On a Subclass of Analytic Functions Defined By Differential operator

D.Madhava Krishna, K.Narender, P.Thirupathi Reddy
${ }^{1}$ Department of Mathematics, Government Degree College (W) (N), Asifabad - 504295, Kumuram Bheem, Dist.,Telangana, India.
${ }^{2}$ Department of Mathematics, Governament Junior College, Bela- 504001, Adilabad Dist., Telangana, India. ${ }^{3}$ Department of Mathematics, School of Engineering, - NNRESGI-500 088, Medichal Dist.,Telangana, India.

Abstract

In this paper, we introduce and study a new subclass of analytic functions which are defined by means of a differential operator. Some results connected to coefficient estimates, growth and distortion theorems, radii of starlikeness, convexity and close-to-convexity and integral means inequalities related to the subclass is obtained.

Keywords - Analytic, coefficient, distortion, convexity, starlike, subordination.

AMS Subject Classification: 30C45.

I. INTRODUCTION

Let A denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $E=\{z \in C:|z|<1\}$.

Denote by T the subclass of A consisting of functions f of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \geq 0 \tag{1.2}
\end{equation*}
$$

This subclass was introduced and extensively studied by Silverman [6].
Let f be a function in the class A. We define the following differential operator introduced by Denizand Ozkan [1].

$$
\begin{aligned}
& D_{\lambda}^{0} f(z)=f(z) \\
& D_{\lambda}^{1} f(z)=D_{\lambda} f(z)=\lambda z^{3}(f(z))^{\prime \prime \prime}+(2 \lambda+1) z^{2}(f(z))^{\prime \prime}+z f^{\prime}(z) \\
& D_{\lambda}^{2} f(z)=D_{\lambda}\left(D_{\lambda}^{1} f(z)\right)
\end{aligned}
$$

.
.

$$
\begin{equation*}
D_{\lambda}^{m} f(z)=D_{\lambda}\left(D_{\lambda}^{m-1} f(z)\right) \tag{1.3}
\end{equation*}
$$

where $\lambda \geq 0$ and $m \in N_{0}=N \cup\{0\} .$.

If f is given by (1.1) then from the definition of the operator $D_{\lambda}^{m} f(z)$ it is to see that

$$
\begin{equation*}
D_{\lambda}^{m} f(z)=z+\sum_{n=2}^{\infty} \phi^{m}(\lambda, n) a_{n} z^{n} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi^{m}(\lambda, n)=n^{2 m}[\lambda(n-1)+1]^{m} \tag{1.5}
\end{equation*}
$$

If $f \in T$ is given by (1.2) then we have

$$
\begin{equation*}
D_{\lambda}^{m} f(z)=z-\sum_{n=2}^{\infty} \phi^{m}(\lambda, n) a_{n} z^{n} \tag{1.6}
\end{equation*}
$$

Where $\phi^{m}(\lambda, n)$ is given by (1.5).
In this paper, using the differential operator $D_{\lambda}^{m} f(z)$, we define the following new class motivated by Niranjan et al [3].

Definition 1.1: The function f of the form (1.1) is in the class $S_{\lambda}^{m}(\gamma, k)$ if it satisfies the inequality

$$
\operatorname{Re}\left\{\frac{z\left(D_{\lambda}^{m} f(z)\right)^{\prime}}{D_{\lambda}^{m} f(z)}-\gamma\right\}>k\left|\frac{z\left(D_{\lambda}^{m} f(z)\right)^{\prime}}{D_{\lambda}^{m} f(z)}-1\right| \quad \text { for } \quad 0 \leq \gamma \leq 1, k \geq 0
$$

Further, we define $T S_{\lambda}^{m}(\gamma, k)=S_{\lambda}^{m}(\gamma, k) \cap T$.

