𝑟 + 4𝑇2𝑟
3 + 6𝑇3𝑟

5 + 8𝑇4𝑟
7)εeiwt         (60) 

The Solution for the Volumetric Flow Rate equation 

Q(r, t) = 2π∫ r
a

0
u(r, t)dr = 2π {𝐶5 [

 𝑎2

2
+

𝛽1 𝑎4

224
+

𝛽1
2 𝑎6

22426
+

𝛽1
3 𝑎8

2242628
+

𝛽1
4 𝑎10

2242628210
+ ⋯] +

𝑆0𝑎2

2
+

𝑆1𝑎4

4
+

𝑆2𝑎6

6
+

𝑆3𝑎8

8
+

𝑆4𝑎10

10
+

(𝐶6 [
 𝑎2

2
+

𝛽2 𝑎4

224
+

𝛽2
2 𝑎6

22426
+

𝛽2
3 𝑎8

2242628
+

𝛽2
4 𝑎10

2242628210
+ ⋯] +

𝑇0𝑎2

2
+

𝑇1𝑎4

4
+

𝑇2𝑎6

6
+

𝑇3𝑎8

8
+

𝑇4𝑎10

10
) εeiwt}    

            (61) 

II. GRAPHICAL RESULTS AND DISCUSSION 

Observations from figure 4.1, shows that an increase in the inclination of the artery with values of ϕ = 150, 300, 450, 600 where 

ϕ ranges from 150 ≤ ϕ ≤ 600, causes the blood flow velocity to increase at the center but converges towards zero at the wall of 

the artery with stenosis. This implies that at different positions of the body at different angles, the blood flow will improve which 

will help to reduce ache and pains that could be experienced in the body as a result of the decrease in the flow of blood 

transported to various parts of the body. The same trend was observed for the blood acceleration in figure 4.2 while an irregular 

trend was observed for the volumetric flow rate in figure 4.3. It was observed in Figure 4.4 that as the body acceleration Go 

increased for values of Go = 2, 5, 7, 9 where Go ranges from 2 ≤ Go ≤ 9, the blood flow velocity increased at the center of the 

artery but converges toward zero at the wall of the artery with stenosis. This is because, the body acceleration reduces the 

resistance of the blood flow which results to an increase in the blood flow velocity Sinha et al. [16]. Also, the increase in the 

velocity is as a result of an increase in both pulse rate and heart beat due to an increase in the body acceleration which causes the 

heart to pump more blood to the muscles Nadal and Kumari [17]. Similar effect was observed for the blood acceleration, shear 

stress and volumetric flow rate in figure 4.5, 4.6 and 4.7. It was observed in figure 4.8, that an increase in the magnetic field 𝑀 

of the artery with values of M = 0.75, 1.0, 1.5, 2.0 where M ranges from 0.75 ≤ M ≤ 2.0, causes the velocity of the blood flow 

to decrease at the center of the artery but converges towards zero at the wall of the artery with stenosis. This occurs due to the 

magnetization which causes a rotating motion of the blood flow particles this is charged. This persistent rotating motion of the 

blood flowing with the charged particles results to a red blood cells suspension in the blood plasma resulting to the internal 

viscosity increase of the red blood cells. This increase of the internal viscosity of the blood results to an increase of the Lorentz 

force which will opposes, resist or inhibit the motion or flow of the blood particles. Similar results with discussions was done by 

Sharma et al. [18] and Kumar et al. [19]. Similar effect was observed for the blood acceleration, shear stress, volumetric flow 
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rate and concentration in figure 4.9, 4.10, 4.11 and 4.12. It was observed in figure 4 .13, that the increase in the permeability of 

the medium 𝑘 which is porous for values of k = 0.5, 1.0, 2.0, 3.0, where k ranges from 0.5 ≤ k ≤ 3.0, caused the blood flow 

velocity to increase at the center of the artery but converges towards zero at the wall of the artery with stenosis. The slip at the 

artery wall slightly enhances the velocity while the reduction in the permeability of the medium which is porous actually controls 

the blood flow rate Eldesoky [8], Nadal and Kumari [17]. Similar effect was observed for the blood acceleration, shear stress and 

