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I. INTRODUCTION 

 

 Let A denote the class of functions f   of the form    
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which are analytic in the open unit disk    : 1E z C z   .      

 

 

 

Denote by T the subclass of A   consisting of functions  f  of the form  
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This subclass was introduced  and extensively studied by Silverman [6]. 

Let  f  be a function in the class A . We define the following differential operator introduced by Denizand Ozkan [1]. 
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where 0   and  0 0 .m N N   . 
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If f  is given by (1.1) then from the definition of the operator ( )mD f z  it is to see that     
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where    
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 If f T  is given by (1.2) then we have          
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Where ( , )m n   is given by (1.5).          

In this paper, using the differential operator ( )mD f z , we define the following new class motivated by Niranjan et al [3]. 

 

Definition 1.1: The function  f  of the form (1.1) is in the class  ( , )mS k   if it satisfies the inequality  

            

 
   ( ) ( )

Re 1
( ) ( )

m m

m m

z D f z z D f z
k

D f z D f z

 

 



  
 

   
 
       

for 0 1,  0k  .  

               Further, we define ( , ) ( , )m mTS k S k T    . 

 

II. MAIN RESULTS 

Theorem 2.1: A function f form (1.1) is in ( , )mS k   if       
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where 0 1,  0k and ( , )m n   is given by (1.5).             

 Proof: It suffices to show that           
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The last expression is bounded above by )1(   if         
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and the proof is complete.              

Theorem 2.2: Let ,10   0k then a function f of the form (1.2) to be in the class ( , )mTS k   if and only if 
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where ( , )m n   are given by (1.5). 

Proof: In view of Theorem 2.1, we need only to prove the necessity. If  ( , )mf TS k   and z is real then  
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Letting z 1 along the real axis, we obtain the desired inequality 
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where ,10   0k and ( , )m n   are given by (1.5). 

 

 

Corollary 2.3: If f(z) ( , )
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where ,10   0k and ( , )m n   are given by (1.5).Equality holds for the function  
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then  f(z) ( , )mTS k  , if and only if it can be expressed in the form        
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Proof: Suppose  f(z) can  be written as in (2.6).Then  
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Thus   f(z) ( , )mTS k  . Conversely, let us have   f(z) ( , )mTS k  . 

Then by using (2.3), we get  
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then we have  
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Theorem 2.5:  The class ( , )mTS k  is a convex set. 

Proof: Let the function            
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be in the class ( , )mTS k   . It sufficient to show that the function h(z) defined by  
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 an easy computation with the aid of Theorem 2.2 gives 
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which implies  that ( , )mh TS k  . 
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Hence ( , )mTS k  is convex. 

 

 

Theorem 2.6: Let the function ( )f z defined by (1.2) belong to the class ( , )mTS k  .Then is close-to-convex of order 
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The result is sharp, with the extremal function  ( )f z  is given by (1.2) 

Proof: Given f T , and  f  is close-to-convex of order   , we have  
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which completes the proof. 
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The result is sharp, with extremal function  f  is given by (2.5).                                                                        

Proof: Given f T , and  f  is starlike of order , we have 
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which yields the starlikeness of the family.                                                                                           

In [4], Silverman found that the function 
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Now, we prove Silverman‘s conjecture for the class of functions ( , )mTS k 
. 

We need the concept of subordination between analytic functions and a subordination theorem of Littlewood [2]. 

Two functions f and g , which are analytic in E , the function f  is said to be  
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subordinate to g  in E if there exists a function  w  analytic in E  with  (0) 0w  , ( ) 1w z  , ( )z E such that 

( ) ( ( ))f z g w z , ( )z E . 

We denote this subordination by ( ) ( )f z g z . 
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Now, we discuss the integral means inequalities for functions f in ( , )mTS k  .
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By Lemma 2.8, it is enough to prove that  
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This completes the proof.     
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