Factors of Composite $4 n^{2}+1$ using Fermat's Factorization Method

Paul Ryan A. Longhas ${ }^{1}$, Alsafat M. Abdul ${ }^{2}$, Aurea Z. Rosal ${ }^{3}$
${ }^{1,2}$ Instructor, Department of Mathematics and Statistics, Polytechnic University of the Philippines, Manila, Philippines
${ }^{3}$ Associate Professor, Department of Mathematics and Statistics, Polytechnic University of the Philippines, Manila, Philippines

Abstract

In this article, we factor the composite $4 n^{2}+1$ using Fermat's factorization method. Consequently, we characterized all proper factors of composite $4 n^{2}+1$ in terms of its form. Furthermore, the composite Fermat's number is considered in this study.

Keywords - Fermat's factorization, Fermat's number, reducible polynomial, Compositeness, Eisenstein Criterion.

I. INTRODUCTION

Fermat's factorization is a method in factoring the odd composite natural number N by expressing it as difference of two squares. If $N=a b$ where N is odd positive composite number, and a and b are proper factor of N, then N can be written as

$$
N=c^{2}-d^{2}=(c+d)(c-d)
$$

where $c=\frac{a+b}{2}$ and $d=\frac{b-a}{2}[1]$. For example, if we want to factor 9797 using Fermat's factorization method, then the goal is to expressed 9797 as a difference of two square, that is, $9797=c^{2}-d^{2}$ for some $c, d \in \mathbb{Z}$. In solving c and d, note that $d^{2}=c^{2}-9797$ implies that $c \geq\lceil\sqrt{9797}\rceil$, that is, $c \geq 99$. If $c=99$, then $d^{2}=99^{2}-9797=4$ is a perfect square, and thus, $9797=(99-2)(99+2)$. In general, the Fermat's method might be slower than trial and error method to apply. In fact, Fermat's factorization works best to N when there is a factor a of N such that a is near to $\sqrt{N}[1]$. Thus, some improvement is necessary to make the Fermat's method effective [1,7,8,9]. In 1999, R. Lehman devised a systematic method to improve the Fermat's method by multiplier improvement so that the Fermat's method plus trial division can be factor N in $O\left(N^{\frac{1}{3}}\right)$ time [1].

In this article, we study the Fermat's factorization of composite $4 n^{2}+1$ and its proper factors. More precisely speaking, we proved that:

1. If n is even, then every proper factors of composite $N=4 n^{2}+1$ is can be expressed as

$$
8 u+1 \pm \sqrt{(8 u+1)^{2}-N}
$$

where $u \in \mathbb{N}$ and
1.1. $(8 u+1)-N$ is a perfect square.
1.2. $u \in\left[\frac{-1+\sqrt{N}}{8}, \frac{N-5}{40}\right)$.
1.3. $u \not \equiv 0(\bmod p)$ for all prime $p \equiv 3(\bmod 4)$.
1.4. For all odd prime p does not divide $N, u \equiv \frac{x_{0}^{-1} N+x_{0}-2}{16}(\bmod p)$, for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$.
2. If n is odd, then every proper factors of composite $N=4 n^{2}+1$ is can be expressed as

$$
8 u+3 \pm \sqrt{(8 u+3)^{2}-N}
$$

where $u \in \mathbb{N}$ and
2.1. $(8 u+3)^{2}-N$ is a perfect square.
2.2. $u \in\left[\frac{-3+\sqrt{N}}{8}, \frac{N-15}{8}\right)$.
2.3. $4 u+1 \not \equiv 0(\bmod p)$ for all prime $p \equiv 3(\bmod 4)$.
2.4. For all odd prime p does not divide $N, u \equiv \frac{x_{0}^{-1} N+x_{0}-6}{16}(\bmod p)$, for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$.

The main results characterized all proper factors of $4 n^{2}+1$ in terms of its form.