volumetric flow rate in figure 4.14, 4.15 and 4.16. From figure 4.17, it is observed that an increase in the pulsatile pressure 

gradient 𝑃𝑙 for values of Pl = 2, 4, 6, 8, where Pl ranges from 2 ≤ Pl ≤ 8, will cause the velocity of the blood flow to increase at 

the center of the artery but converges towards zero at the wall of the artery with stenosis. An increase in the pressure would lead 

to increase in the work rate and load the heart carries which could cause cardiac failure. Furthermore, the velocity increase due to 

conditions of high pressure will force the fluid to flow at a higher speed. Sinha et al. [20], Ogulu & Amos [21] and Sharma et al. 

[18]. Similar effect was observed for the blood acceleration, shear stress and volumetric flow rate in figure 4.18, 4.19 and 4.20. It 

was observed in figure 4.21, that an increase in the slip ℎ for values of h = 0.5, 1.0, 1.5, 2.0, where h ranges from 0.5 ≤ h ≤ 2.0, 

will cause the blood flow velocity to decrease at the center of the artery. Similar effect was observed for the blood acceleration 

and volumetric flow rate in figure 4.22 and 4.23 but an increase in the wall shear stress in figure 4.24. It was observed in values 

4.25, that the increase in the artery radius with stenosis 𝑅 for values of R = 0.2, 0.3, 0.5, 0.7, where R ranges from 0.2 ≤ R ≤

0.7, will cause the velocity of the blood flowing in the axial direction to increase at the center of the artery. Similar effect was 

observed for the blood acceleration and volumetric flow rate in figure 4.26 and 4.28 but a decrease in the wall shear stress in 

figure 4.27. It was observed in figure 4.29, that the increase in heat source 𝐻 for values of H =  1.0, 1.5, 2.0, 2.5, where t ranges 

from 1 ≤ H ≤ 2.5 in the second consideration, will cause the blood flow velocity in the axial direction to slightly increase. 

Similar effect was observed for the blood acceleration and the temperature in figure 4.30 and 4.31. It was observed in figure 

4.32, that an increase in Peclet number 𝑃𝑒 for values of Pe = 2, 5, 7, 10, where Pe ranges from 2 ≤ Pe ≤ 10 in the second 

consideration, will cause the blood flow velocity in the axial direction to decrease. Similar effect was observed for the blood 

acceleration, shear stress and volumetric flow rate in figure 4.33, 4.34 and 4.35. It was observed in figure 4.36, it is observed that 

the increase in Grashof temperature number 𝐺𝑟 for values of Gr = 0.25, 0.5, 1, 1.25, where Gr ranges from 0.25 ≤ Gr ≤ 1.25 in 

the second consideration, will cause the blood velocity flowing in the axial direction to increase. This occurs as a result of the 

increase in the boussinesq source. The Grashof temperature number slows or reduces the relational effect of the force of thermal 

buoyancy to the force of hydrodynamic viscosity at the walls of the artery. Similar effect was observed for the blood 

acceleration, shear stress and volumetric flow rate in figure 4.37, 4.38 and 4.39. It was observed in figure 4.40, that the increase 

in the Grashof diffusion number 𝐺𝑐 for values of Gc = 0.25, 0.5, 1, 1.25, where Gc ranges from 0.25 ≤ Gc ≤ 1.25, will cause the 

velocity of the blood flow moving axially to increase. Similar effect was observed for the blood acceleration, shear stress and 

volumetric flow rate in figure 4.41, 4.42 and 4.43. From figure 4.44, it is observed that an increase in chemical reaction 𝐾𝑟 for 

values of Kr = 1, 3, 5, 7, where Kr ranges from 1 ≤ Kr ≤ 7, will cause the blood flow velocity in the axial direction to decrease. 

Similar behavior was observed for the blood acceleration, volumetric flow rate and concentration in figure 4.45, 4.47 and 4.48 

but figure 4.46 showed a reverse behavior with an increase in shear stress at the artery walls. Some of the results agreed with 

study done by Bunonyo and Amos [23]. 

