K_{1} and K_{2} Indices

V.R.Kulli
Professor, Department of Mathematics, Gulbarga University, Kalaburgi (Gulbarga), India

Abstract - In this paper, we introduce the K_{1} and K_{2} graphical indices of a graph. We compute these two indices for some standard graphs and certain important chemical structures such as nanostar dendrimers. Also we establish some bounds on these two indices.

Keywords - molecular structure, K_{1} index, K_{2} index, nanostar demdrimer.
Mathematics Subject Classification: 05C05, 05C09, 05C92.

I. INTRODUCTION

Let G be a simple, connected graph with vertex set $V(G)$ and edge set $E(G)$. The degree $d_{G}(u)$ of a vertex u is the number of edges incident to u. We refer [1], for other undefined notations and terminologies.

A molecular graph is a graph such that its vertices correspond to the atoms and edges to the bonds. Chemical Graph Theory is a branch of mathematical chemistry, which has an important effect on the development of Chemical Sciences. Several graphical indices [2] have been considered in Theoretical Chemistry and have found some applications, see [3, 4, 5].

The Randic index [6] of a graph G was defined as

$$
R(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u) d_{G}(v)}}
$$

Details of its Mathematical theory may be found in [7, 8].
This equation consists from 1 as numerator and geometric mean of end vertex degrees of an edge $u v, \sqrt{d_{G}(u) d_{G}(v)}$ as denominator.

Motivated by Randic index, we introduce the following graphical indices:
The K_{1} index of a graph G is defined as

$$
K_{1}(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right) / 2}}=\sum_{u v \in E(G)} \frac{\sqrt{2}}{\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right)}}
$$

This equation consists from 1 as numerator and quadratic mean of end vertex degrees of an edge $u v$, $\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right) / 2}$ as denominator.

The K_{2} index of a graph is defined as

$$
K_{2}(G)=\sum_{u v \in E(G)} \frac{1}{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right) /\left(d_{G}(u)+d_{G}(v)\right)}=\sum_{u v \in E(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u)^{2}+d_{G}(v)^{2}}
$$

This equation consists from 1 as numerator and contraharmonic mean of end vertex degrees of an edge $u v$, $\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right) /\left(d_{G}(u)+d_{G}(v)\right)$ as denominator.

The harmonic index of a graph G is defined as

$$
H(G)=\sum_{u v \in E(G)} \frac{2}{d_{G}(u)+d_{G}(v)}
$$

This index was studied by Favaron et al. [9] and Zhong [10].
Recently, some new graphical indices were studied, for example, in $[11,12,13,14,15,16,17,18,19,20,21,22,23,24]$.
In this paper, we compute the K_{1} and K_{2} indices for some standard graphs and some nanostar dendrimers. Also we establish some properties of these indices. For dendrimers, see [25].

II. RESULTS FOR SOME STANDARD GRAPHS

A. K_{1} index

Proposition 1. Let $K_{r, s}$ be a complete bipartite graph with $1 \leq r \leq \mathrm{s}$, and $\mathrm{s} \geq 2$ vertices. Then

$$
K_{1}\left(K_{r, s}\right)=\frac{r s \sqrt{2}}{\sqrt{r^{2}+s^{2}}}
$$

Proof: Let $K_{r, s}$ be a complete bipartite graph with $r+s$ vertices and r s edges such that $\left|V_{1}\right|=r,\left|V_{2}\right|=s, V\left(K_{r, s}\right)=V_{1} \cup V_{2}$ for $1 \leq r \leq \mathrm{s}$, and $\mathrm{s} \geq 2$. Every vertex of V_{1} is incident with s edges and every vertex of V_{2} is incident with r edges.

$$
K_{1}\left(K_{r, s}\right)=\frac{r s \sqrt{2}}{\sqrt{r^{2}+s^{2}}}
$$

Corollary 1.1. Let $K_{r, r}$ be a complete bipartite graph with $r \geq 2$. Then

$$
K_{1}\left(K_{r, r}\right)=r .
$$

Corollary 1.2. Let $K_{l, r-l}$ be a star with $r \geq 2$. Then

$$
K_{1}\left(K_{1, r-1}\right)=\frac{(r-1) \sqrt{2}}{\sqrt{\left(r^{2}-2 r+2\right)}}
$$

Proposition 2. If G is r-regular with n vertices and $r \geq 2$, then $K_{1}(G)=\frac{n}{2}$.