II. MAIN RESULTS

Theorem 2.1: A function f form (1.1) is in $S_{\lambda}^{m}(\gamma, k)$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)\left|a_{n}\right| \leq 1-\gamma \tag{2.1}
\end{equation*}
$$

where $0 \leq \gamma<1, k \geq 0$ and $\phi^{m}(\lambda, n)$ is given by (1.5).
Proof: It suffices to show that
$k\left|\frac{z\left(D_{\lambda}^{m} f(z)\right)^{\prime}}{D_{\lambda}^{m} f(z)}-1\right|-\operatorname{Re}\left\{\frac{z\left(D_{\lambda}^{m} f(z)\right)^{\prime}}{D_{\lambda}^{m} f(z)}-1\right\} \leq 1-\gamma$.
We have

$$
\begin{aligned}
& k\left|\frac{z\left(D_{\lambda}^{m} f(z)\right)^{\prime}}{D_{\lambda}^{m} f(z)}-1\right|-\operatorname{Re}\left\{\frac{z\left(D_{\lambda}^{m} f(z)\right)^{\prime}}{D_{\lambda}^{m} f(z)}-1\right\} \\
& \leq(1+k)\left|\frac{z\left(D_{\lambda}^{m} f(z)\right)^{\prime}}{D_{\lambda}^{m} f(z)}-1\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{(1+k) \sum_{n=2}^{\infty}(n-1) \phi^{m}(\lambda, n)\left|a_{n}\right||z|^{n-1}}{1-\sum_{n=2}^{\infty} \phi^{m}(\lambda, n)\left|a_{n}\right||z|^{n-1}} \\
& \leq \frac{(1+k) \sum_{n=2}^{\infty}(n-1) \phi^{m}(\lambda, n)\left|a_{n}\right|}{1-\sum_{n=2}^{\infty} \phi^{m}(\lambda, n)\left|a_{n}\right|}
\end{aligned}
$$

The last expression is bounded above by $(1-\gamma)$ if

$$
\sum_{n=2}^{\infty}[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)\left|a_{n}\right| \leq 1-\gamma
$$

and the proof is complete.
Theorem 2.2: Let $0 \leq \gamma<1, k \geq 0$ then a function f of the form (1.2) to be in the class $T S_{\lambda}^{m}(\gamma, k)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n) \leq 1-\gamma \tag{2.2}
\end{equation*}
$$

where $\phi^{m}(\lambda, n)$ are given by (1.5).
Proof: In view of Theorem 2.1, we need only to prove the necessity. If $f \in T S_{\lambda}^{m}(\gamma, k)$ and z is real then

$$
\operatorname{Re}\left\{\frac{1-\sum_{n=2}^{\infty} n \phi^{m}(\lambda, n) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} \phi^{m}(\lambda, n) a_{n} z^{n-1}}-\gamma\right\}>k\left|\frac{\sum_{n=2}^{\infty}(n-1) \phi^{m}(\lambda, n) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} \phi^{m}(\lambda, n) a_{n} z^{n-1}}\right|
$$

Letting $\mathrm{z} \rightarrow 1$ along the real axis, we obtain the desired inequality

$$
\sum_{n=2}^{\infty}[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)\left|a_{n}\right| \leq 1-\gamma,
$$

where $0 \leq \gamma<1, k \geq 0$ and $\phi^{m}(\lambda, n)$ are given by (1.5).

Corollary 2.3: If $f(z) \in T{\underset{\lambda}{ }}_{m}^{\lambda}(\gamma, k)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1-\gamma}{[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)} \tag{2.3}
\end{equation*}
$$

where $0 \leq \gamma<1, k \geq 0$ and $\phi^{m}(\lambda, n)$ are given by (1.5).Equality holds for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\gamma}{[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)} z^{n} \tag{2.4}
\end{equation*}
$$

Theorem 2.4: Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{n}(z)=z-\frac{1-\gamma}{[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)} z^{n}, n \geq 2 . \tag{2.5}
\end{equation*}
$$

then $f(z) \in T S_{\lambda}^{m}(\gamma, k)$, if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} w_{n} f_{n}(z), w_{n} \geq 0, \sum_{n=1}^{\infty} w_{n}=1 \tag{2.6}
\end{equation*}
$$

Proof: Suppose $f(\mathrm{z})$ can be written as in (2.6).Then

$$
f(z)=z-\sum_{n=2}^{\infty} w_{n} \frac{1-\gamma}{[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)} z^{n}
$$

Now,

$$
\sum_{n=2}^{\infty} w_{n} \frac{(1-\gamma)[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}{(1-\gamma)[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}=\sum_{n=2}^{\infty} w_{n}=1-w_{1} \leq 1 .
$$