 

Figure 4.1 Graph for the velocity of Blood flow with increasing values of inclined artery 𝛟 = 𝟏𝟓𝟎, 𝟑𝟎𝟎, 𝟒𝟓𝟎, 𝟔𝟎𝟎, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐, 𝛃 = 𝟑𝟎𝟎 , 𝐤 = 𝟎. 𝟏, 𝛂 =

𝟏,𝐡 = 𝟏, 𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏. 𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.2 Graph for the shear stress at the wall with increasing values of inclined artery 𝛟 = 𝟏𝟓𝟎, 𝟑𝟎𝟎, 𝟒𝟓𝟎, 𝟔𝟎𝟎, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐, 𝛃 = 𝟑𝟎𝟎 , 𝐤 = 𝟎. 𝟏, 𝛂 =
𝟏,𝐡 = 𝟏, 𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏. 𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏 

 

Figure 4.3 Graph for the Volumetric Flow rate with increasing values of inclined artery 𝛟 = 𝟏𝟓𝟎, 𝟑𝟎𝟎, 𝟒𝟓𝟎, 𝟔𝟎𝟎, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐, 𝛃 = 𝟑𝟎𝟎 , 𝐤 = 𝟎. 𝟏, 𝛂 =
𝟏,𝐡 = 𝟏, 𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏. 𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.4 Graph for the velocity of Blood flow with increasing values of Body acceleration 𝐆𝐨 = 𝟐, 𝟓, 𝟕, 𝟗, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 =
𝟏,𝐡 = 𝟏, 𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏. 𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.5 Graph for the Blood acceleration with increasing values of Body acceleration 𝐆𝐨 = 𝟐, 𝟓, 𝟕, 𝟗, when 𝐒𝐜 =

𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏, 𝐑 =

𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.6 Graph for the shear stress at the wall with increasing values of Body acceleration 𝐆𝐨 = 𝟐, 𝟓, 𝟕, 𝟗, when 𝐒𝐜 =

𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 =

𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.7 Graph for the Volumetric Flow rate with increasing values of Body acceleration 𝐆𝐨 = 𝟐, 𝟓, 𝟕, 𝟗, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 =

𝟏,𝐡 = 𝟏, 𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏. 𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.8 Graph for the velocity of Blood flow with increasing values of Magnetic field 𝐌 = 𝟎. 𝟕𝟓, 𝟏, 𝟏. 𝟐𝟓, 𝟏. 𝟓, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.9 Graph for the Blood acceleration with increasing values of Magnetic field 𝐌 = 𝟎. 𝟕𝟓, 𝟏, 𝟏. 𝟐𝟓, 𝟏. 𝟓, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 =

𝟏, 𝐡 = 𝟏, 𝐑 = 𝟎. 𝟓𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.10 Graph for the shear stress at the wall with increasing values of Magnetic field 𝐌 = 𝟎. 𝟕𝟓, 𝟏, 𝟏. 𝟐𝟓, 𝟏. 𝟓, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.11 Graph for the Volumetric Flow rate with increasing values of Magnetic field 𝐌 = 𝟎. 𝟕𝟓, 𝟏, 𝟏. 𝟐𝟓, 𝟏. 𝟓, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.12 Graph for the Concentration with increasing values of Magnetic field 𝐌 = 𝟏, 𝟏. 𝟓, 𝟐, 𝟐. 𝟓,  when 𝐒𝐜 =

𝟏,𝐑 = 𝟎. 𝟓𝟓, 𝐊𝐫 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.13 Graph for the velocity of Blood flow with increasing values of Permeability of the porous wall 𝐤 =

𝟎. 𝟓, 𝟏, 𝟐, 𝟑, when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏, 𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎,

𝛃 = 𝟑𝟎𝟎, 𝛂 = 𝟏, 𝐡 = 𝟏, 𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏. 𝟓, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.14 Graph for the Blood acceleration with increasing values of Permeability of the porous wall 𝐤 =

𝟎. 𝟓, 𝟏, 𝟐, 𝟑, when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏, 𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛃 =

𝟑𝟎𝟎, 𝛂 = 𝟏, 𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏. 𝟓, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.15 Graph for the shear stress at the wall with increasing values of Permeability of the porous wall  𝐤 =