Proof: Let G is r-regular with n vertices and $r \geq 2$ and $\frac{n r}{2}$ edges. Then

$$
K_{1}(G)=\frac{n r}{2} \frac{\sqrt{2}}{\sqrt{\left(r^{2}+r^{2}\right)}}=\frac{n}{2}
$$

Corollary 1.1. Let C_{n} be a cycle with $n \geq 3$ vertices. Then $K_{1}\left(C_{n}\right)=\frac{n}{2}$.
Corollary 1.1. Let K_{n} be a complete graph with $n \geq 3$ vertices. Then

$$
K_{1}\left(K_{n}\right)=\frac{n}{2}
$$

Proposition 3. If G is a path with $n \geq 3$ vertices, then $K_{1}\left(P_{n}\right)=\frac{n}{2}+\frac{2 \sqrt{2}}{\sqrt{5}}-\frac{3}{2}$.

B. K_{2} index

Proposition 4. Let $K_{r, s}$ be a complete bipartite graph with $1 \leq r \leq \mathrm{s}$, and $\mathrm{s} \geq 2$ vertices. Then

$$
K_{2}\left(K_{r, s}\right)=\frac{r s(r+s)}{r^{2}+s^{2}}
$$

Proof: Let $K_{r, s}$ be a complete bipartite graph with $r+s$ vertices and $r s$ edges such that $\left|V_{1}\right|=r,\left|V_{2}\right|=s, V\left(K_{r, s}\right)=V_{1} \cup V_{2}$ for $1 \leq r \leq \mathrm{s}$, and $\mathrm{s} \geq 2$. Every vertex of V_{1} is incident with s edges and every vertex of V_{2} is incident with r edges.

$$
K_{2}\left(K_{r, s}\right)=\frac{r s(r+s)}{r^{2}+s^{2}}
$$

Corollary 4.1. Let $K_{r, r}$ be a complete bipartite graph with $r \geq 2$. Then

$$
K_{2}\left(K_{r, r}\right)=r .
$$

Corollary 4.2. Let $K_{l, r-1}$ be a star with $r \geq 2$. Then

$$
Q G K_{2}\left(K_{1, r-1}\right)=\frac{r(\mathrm{r}-1)}{r^{2}-2 r+2}
$$

Proposition 5. If G is r-regular with n vertices and $r \geq 2$, then $K_{2}(G)=\frac{n}{2}$.

Proof: Let G is r-regular with n vertices and $r \geq 2$ and $\frac{n r}{2}$ edges. Then

$$
K_{2}(G)=\frac{n r(r+r)}{2\left(r^{2}+r^{2}\right)}=\frac{n}{2}
$$

Corollary 5.1. Let C_{n} be a cycle with $n \geq 3$ vertices. Then $K_{2}\left(C_{n}\right)=\frac{n}{2}$.

Corollary 5.1. Let K_{n} be a complete graph with $n \geq 3$ vertices. Then

$$
Q G K_{2}\left(K_{n}\right)=\frac{n}{2}
$$

Proposition 6. If G is a path with $n \geq 3$ vertices, then $K_{2}\left(P_{n}\right)=\frac{n}{2}-\frac{3}{10}$.

III. BOUNDS ON K_{1} INDEX OF GRAPHS

Theorem 1. Let $H(G)$ be the harmonic index of a graph G. Then

$$
\frac{\sqrt{2}}{2} H(G) \leq K_{1}(G) \leq H(G)
$$

Proof. Let $a \geq b \geq 1$ be real numbers. Then $(a-b)^{2} \geq 0$.
$a^{2}+b^{2} \geq 2 a b$, this implies $\quad 2 a^{2}+2 b^{2} \geq a^{2}+b^{2}+2 a b=(a+b)^{2}$
implying $\quad \frac{2}{a+b} \geq \frac{\sqrt{2}}{\sqrt{a^{2}+b^{2}}}$.
For $a=d_{G}(u), b=d_{G}(v)$, then the above inequality becomes
$\frac{2}{d_{G}(u)+d_{G}(v)} \geq \frac{\sqrt{2}}{\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right)}}$
By definitions, we have

$$
H(G)=\sum_{u v \in E(G)} \frac{2}{d_{G}(u)+d_{G}(v)} \geq \sum_{u v \in E(G)} \frac{\sqrt{2}}{\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right)}}=K_{1}(G) .
$$

Equality holds if and only if G is a regular graph.