II. MAIN RESULTS

First, we study $4 n^{2}+1$ when n is even. The following lemma is vital in the proof of main results of this study. The proof of Lemma 2.1 follows from the fact that every factor of $16 m^{2}+1$ is can be expressed as $4 a+1$ where a is a positive integer [5].
Lemma 2.1. Let $m \in \mathbb{N}$. If $16 m^{2}+1$ is composite, then there is a natural number $b \leq \frac{-1+\sqrt{16 m^{2}+1}}{4}$ where

$$
\begin{equation*}
m^{2}+b^{2} \equiv 0(\bmod (4 b+1)) \tag{1}
\end{equation*}
$$

Furthermore, $4 b+1$ is a proper factor of $16 m^{2}+1$.

Proof: Assume $16 m^{2}+1$ is composite. Then, by [5] there exists a natural number a and b such that

$$
\begin{equation*}
16 m^{2}+1=(4 a+1)(4 b+1) \tag{2}
\end{equation*}
$$

where $4 b+1 \leq \sqrt{16 m^{2}+1}$ is a proper factor of $16 m^{2}+1$. Manipulate equation in (2), then we have

$$
\begin{equation*}
4 m^{2}=4 a b+a+b \tag{3}
\end{equation*}
$$

So, there exists $u \in \mathbb{N}$ such that $4 u=a+b$. Replacing $a=4 u-b$ and $a+b=4 u$ in equation (3), then we obtain

$$
\begin{equation*}
4 m^{2}=4(4 u-b) b+4 u \tag{4}
\end{equation*}
$$

which gives

$$
\begin{equation*}
m^{2}+b^{2}=u(4 b+1) \tag{5}
\end{equation*}
$$

where $b \leq \frac{-1+\sqrt{16 m^{2}+1}}{4}$, as desired.

The following proposition follows from lemma 2.1.
Proposition 2.2. Let $m \in \mathbb{N}$. If $N=16 m^{2}+1$ is composite, then there exists a natural number u such that

$$
\begin{equation*}
N=\left(8 u+1+\sqrt{(8 u+1)^{2}-N}\right)\left(8 u+1-\sqrt{(8 u+1)^{2}-N}\right) \tag{6}
\end{equation*}
$$

where

1. $(8 u+1)-N$ is a perfect square.
2. $u \in\left[\frac{-1+\sqrt{N}}{8}, \frac{N-5}{40}\right)$.
3. $u \not \equiv 0(\bmod p)$ for all prime $p \equiv 3(\bmod 4)$.
4. For all odd prime p does not divide $N, u \equiv \frac{x_{0}^{-1} N+x_{0}-2}{16}(\bmod p)$, for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$.

Furthermore, the following holds:
5. If n is even, then $u \equiv 2(\bmod 4)$.
6. If n is not divisible by 3 , then $u \equiv 1(\bmod 3)$.

Conversely, if there exists $u \in\left[\frac{-1+\sqrt{N}}{8}, \frac{N-5}{40}\right)$ where $(8 u+1)-N$ is a perfect square, then N is composite.

Proof: Assume $N=16 m^{2}+1$ is composite, then by lemma 2.1 there exists a natural number b and natural number u where

$$
\begin{equation*}
u=\frac{m^{2}+b^{2}}{4 b+1} \tag{7}
\end{equation*}
$$

and $4 b+1$ is a proper factor of N. Consider the quadratic polynomial defined by

$$
\begin{equation*}
f(x)=x^{2}-2(8 u+1) x+N \tag{8}
\end{equation*}
$$

Note that $f(4 b+1)=0$ and the product of the roots of $f(x)$ is N, and thus, every roots of $f(x)$ is a proper factor of N.
Computing the zeroes r_{1} and r_{2} of $f(x)$ yields

$$
\begin{align*}
& r_{1}=8 u+1-\sqrt{(8 u+1)^{2}-N} \tag{9}\\
& r_{2}=8 u+1+\sqrt{(8 u+1)^{2}-N} . \tag{10}
\end{align*}
$$