𝟎. 𝟏, 𝟎. 𝟑, 𝟎. 𝟓, 𝟏, when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏, 𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 =

𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎, 𝛂 = 𝟏, 𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

.`  

Figure 4.16 Graph for the Volumetric Flow rate with increasing values of Permeability of the porous wall 𝐤 =

𝟎. 𝟓, 𝟏, 𝟐, 𝟑, when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏, 𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎,

𝛃 = 𝟑𝟎𝟎, 𝛂 = 𝟏, 𝐡 = 𝟏, 𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏. 𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.17 Graph for the velocity of Blood flow with increasing values of Pulsatile pressure 𝐏𝐥 = 𝟐, 𝟒, 𝟔, 𝟖, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.18 Graph for the Blood acceleration with increasing values of Pulsatile pressure 𝐏𝐥 = 𝟐, 𝟒, 𝟔, 𝟖, when 𝐒𝐜 =

𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏, 𝐡 =

𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.19 Graph for the shear stress at the wall with increasing values of Pulsatile pressure 𝐏𝐥 = 𝟐, 𝟒, 𝟔, 𝟖, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.20 Graph for the Volumetric Flow rate with increasing values of Pulsatile pressure 𝐏𝐥 = 𝟐, 𝟒, 𝟔, 𝟖, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.21 Graph for the velocity of Blood flow with increasing values of Slip Parameter 𝐡 = 𝟎. 𝟓, 𝟏, 𝟏. 𝟓, 𝟐, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.22 Graph for the Blood acceleration with increasing values of Slip Parameter 𝐡 = 𝟎. 𝟓, 𝟏, 𝟏. 𝟓, 𝟐, when 𝐒𝐜 =

𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏, 𝐑 =

𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏 

 

Figure 4.23 Graph for the shear stress at the wall with increasing values of Slip Parameter 𝐡 = 𝟎. 𝟓, 𝟏, 𝟏. 𝟓, 𝟐, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.24 Graph for the Volumetric Flow rate with increasing values of Slip Parameter 𝐡 = 𝟎. 𝟓, 𝟏, 𝟏. 𝟓, 𝟐, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.4 Graph for the velocity of Blood flow with increasing values of Radius of stenosis 𝐑 = 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟕, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐌 = 𝟏. 𝟓, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.26 Graph for the Blood acceleration with increasing values of Radius of stenosis 𝐑 = 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟕, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐌 =

𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.27 Graph for the shear stress at the wall with increasing values of Radius of stenosis 𝐑 = 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟕, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐌 = 𝟏. 𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.28 Graph for the Volumetric Flow rate with increasing values of Radius of stenosis 𝐑 = 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟕, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐆𝐫 = 𝟐,𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐, 𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐌 = 𝟏. 𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.29 Graph for the velocity of Blood flow with increasing values of Heat Source 𝐇 = 𝟎. 𝟓, 𝟏, 𝟏. 𝟓, 𝟐, when 𝐒𝐜 =

𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 =

𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.30 Graph for the Blood acceleration with increasing values of Heat Source 𝐇 = 𝟎. 𝟓, 𝟏, 𝟏. 𝟓, 𝟐, when 𝐒𝐜 =

𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑,𝐛 = 𝟐𝛃 = 𝟑𝟎𝟎, 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏, 𝐡 = 𝟏, 𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏. 𝟓, 𝛏 =

𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.31 Graph for the Temperature with increasing values of Heat Source 𝐇 = 𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟒  when 𝛂 =

𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏, 𝜽𝒂 = 𝟏 

 

Figure 4.32 Graph for the velocity of Blood flow with increasing values of Peclet number 𝐏𝐞 = 𝟐, 𝟓, 𝟕, 𝟏𝟎, when 𝐒𝐜 =

𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 =

𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.33 Graph for the Blood acceleration with increasing values of Peclet number 𝐏𝐞 = 𝟐, 𝟓, 𝟕, 𝟏𝟎, when 𝐒𝐜 =

𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑,𝐛 = 𝟐,𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏, 𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 =

𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.34 Graph for the shear stress at the wall with increasing values of Peclet number 𝐏𝐞 = 𝟐, 𝟓, 𝟕, 𝟏𝟎, 

when 𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎, 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏, 𝐡 = 𝟏, 𝐑 =

𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.35 Graph for the Volumetric Flow rate with increasing values of Peclet number 𝐏𝐞 = 𝟐, 𝟓, 𝟕, 𝟏𝟎, when 𝐒𝐜 =

𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 =

𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 
Figure 4.36 Graph for the velocity of Blood flow with increasing values of Grashof temperature number 𝐆𝐫 =

𝟏, 𝟐, 𝟑, 𝟒, when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 =

𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.37 Graph for the Blood acceleration with increasing values of Grashof temperature number 𝐆𝐫 = 𝟏, 𝟐, 𝟑, 𝟒, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.38 Graph for the shear stress at the wall with increasing values of Grashof temperature number 𝐆𝐫 =

𝟏, 𝟐, 𝟑, 𝟒, when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 =

𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.39 Graph for the Volumetric Flow rate with increasing values of Grashof temperature number 𝐆𝐫 =

𝟏, 𝟐, 𝟑, 𝟒, when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐜 = 𝟑, 𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 =

𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.40 Graph for the velocity of Blood flow with increasing values of Grashof Diffusion number 𝐆𝐜 = 𝟏, 𝟐, 𝟑, 𝟒, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐫 = 𝟐, 𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.41 Graph for the Blood acceleration with increasing values of Grashof Diffusion number 𝐆𝐜 = 𝟏, 𝟐, 𝟑, 𝟒, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐫 = 𝟐, 𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑,𝐛 = 𝟐,𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏, 𝐡 = 𝟏, 𝐑 =

𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.42 Graph for the shear stress at the wall in the third consideration with increasing values of Grashof 

Diffusion number 𝐆𝐜 = 𝟏, 𝟐, 𝟑, 𝟒, when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏, 𝐆𝐫 = 𝟐, 𝐇 = 𝟎.𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒, 𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 =

𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.43 Graph for the Volumetric Flow rate with increasing values of Grashof Diffusion number 𝐆𝐜 = 𝟏, 𝟐, 𝟑, 𝟒, 

when 𝐒𝐜 = 𝟏,𝐊𝐫 = 𝟏,𝐆𝐫 = 𝟐, 𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏,𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.44 Graph for the velocity of Blood flow with increasing values of Chemical Reaction 𝐊𝐫 = 𝟏, 𝟑, 𝟓, 𝟕,  

when 𝐒𝐜 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.45 Graph for the Blood acceleration with increasing values of Chemical Reaction 𝐊𝐫 = 𝟏, 𝟑, 𝟓, 𝟕,  

when 𝐒𝐜 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐛 = 𝟐, 𝛃 = 𝟑𝟎𝟎 𝐤 = 𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏, 𝐑 =

𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 
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Figure 4.46 Graph for the shear stress at the wall with increasing values of Chemical Reaction 𝐊𝐫 = 𝟏, 𝟑, 𝟓, 𝟕,  

when 𝐒𝐜 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝐚 = 𝟏, 𝛏 = 𝟎. 𝟏,𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.47 Graph for the Volumetric Flow rate with increasing values of Chemical Reaction 𝐊𝐫 = 𝟏, 𝟑, 𝟓, 𝟕,  

when 𝐒𝐜 = 𝟏,𝐆𝐜 = 𝟑,𝐆𝐫 = 𝟐,𝐇 = 𝟎. 𝟓, 𝐏𝐞 = 𝟏, 𝐏𝐨 = 𝟐,𝐏𝐥 = 𝟒,𝐆𝐨 = 𝟑, 𝐅𝐫 = 𝟎. 𝟎𝟓, 𝐛 = 𝟐,𝛟 = 𝟑𝟎𝟎, 𝛃 = 𝟑𝟎𝟎 𝐤 =

𝟎. 𝟏, 𝛂 = 𝟏,𝐡 = 𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

 

Figure 4.48 Graph for the Concentration with increasing values of Chemical reaction 𝐊𝐫 = 𝟏, 𝟐, 𝟑, 𝟒, when 𝐒𝐜 =

𝟏,𝐑 = 𝟎. 𝟓𝟓,𝐌 = 𝟏.𝟓, 𝛏 = 𝟎. 𝟏, 𝛚 = 𝟏, 𝐭 = 𝟏. 