We have

$$
\frac{1}{\sqrt{a^{2}+b^{2}}}=\frac{1}{\sqrt{(a+b)^{2}-2 a b}} \geq \frac{1}{\sqrt{(a+b)^{2}}}=\frac{1}{(a+b)}
$$

Implying

$$
\frac{\sqrt{2}}{\sqrt{a^{2}+b^{2}}} \geq \frac{\sqrt{2}}{2} \frac{2}{(a+b)} .
$$

For $a=d_{G}(u), b=d_{G}(v)$, by using the above inequality and definitions, we have

$$
K_{1}(G)=\sum_{u v \in E(G)} \frac{\sqrt{2}}{\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right)}} \geq \frac{\sqrt{2}}{2} \sum_{u v \in E(G)} \frac{2}{d_{G}(u)+d_{G}(v)}=\frac{\sqrt{2}}{2} H(G) .
$$

Theorem 2. Let $R(G)$ be the Randic index of a graph G. Then

$$
K_{1}(G) \leq R(G) .
$$

Proof. Let $a \geq b \geq 1$ be real numbers. Then $(a-b)^{2} \geq 0$.

We get $a^{2}+b^{2} \geq 2 a b$. This implies

$$
\frac{\sqrt{2}}{\sqrt{a^{2}+b^{2}}} \leq \frac{1}{\sqrt{a b}}
$$

For $a=d_{G}(u), b=d_{G}(v)$, by using the above inequality and definitions, we have

$$
K_{1}(G)=\sum_{u v \in E(G)} \frac{\sqrt{2}}{\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right)}} \leq \sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u) d_{G}(v)}}=R(G) .
$$

Equality holds if and only if G is a regular graph
In literature, there exist many upper bounds on the Randic index. Thus one can establish many upper bounds on the K_{1} index by using Theorem 2. For example, It is a well-known fact that if G is a graph without isolated vertices then

$$
R(G) \leq \frac{n}{2} .
$$

Corollary 2.1. Let G be a graph with n vertices and minimum degree at least 1 . Then

$$
K_{1}(G) \leq \frac{n}{2} .
$$

with equality if and only if G is a regular graph

IV. BOUNDS ON $\boldsymbol{K}_{\mathbf{2}}$ INDEX OF GRAPHS

Theorem 3. Let G be a connected graph G with m edges and minimum degree δ. Then

$$
K_{2}(G) \leq \frac{m}{\delta}
$$

Proof. For any edge $u v$ in $E(G)$, we can easily see that

$$
\frac{d_{G}(u)+d_{G}(v)}{d_{G}(u)^{2}+d_{G}(v)^{2}} \leq \frac{1}{\delta}
$$

with equality if and only if $d_{G}(u)=d_{G}(v)=\delta$. That is, equality holds if and only if G is regular.
By using the above inequality and definitions, we have

$$
K_{2}(G)=\sum_{u v \in E(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u)^{2}+d_{G}(v)^{2}} \leq \sum_{u v \in E(G)} \frac{1}{\delta}=\frac{m}{\delta}
$$

Theorem 4. Let G be a connected graph. Then

$$
K_{2}(G)>\frac{1}{2} H(G)
$$

Proof. Let $a \geq b \geq 1$ be real numbers. Then $(a+b)^{2}=a^{2}+b^{2}+2 a b>a^{2}+b^{2}$.
implying $\frac{a+b}{a^{2}+b^{2}}>\frac{2}{2(a+b)}$.
For $a=d_{G}(u), b=d_{G}(v)$, by using the above inequality and definitions, we have

$$
K_{2}(G)=\sum_{u v \in E(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u)^{2}+d_{G}(v)^{2}}>\sum_{u v \in E(G)} \frac{2}{d_{G}(u)+d_{G}(v)}=\frac{1}{2} H(G)
$$

Theorem 5. Let G be a connected graph with m edges. Then

$$
K_{2}(G) \leq \frac{m}{2}
$$

Proof. Let $a \geq b \geq 2$ be real numbers. Then $(a+b)^{2}=a^{2}+b^{2}+2 a b>a^{2}+b^{2}$.