Thus,

$$
\begin{equation*}
N=\left(8 u+1+\sqrt{(8 u+1)^{2}-N}\right)\left(8 u+1-\sqrt{(8 u+1)^{2}-N}\right) \tag{11}
\end{equation*}
$$

1. Since $r_{1}=8 u+1-\sqrt{(8 u+1)^{2}-N} \in \mathbb{N}$, then $(8 u+1)-N$ is a perfect square.
2. Note that we have

$$
\begin{equation*}
(8 u+1)^{2}-N \geq 0 \tag{12}
\end{equation*}
$$

Solve the inequality in (12) with the assumption that $u>0$ yields

$$
\begin{equation*}
u \geq \frac{-1+\sqrt{N}}{8} \tag{13}
\end{equation*}
$$

Furthermore, by Rolle's theorem, there exists $\theta \in\left(r_{1}, r_{2}\right) \subset\left(r_{1}, \frac{N}{5}\right]$ where $f^{\prime}(\theta)=0$. Thus,

$$
\begin{equation*}
2 \theta-2(8 u+1)=0 \tag{14}
\end{equation*}
$$

Hence, $u=\frac{\theta-1}{8}$. Since $\theta \in\left(r_{1}, r_{2}\right) \subset\left(r_{1}, \frac{N}{5}\right]$, then $u \leq \frac{N-5}{40}$. Therefore, we will have

$$
\begin{equation*}
u \in\left[\frac{-1+\sqrt{N}}{8}, \frac{N-5}{40}\right) \tag{15}
\end{equation*}
$$

3. We claim that $u \not \equiv 0(\bmod p)$ for all prime $p \equiv 3(\bmod 4)$. Indeed, assume there is a prime $p \equiv 3(\bmod 4)$ where $u \equiv$ $0(\bmod p)$. Then, we have

$$
\begin{gathered}
r_{1}^{2}-2(8 u+1) r_{1}+N=0 \\
r_{1}^{2}-2(8 u+1) r_{1}+N \equiv 0(\bmod p) \\
r_{1}^{2}-2 r_{1}+16 m^{2} \equiv 0(\bmod p) \\
\left(r_{1}-1\right)^{2}+(4 m)^{2} \equiv 0(\bmod p)
\end{gathered}
$$

Note that $\left(r_{1}-1\right)^{2}+(4 m)^{2} \equiv 0(\bmod p)$ is impossible for $p \equiv 3(\bmod 4)$, a contradiction.
4. Let p be an odd prime where $N \not \equiv 0(\bmod p)$. Then, we claim that $u \equiv \frac{x_{0}^{-1} N+x_{0}-2}{16}(\bmod p)$, for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$. Indeed, since $f(4 b+1)=0$, then $f(x)$ is reducible over \mathbb{Z}, and thus, $f(x)$ is reducible over \mathbb{Z}_{p}. Therefore, there is $x_{0} \in \mathbb{Z}_{p}$ such that

$$
\begin{equation*}
x_{0}^{2}-2(8 u+1) x_{0}+N \equiv 0(\bmod p) \tag{16}
\end{equation*}
$$

Since $N \not \equiv 0(\bmod p)$, then $x_{0} \neq 0$. Thus, from equation in (16) we have

$$
\begin{equation*}
u \equiv \frac{x_{0}^{-1} N+x_{0}-2}{16}(\bmod p) \tag{17}
\end{equation*}
$$

for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$.
5. Suppose n is even. We claim that $u \not \equiv 2(\bmod 4)$. Indeed, if $u \equiv 2(\bmod 4)$, then there exists $k \in \mathbb{Z}$ where $u=4 k+2$. Thus, we have

$$
\begin{equation*}
f(x)=x^{2}-2(8(4 k+2)+1) x+N \tag{18}
\end{equation*}
$$

Replacing $x=4 y+1$ in equation $x^{2}-2(8(4 k+2)+1) x+N=0$, then we have

$$
\begin{equation*}
y^{2}-4(4 k+2) y-(4 k+2)+n^{2}=0 \tag{19}
\end{equation*}
$$