Thus $f(z) \in T S_{\lambda}^{m}(\gamma, k)$. Conversely, let us have $f(z) \in T S_{\lambda}^{m}(\gamma, k)$.
Then by using (2.3), we get

$$
w_{n}=\frac{[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}{(1-\gamma)} a_{n}, n \geq 2
$$

and $w_{1}=1-\sum_{n=2}^{\infty} w_{n}$. then we have $f(z)=\sum_{n=1}^{\infty} w_{n} f_{n}(z)$ and hence this completes the proof of Theorem.
Theorem 2.5: The class $T S_{\lambda}^{m}(\gamma, k)$ is a convex set.
Proof: Let the function

$$
\begin{equation*}
f_{j}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n}, \quad a_{n, j} \geq 0, \mathrm{j}=1,2 \tag{2.7}
\end{equation*}
$$

be in the class $T S_{\lambda}^{m}(\gamma, k)$. It sufficient to show that the function $h(\mathrm{z})$ defined by

$$
h(z)=\xi f_{1}(z)+(1-\xi) f_{2}(z), 0 \leq \xi<1,
$$

is in the class $T S_{\lambda}^{m}(\gamma, k)$. Since

$$
h(z)=z-\sum_{n=2}^{\infty}\left[\xi a_{n, 1}+(1-\xi) a_{n, 2}\right] z^{n},
$$

an easy computation with the aid of Theorem 2.2 gives

$$
\begin{aligned}
& \sum_{n=2}^{\infty}[n(1+k)-(\gamma+k)] \xi \phi^{m}(\lambda, n) a_{n, 1}+\sum_{n=2}^{\infty}[n(1+k)-(\gamma+k)](1-\xi) \phi^{m}(\lambda, n) a_{n, 2} \leq \xi(1-\gamma)+(1-\xi)(1-\gamma) \\
& \leq(1-\gamma)
\end{aligned}
$$

which implies that $h \in T S_{\lambda}^{m}(\gamma, k)$.

Hence $T S_{\lambda}^{m}(\gamma, k)$ is convex.

Theorem 2.6: Let the function $f(z)$ defined by (1.2) belong to the class $T S_{\lambda}^{m}(\gamma, k)$.Then is close-to-convex of order δ $(0 \leq \delta<1)$ in the disc $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=\inf _{n \geq 2}\left[\frac{(1-\delta) \sum_{n=2}^{\infty}[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}{n(1-\gamma)}\right]^{1 / n-1}, n \geq 2 . \tag{2.8}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ is given by (1.2)
Proof: Given $f \in T$, and f is close-to-convex of order δ, we have

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right|<1-\delta \tag{2.9}
\end{equation*}
$$

For the left hand side of (2.9) we have

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{n=2}^{\infty} n a_{n}|z|^{n-1}
$$

The last expression is less than $1-\delta$

$$
\sum_{n=2}^{\infty} \frac{n}{1-\delta} a_{n}|z|^{n-1} \leq 1
$$

Using the fact, that $f(z) \in T S_{\lambda}^{m}(\gamma, k)$ if and only if

$$
\sum_{n=2}^{\infty} \frac{[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}{(1-\gamma)} a_{n} \leq 1,
$$

Using the fact that (2.9) is true if

$$
\frac{n}{1-\delta}|z|^{n-1} \leq \frac{[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}{(1-\gamma)}
$$

or, equivalently,

$$
|z| \leq\left\{\frac{(1-\delta)[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}{n(1-\gamma)}\right\}^{1 / n-1}
$$

which completes the proof.

Theorem 2.7: Let the function $f(z)$ defined by (1.2) belong to the class $T S_{\lambda}^{m}(\gamma, k)$ Then $f(z)$ is starlike of order δ $(0 \leq \delta<1)$ in the disc $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=\inf _{n \geq 2}\left[\frac{(1-\delta) \sum_{n=2}^{\infty}[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}{(n-\delta)(1-\gamma)}\right]^{1 / n-1} \tag{2.10}
\end{equation*}
$$

The result is sharp, with extremal function f is given by (2.5).
Proof: Given $f \in T$, and f is starlike of order δ, we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\delta \tag{2.11}
\end{equation*}
$$

For the left hand side of (2.11) we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \sum_{n=2}^{\infty} \frac{(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}}
$$

The last expression is less than $1-\delta$, if

$$
\sum_{n=2}^{\infty} \frac{n-\delta}{1-\delta} a_{n}|z|^{n-1}<1
$$

Using the fact that $f(z) \in T S_{\lambda}^{m}(\gamma, k)$ if and if

$$
\sum_{n=2}^{\infty} \frac{[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}{(1-\gamma)} a_{n} \leq 1
$$

It follows that (2.11) is true if

$$
\sum_{n=2}^{\infty} \frac{n-\delta}{1-\delta}|z|^{n-1} \leq \frac{[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}{(1-\gamma)}
$$

or equivalently

$$
|z|^{n-1} \leq \frac{(1-\delta)[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)}{(n-\delta)(1-\gamma)}
$$

which yields the starlikeness of the family.