Implying $\quad \frac{a+b}{a^{2}+b^{2}} \leq \frac{1}{2}$.
For $a=d_{G}(u), b=d_{G}(v)$, by using the above inequality and definitions, we have

$$
K_{2}(G)=\sum_{u v \in E(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u)^{2}+d_{G}(v)^{2}} \leq \sum_{u v \in E(G)} \frac{1}{2}=\frac{m}{2}
$$

V. RESULTS FOR POLY ETHYLENE AMIDE AMINE DENDRIMER PETAA

We consider the family of poly ethylene amide amine dendrimers. This family of dendrimers is denoted by PETAA. The molecular graph of PETAA is presented in Figure 1.

Fig 1. The molecular graph of PETAA
Let G be the molecular graph of PETAA. By calculation, we find that G has $44 \times 2^{n}-18$ vertices and $44 \times 2^{n}-19$ edges. In PETAA, there are three types of edges based on degrees of end vertices of each edge as given in Table 1.

Table 1. Edge partition of PETAA

$d_{G}(u), d_{G}(v) \backslash u v \in E(G)$	$(1,2)$	$(1,3)$	$(2,2)$	$(2,3)$
Number of edges	4×2^{n}	$4 \times 2^{n}-2$	$16 \times 2^{n}-8$	$20 \times 2^{n}-9$

In the following theorem, we determine the K_{1} and K_{2} indices of PETAA.
Theorem 6. Let PETAA be the family of poly ethylene amide amine dendrimers. Then

$$
\begin{equation*}
K_{1}(P E T A A)=\left(\frac{4 \sqrt{2}}{\sqrt{5}}+\frac{4}{\sqrt{5}}+8+\frac{20 \sqrt{2}}{\sqrt{13}}\right) 2^{n}-\frac{2}{\sqrt{5}}-4-\frac{9 \sqrt{2}}{\sqrt{13}} \tag{i}
\end{equation*}
$$

(ii) $\quad K_{2}(P E T A A)=\frac{256 \times 2^{n}}{13}-\frac{537}{65}$.

Proof: By using definitions and Table 1, we obtain
(i)

$$
\begin{aligned}
& K_{1}(\text { PETAA })=\sum_{u v \in E(G)} \frac{\sqrt{2}}{\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right)}} \\
& \quad=\frac{4 \times 2^{n} \sqrt{2}}{\sqrt{\left(1^{2}+2^{2}\right)}}+\frac{\left(4 \times 2^{n}-2\right) \sqrt{2}}{\sqrt{\left(1^{2}+3^{2}\right)}}+\frac{\left(16 \times 2^{n}-8\right) \sqrt{2}}{\sqrt{\left(2^{2}+2^{2}\right)}}+\frac{\left(20 \times 2^{n}-9\right) \sqrt{2}}{\sqrt{\left(2^{2}+3^{2}\right)}}
\end{aligned}
$$

After simplification, we obtain the desired result.

$$
\begin{align*}
& K_{2}(\text { PETAA })=\sum_{u v \in E(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u)^{2}+d_{G}(v)^{2}} \tag{ii}\\
& \quad=\frac{4 \times 2^{n}(1+2)}{1^{2}+2^{2}}+\frac{\left(4 \times 2^{n}-2\right)(1+3)}{1^{2}+3^{2}}+\frac{\left(16 \times 2^{n}-8\right)(2+2)}{2^{2}+2^{2}}+\frac{\left(20 \times 2^{n}-9\right)(2+3)}{2^{2}+3^{2}}
\end{align*}
$$

giving the desired result

VI. RESULTS FOR PROPYL ETHER IMINE DENDRIMER PETIM

We consider the family of propyl ether imine dendrimers. This family of dendrimers is denoted by PETIM. The molecular graph of PETIM is depicted in Figure 2.

Fig 2. The molecular graph of PETIM
Let G be the molecular graph of PETIM. By calculation, we find that G has $24 \times 2^{n}-23$ vertices and $24 \times 2^{n}-24$ edges. In PETIM, there are three types of edges based on degrees of end vertices of each edge as given in Table 2.