Since $f(x)$ is reducible over \mathbb{Z}, then the polynomial $g(x)=x^{2}-4(4 k+2) x-(4 k+2)+n^{2}$ is also reducible over \mathbb{Z} in which one of the zeroes is b. Notice that $2 \nmid 1,2|4(4 k+2), 2|\left(-(4 k+2)+n^{2}\right)$ but $2^{2} \nmid\left(-(4 k+2)+n^{2}\right)$, so by Eisenstein Criterion theorem [6], $g(x)$ is irreducible over \mathbb{Q} which is a contradiction. Therefore, $u \not \equiv 2(\bmod 4)$.
6. The proof is follow from statement 3 by setting $p=3$.

Conversely, if there exists $u \in\left[\frac{-1+\sqrt{N}}{8}, \frac{N-5}{40}\right)$ where $(8 u+1)-N$ is a perfect square, then

$$
\begin{equation*}
N=\left(8 u+1+\sqrt{(8 u+1)^{2}-N}\right)\left(8 u+1-\sqrt{(8 u+1)^{2}-N}\right) \tag{20}
\end{equation*}
$$

If N is prime, then $8 u+1-\sqrt{(8 u+1)^{2}-N}=1$, and hence, $u=m^{2}$ which is a contradiction since $u \in\left[\frac{-1+\sqrt{N}}{8}, \frac{N-5}{40}\right)$. Therefore, N is composite.

The equation in (6) is called the Fermat's factorization of $16 m^{2}+1$. Note that statements $1-6$ of proposition 2.2 states the property of all factors of $16 m^{2}+1$ if we factor $16 m^{2}+1$ using Fermat's factorization method. This also gives a sieve method to determine the proper factor of composite $16 m^{2}+1$. The next result characterized all proper factor of composite $16 m^{2}+1$ in terms of its structure.

Proposition 2.3. Every proper factors of composite $N=16 m^{2}+1$ is can be expressed as

$$
\begin{equation*}
8 u+1 \pm \sqrt{(8 u+1)^{2}-N} \tag{21}
\end{equation*}
$$

where $u \in \mathbb{N}$ and

1. $(8 u+1)-N$ is a perfect square.
2. $u \in\left[\frac{-1+\sqrt{N}}{8}, \frac{N-5}{40}\right)$.
3. $u \not \equiv 0(\bmod p)$ for all prime $p \equiv 3(\bmod 4)$.
4. For all odd prime p does not divide $N, u \equiv \frac{x_{0}^{-1} N+x_{0}-2}{16}(\bmod p)$, for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$.

Furthermore, the following holds:
5. If n is even, then $u \equiv 2(\bmod 4)$.
6. If n is not divisible by 3 , then $u \equiv 1(\bmod 3)$.

Proof: The results follow directly from Proposition 2.2. Furthermore, (21) follows from (9) and (10).

Now, we study the factorization of $4 n^{2}+1$ where n is odd number using Fermat's factorization method.
Proposition 2.4. Let $m \in \mathbb{N}$. If $N=4(2 m+1)^{2}+1$ is composite, then there is $u \in \mathbb{N}$ such that

$$
\begin{equation*}
N=\left(8 u+3+\sqrt{(8 u+3)^{2}-N}\right)\left(8 u+3-\sqrt{(8 u+3)^{2}-N}\right) \tag{22}
\end{equation*}
$$

where

1. $(8 u+3)^{2}-N$ is a perfect square.
2. $u \in\left[\frac{-3+\sqrt{N}}{8}, \frac{N-15}{8}\right)$.
3. $4 u+1 \not \equiv 0(\bmod p)$ for all prime $p \equiv 3(\bmod 4)$.
4. For all odd prime p does not divide $N, u \equiv \frac{x_{0}^{-1} N+x_{0}-6}{16}(\bmod p)$, for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$.