III. CONCLUSION 

Conclusively, the results gotten with graphical illustration showed that, 

1. The increase in the Magnetic field decreased the blood flow velocity because persistent rotating motion of the blood 

increases internal viscosity of the red blood cells (RBC) which increases the Lorentz force that inhibits the blood flow. This 

also decreases the acceleration of the blood, shear stress at the artery wall and the volumetric flow rate for all the 

considerations. Also, the increase in the magnetic field increased the temperature at the center before converging to zero at 

the wall but decreased the concentration profile. 
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2. The increase in the body acceleration increases the blood flow velocity because of the reduced resistance to blood flow 

which causes increased pulse rate and heart beat resulting to increased blood flow to the muscles from the heart. This also 

increases the blood acceleration, shear stress at the artery wall and the volumetric flow rate for all the considerations. 

3. The increase in the slip decreased the blood flow velocity because of relative movement between the blood and the artery 

wall. This in turn causes the decrease in the blood acceleration and the volumetric flow rate but increases the shear stress at 

the artery wall for all considerations. 

4. The increase in the pulsatile pressure results to an increase in the velocity of the blood flow because the heart work rate 

increases due to more blood been pumped from the heart to muscles in the body. This will result to an increase in the blood 

acceleration, volumetric flow rate and shear stress at the artery wall for all considerations. 

5. The increase in the heat source caused an increase in the velocity of the blood flowing axially because it slightly decreases 

the internal viscosity of the red blood cells (RBC). This results to an increase in the blood acceleration and volumetric flow 

rate but a decrease in the shear stress at the wall for all consideration. 

6. The increase in the inclination of the artery created irregular pattern on the blood flow for each consideration. For the first 

consideration the blood flow velocity increased, for the second it was irregular and then for the third consideration, it 

decreased. An increase in the inclination of the artery caused the volumetric flow rate and the shear stress at the wall to 

increase for the first and second consideration but an irregular behavior in the third consideration for both the volumetric 

flow rate and the shear stress at the artery wall. 

7. The increase in the artery radius with stenosis caused an increase in the blood flow velocity, blood acceleration, and 

volumetric flow rate but a decrease in the shear stress at the wall for all consideration. 

8. An increase in the Grashof temperature number increased the blood flow velocity, blood acceleration, shear stress at the 

wall and the volumetric flow rate for the second and third consideration. 

9. An increase in the Grashof diffusion number increased the blood flow velocity, blood acceleration, shear stress at the artery 

wall and the volumetric flow rate for the second and third consideration. 

10. An increase in the chemical reaction decreased the blood flow velocity, blood acceleration and the volumetric flow rate but 

increases the shear stress at the artery wall. Also, the increase in the chemical reaction decreased the concentration profile. 
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APPENDIX 

𝑆4 =
Gr𝐶1𝑁8+Gc𝐶3𝐾𝑟4

β122426282   

𝑆3 =
1

β1
(64𝑆4 − (

Gr𝐶1𝑁6−Gc𝐶3𝐾𝑟3

224262
) )  

𝑆2 =
1

β1
(36𝑆3 + (

(Gr𝐶1𝑁4+Gc𝐶3𝐾𝑟2)

2242  ))  

𝑆1 =
1

β1
(16𝑆2 − (

Gr𝐶1𝑁2−Gc𝐶3𝐾𝑟

22
))  

𝑆0 =
1

β1
(4𝑆1 + G + Gr𝐶1 + Gc𝐶3)  

𝑇4 =
Gr𝐶2α1

4+Gc𝐶4α2
3

β222426282   
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1

β2
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Gr𝐶2α1
3−Gc𝐶4α2

3
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(Gr𝐶2α1
2+Gc𝐶4α2

2)

2242  ))  

𝑇1 =
1

β2
(16𝑇2 − (

Gr𝐶2α1−Gc𝐶4α2

22
))  

𝑇0 =
1
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(4𝑇1 + F + Gr𝐶2 + Gc𝐶4)  

 

 