Table 2. Edge partition of PETIM

$d_{G}(u), d_{G}(v) \backslash u v \in E(G)$	$(1,2)$	$(2,2)$	$(2,3)$
Number of edges	2×2^{n}	$16 \times 2^{n}-18$	$6 \times 2^{n}-6$

In the following theorem, we compute the K_{1} and K_{2} indices of PETIM.
Theorem 7. Let PETIM be the family of porpyl ether imine dendrimers. Then
(i)

$$
K_{1}(\text { PETIM })=\left(\frac{2 \sqrt{2}}{\sqrt{5}}+8+\frac{6 \sqrt{2}}{\sqrt{13}}\right) 2^{n}-9-\frac{6 \sqrt{2}}{\sqrt{13}}
$$

(ii)

$$
K_{2}(\text { PETIM })=\frac{748 \times 2^{n}}{65}-\frac{147}{13}
$$

Proof: By using definitions and Table 2, we obtain

$$
\begin{align*}
K_{1}(\text { PETIM }) & =\sum_{u v \in E(G)} \frac{\sqrt{2}}{\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right)}} \tag{i}\\
& =\frac{2 \times 2^{n} \sqrt{2}}{\sqrt{\left(1^{2}+2^{2}\right)}}+\frac{\left(16 \times 2^{n}-18\right) \sqrt{2}}{\sqrt{\left(2^{2}+2^{2}\right)}}+\frac{\left(6 \times 2^{n}-6\right) \sqrt{2}}{\sqrt{\left(2^{2}+3^{2}\right)}}
\end{align*}
$$

giving the desired result
(ii) $\quad K_{2}($ PETIM $)=\sum_{u v \in E(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u)^{2}+d_{G}(v)^{2}}$

$$
=\frac{2 \times 2^{n}(1+2)}{1^{2}+2^{2}}+\frac{\left(16 \times 2^{n}-18\right)(2+2)}{2^{2}+2^{2}}+\frac{\left(6 \times 2^{n}-6\right)(2+3)}{2^{2}+3^{2}}
$$

After simplification, we obtain the desired result.

VII. RESULTS FOR ZINC PROPHYRIN DENDRIMER $D^{\prime} \mathcal{Z}_{N}$

We consider the family of zinc prophyrin dendrimers. This family of dendrimers is denoted by $D P Z_{n}$, where n is the steps of growth in this type of dendrimers. The molecular graph of $D P Z_{n}$ is shown in Figure 3.

Fig 3. The molecular graph of $\boldsymbol{D P Z} \boldsymbol{Z}_{\boldsymbol{n}}$
Let G be the molecular graph of $D P Z_{n}$. By calculation, we obtain that G has $56 \times 2^{n}-7$ vertices $64 \times 2^{n}-4$ edges. In $D P Z_{n}$, there are four types of edges based on degrees of end vertices of each edge as given in Table 3.

Table 3. Edge partition of $D P Z_{n}$

$d_{G}(u), d_{G}(v) \backslash u v \in E(G)$	$(2,2)$	$(2,3)$	$(3,3)$	$(3,4)$
Number of edges	$16 \times 2^{n}-4$	$40 \times 2^{n}-16$	$8 \times 2^{n}+12$	4

In the following theorem, we determine the K_{1} and K_{2} indices of $D P Z_{n}$.
Theorem 8. Let $D P Z_{n}$ be the family of zinc prophyrin dendrimers. Then
(i) $\quad K_{1}\left(D P Z_{n}\right)=\left(\frac{32}{3}+\frac{10 \sqrt{2}}{\sqrt{13}}\right) 2^{n}+2-\frac{16 \sqrt{2}}{\sqrt{13}}+\frac{4 \sqrt{2}}{5}$.
(ii) $\quad K_{2}\left(D P Z_{n}\right)=\frac{566 \times 2^{n}}{39}-\frac{986}{325}$.