In [4], Silverman found that the function $f_{2}(z)=z-\frac{z^{2}}{2}$ is often extremal over the family T. He applied this function to resolve his integral means inequality conjunctured [5] and settled in [6], that

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right|^{\eta} d \varphi \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \varphi}\right)^{\eta}\right| d \varphi
$$

for all $f \in T, \eta>0$ and $0<r<1$. In [6], he also proved his conjuncture for the
subclasses $T^{*}(\alpha)$ and $C(\alpha)$ of T.
Now, we prove Silverman's conjecture for the class of functions $T S_{\lambda}^{m}(\gamma, k)$
We need the concept of subordination between analytic functions and a subordination theorem of Littlewood [2].
Two functions f and g, which are analytic in E, the function f is said to be
subordinate to g in E if there exists a function w analytic in E with $w(0)=0,|w(z)|<1,(z \in E)$ such that $f(z)=g(w(z)),(z \in E)$.
We denote this subordination by $f(z) \prec g(z)$.

Lemma 2.8: If the functions f and g are analytic in E with $f(z) \prec g(z)$,
then for $\eta>0$ and $z=r e^{i \varphi}, 0<r<1$

$$
\int_{0}^{2 \pi}\left|g\left(r e^{i \varphi}\right)\right|^{\eta} d \varphi \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right|^{\eta} d \varphi
$$

Now, we discuss the integral means inequalities for functions f in $T S_{\lambda}^{m}(\gamma, k)$.

Theorem 2.9: Let $f(z) \in T S_{\lambda}^{m}(\gamma, k),, 0 \leq \gamma<1, k \geq 0$ and $f_{2}(z)$ be defined by

$$
\begin{equation*}
f_{2}(z)=z-\frac{1-\gamma}{\phi_{2}(\gamma, k)} z^{2} \tag{2.12}
\end{equation*}
$$

Proof: For $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n},(2.12)$ is equivalent to

$$
\int_{0}^{2 \pi}\left|1-\sum_{n=2}^{\infty} a_{n} z^{n-1}\right|^{\eta} d \varphi \leq \int_{0}^{2 \pi}\left|1-\frac{1-\gamma}{\varphi_{2}(\gamma, k)} z\right|^{\eta} d \varphi
$$

By Lemma 2.8, it is enough to prove that

$$
1-\sum_{n=2}^{\infty} a_{n} z^{n-1} \prec 1-\frac{1-\gamma}{\varphi_{2}(\gamma, k)} z
$$

Assuming

$$
1-\sum_{n=2}^{\infty} a_{n} z^{n-1} \prec 1-\frac{1-\gamma}{\varphi_{2}(\gamma, k)} w(z)
$$

and using (2.2) we obtain

$$
|w(z)|=\left|\sum_{n=2}^{\infty} \frac{\varphi_{2}(\gamma, k)}{1-\gamma} a_{n} z^{n-1}\right| \leq|z| \sum_{n=2}^{\infty} \frac{\varphi_{n}(\gamma, k)}{1-\gamma} a_{n} \leq|z|
$$

where $\varphi_{n}(\gamma, k)=[n(1+k)-(\gamma+k)] \phi^{m}(\lambda, n)$

This completes the proof.

REFERENCES

[1] E. Deniz and Y. Ozkan, Subclasses of analytic functions defined by new differential operator, Acta.Uni.Apul. (2014) 85-95.
[2] J.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23(2) (1925) 481-519.
[3] H.Niranjan,A.Narashimha Murthy and P.Thirupathi Reddy, Some properties of analytical functions related to Borel distributions series, Int. J. Math. Computer. Sci., 26 (2022) 395-404.
[4] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975) 109-116.
[5] H. Silverman, A survey with open problems on univalent functions whose coefficient are negative, Rocky Mountain J. Math., 21(3) (1991) 10991125.
[6] Silverman, Integral means for univalent functions with negative coefficient, Houston J. Math., 23(1) (1997) 169-174.