Proof: From definitions and by using Table 3, we deduce

$$
\begin{align*}
K_{1}\left(D P Z_{n}\right) & =\sum_{u v \in E(G)} \frac{\sqrt{2}}{\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right)}} \tag{i}\\
& =\frac{\left(16 \times 2^{n}-4\right) \sqrt{2}}{\sqrt{\left(2^{2}+2^{2}\right)}}+\frac{\left(40 \times 2^{n}-16\right) \sqrt{2}}{\sqrt{\left(2^{2}+3^{2}\right)}}+\frac{\left(8 \times 2^{n}+12\right) \sqrt{2}}{\sqrt{\left(3^{2}+3^{2}\right)}}+\frac{4 \sqrt{2}}{\sqrt{\left(3^{2}+4^{2}\right)}}
\end{align*}
$$

This gives the desired result after simplification
(ii) $\quad K_{2}\left(D P Z_{n}\right)=\sum_{u v \in E(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u)^{2}+d_{G}(v)^{2}}$

$$
=\frac{\left(16 \times 2^{n}-4\right)(2+2)}{2^{2}+2^{2}}+\frac{\left(40 \times 2^{n}-16\right)(2+3)}{2^{2}+3^{2}}+\frac{\left(8 \times 2^{n}+12\right)(3+3)}{3^{2}+3^{2}}+\frac{4(3+4)}{3^{2}+4^{2}}
$$

After simplification, we obtain the desired result.

VIII. RESULTS FOR PORPHYRIN DENDRIMER $D_{N} P_{N}$

We consider the family of porphyrin dendrimers. This family of dendrimers is denoted by $D_{n} P_{n}$. The molecular graph of $D_{n} P_{n}$ is shown in Figure 4.

Fig 4. The molecular graph of $D_{n} P_{n}$
Let G be the molecular graph of $D_{n} P_{n}$. By calculation, we find that G has $96 n-10$ vertices and $105 n-11$ edges. In $D_{n} P_{n}$, there are six types of edges based on degrees of end vertices of each edge as given in Table 4.

Table 4. Edge partition of $D_{n} P_{n}$

$d_{G}(u), d_{G}(v) \backslash u v \in E(G)$	$(1,3)$	$(1,4)$	$(2,2)$	$(2,3)$	$(3,3)$	$(3,4)$
Number of edges	$2 n$	$24 n$	$10 n-5$	$48 n-6$	$13 n$	$8 n$

In the following theorem, we compute the K_{1} and K_{2} indices of $D_{n} P_{n}$.
Theorem 9. Let $D_{n} P_{n}$ be the family of porphyrin dendrimers. Then
(i) $\quad K_{1}\left(D_{n} P_{n}\right)=\left(\frac{2}{\sqrt{5}}+\frac{24 \sqrt{2}}{\sqrt{17}}+5+\frac{48 \sqrt{2}}{\sqrt{13}}+\frac{13}{3}+\frac{8 \sqrt{2}}{5}\right) n-\frac{5}{2}-\frac{6 \sqrt{2}}{\sqrt{13}}$.
(ii) $\quad K_{2}\left(D_{n} P_{n}\right)=\left(\frac{4}{5}+\frac{120}{17}+5+\frac{240}{13}+\frac{13}{3}+\frac{56}{25}\right) n-\frac{125}{26}$.

Proof: From definitions and by using Table 4, we deduce
(i) $K_{1}\left(D_{n} P_{n}\right)=\sum_{u v \in E(G)} \frac{\sqrt{2}}{\sqrt{\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right)}}$

$$
=\frac{2 n \sqrt{2}}{\sqrt{\left(1^{2}+3^{2}\right)}}+\frac{24 n \sqrt{2}}{\sqrt{\left(1^{2}+4^{2}\right)}}+\frac{(10 n-5) \sqrt{2}}{\sqrt{\left(2^{2}+2^{2}\right)}}+\frac{(48 n-6) \sqrt{2}}{\sqrt{\left(2^{2}+3^{2}\right)}}+\frac{13 n \sqrt{2}}{\sqrt{\left(3^{2}+3^{2}\right)}}+\frac{8 n \sqrt{2}}{\sqrt{\left(3^{2}+4^{2}\right)}} .
$$

After simplification, we get the desired result.
(ii) $K_{2}\left(D_{n} P_{n}\right)=\sum_{u v \in E(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u)^{2}+d_{G}(v)^{2}}$

$$
=\frac{2 n(1+3)}{1^{2}+3^{2}}+\frac{24 n(1+4)}{1^{2}+4^{2}}+\frac{(10 n-5)(2+2)}{2^{2}+2^{2}}+\frac{(48 n-6)(2+3)}{2^{2}+3^{2}}+\frac{13 n(3+3)}{3^{2}+3^{2}}+\frac{8 n(3+4)}{3^{2}+4^{2}}
$$

giving the desired result

IX. CONCLUSION

In this paper, we have introduced two novel graphical indices which are K_{1} and K_{2} indices and computed exact values of some standard graphs. Furthermore we have determined these two indices for certain nanostar dendrimers. Also we have obtained some properties of these indices.

Many questions are suggested by this research, among them are the following:

1. Characterize the K_{1} and K_{2} indices in terms of other degree based topological indices.
2. Obtain the extremal values and extremal graphs of K_{1} and K_{2} indices.
3. Compute these two indices for other chemical nanostructures.

REFERENCES

[1] V.R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
[2] V.R.Kulli, Graph indices, in Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society, M. Pal. S. Samanta and A. Pal, (eds.) IGI Global, USA (2020) 66-91.
[3] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
[4] V.R.Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LEMBERT Academic Publishing, (2018).
[5] R.Todeschini and V. Consonni, Handbook of Molecular Descriptors for Chemoinformatics, Weinheim, Wiley-VCH, (2009).
[6] M.Randic, On characterization of molecular branching, Journal of American Chemical Society, 97 (1975) 6609-6615.
[7] X.Li and I.Gutman, Mathematical Aspects of Randic Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, (2006).
[8] I.Gutman and B.Furtula, Recent Results in the Theory of Randic Index, Univ. Kragujevac, Kragujevac, (2008).
[9] O.Favaron, M.Maho and F.J.Sacle, Some eigenvalue properties in graphs (conjectures of Graffiti II), discrete Math. 111(1-3) (1993) 197-220.
[10] L.Zhong, The harmonic index for graphs, Appl. Math Lett 25(3) (2012) 561-566.
[11] I.Gutman, V.R.Kulli and I.Redzepocic, Nirmala index of Kragujevac trees, International Journal of Mathematics Trends and Technology, 67(6) (2021) 44-49.
[12] V.R.Kulli, Computation of distance based connectivity status neighborhood Dakshayani indices, International Journal of Mathematics Trends and Technology, 66(6) (2020) 118-128.
[13] V.R.Kulli, Computation of status neighborhood indices of graphs, International Journal of Recent Scientific Research, 11(4) (2020) 38079-38085.
[14] V.R.Kulli, Hyper Zagreb-K-Banhatti indices of graphs, International Journal of Mathematics Trends and Technology, 66(8) (2020) 123-130.
[15] V.R.Kulli, Some new status neighborhood indices of graphs, International Journal of Mathematics Trends and Technology, 66(9) (2020) 139-153.
[16] V.R.Kulli, Harmonic Zagreb-K-Banhatti index of a graph, International Journal of Mathematics Trends and Technology, 66(10) (2020) 123-132.
[17] V.R.Kulli, Neighborhood Sombor index of some nanostructures, International Journal of Mathematics Trends and Technology, 67(5) (2021) 101108.
[18] V.R.Kulli, Different versions of Nirmala index of certain chemical structures, International Journal of Mathematics Trends and Technology, 67(7) (2021) 56-63.
[19] V.R.Kulli, B.Chaluvaraju and T.Vidya, Computation ofAdriatic (a, b)-KA index of some nanostructures, International Journal of Mathematics Trends and Technology, 67(4) (2021) 79-87.
[20] V.R.Kulli and I.Gutman, (a, b)-KA indices of benzenoid systems, International Journal of Mathematics Trends and Technology, 67(1) (2021) 17-20.
[21] V.R.Kulli, Some new Kulli-Basava topological indices, Earthline Journal of Mathematical Sciences, 2(2) (2019) 343-354.
[22] V.R.Kulli, Contraharmonic-quadratic index of certain nanostar dendrimers, International Journal of Mathematical Archive, 13(1) (2022).
[23] V.R.Kulli, Geometric-quadratic and quadratic-geometric indices, submitted.
[24] V.R.Kulli, ABC Banhatti and augmented Banhatti indices of chemical networks, Journal of Chemistry and Chemical Sciences, 8(8) (2018) 10181025.
[25] V.R.Kulli, B.Chaluvaraju, V.Lokesha and S.A.Basha, Gourava indices of some dendrimers, Research Review International Journal of Multidisciplinary, 4(6) (2019) 212-215.