Conversely, if there exists $u \in\left[\frac{-3+\sqrt{N}}{8}, \frac{N-15}{8}\right)$ where $(8 u+3)-N$ is a perfect square, then N is composite.
Proof: Let $a, b \in \mathbb{N}$ such that $4(2 m+1)^{2}+1=(4 a+1)(4 b+1)$. Then, $a+b=4\left(m^{2}+m-a b\right)+1 \in \mathbb{N}$. Take $u=$ $m^{2}+m-a b \in \mathbb{N}$. Then,

$$
\begin{equation*}
a+b=4 u+1 \tag{23}
\end{equation*}
$$

Applying Fermat's factorization method in $4(2 m+1)^{2}+1$, then we have

$$
\begin{equation*}
N=\left(2 a+2 b+1+\sqrt{(2 a+2 b+1)^{2}-N}\right)\left(2 a+2 b+1-\sqrt{(2 a+2 b+1)^{2}-N}\right) \tag{24}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
N=\left(8 u+3+\sqrt{(8 u+3)^{2}-N}\right)\left(8 u+3-\sqrt{(8 u+3)^{2}-N}\right) . \tag{25}
\end{equation*}
$$

1. Since $8 u+3+\sqrt{(8 u+3)^{2}-N} \in \mathbb{N}$, then $(8 u+3)^{2}-N$ is a perfect square.
2. Note that we have

$$
\begin{equation*}
(8 u+3)^{2}-N \geq 0 \tag{26}
\end{equation*}
$$

Solving the inequality in (26) with the assumption that $u>0$, then we have

$$
\begin{equation*}
u \geq \frac{-3+\sqrt{N}}{8} \tag{27}
\end{equation*}
$$

Consider the quadratic function

$$
\begin{equation*}
f(x)=x^{2}-2(8 u+3) x+N \tag{28}
\end{equation*}
$$

Since $f(4 b+1)=0$ and the product of the roots of $f(x)$ is N, then all roots of f is a proper factor of N. Let r_{1} and r_{2} be the roots of $f(x)$. Applying Rolle's theorem, then there is $\theta \in\left(r_{1}, r_{2}\right) \subset\left(r_{1}, \frac{N}{5}\right]$ where $f^{\prime}(\theta)=0$. Thus, we have

$$
\begin{equation*}
2 \theta-2(8 u+3)=0 \tag{29}
\end{equation*}
$$

So, $\theta=8 u+3>\frac{N}{5}$, and thus, $u>\frac{N-15}{8}$. Therefore,

$$
\begin{equation*}
u \in\left[\frac{-3+\sqrt{N}}{8}, \frac{N-15}{8}\right) \tag{30}
\end{equation*}
$$

3. We claim that $4 u+1 \not \equiv 0(\bmod p)$ for all prime $p \equiv 3(\bmod 4)$. Indeed, assume there is a prime $p \equiv 3(\bmod 4)$ where $4 u+1 \equiv 0(\bmod p)$. Then, we have

$$
\begin{gathered}
r_{1}^{2}-2(8 u+3) r_{1}+N=0 \\
r_{1}^{2}-2(2(4 u+1)+1) r_{1}+N \equiv 0(\bmod p) \\
r_{1}^{2}-2 r_{1}+16 m^{2} \equiv 0(\bmod p) \\
\left(r_{1}-1\right)^{2}+(4 m)^{2} \equiv 0(\bmod p)
\end{gathered}
$$

Note that $\left(r_{1}-1\right)^{2}+(4 m)^{2} \equiv 0(\bmod p)$ is impossible for $p \equiv 3(\bmod 4)$, a contradiction.
4. Since f is reducible over \mathbb{Z}, then f is reducible over \mathbb{Z}_{p}, for all odd prime p. Thus, there exists $x_{0} \in \mathbb{Z}_{p}$ such that

$$
\begin{equation*}
x_{0}^{2}-2(8 u+3) x_{0}+N \equiv 0(\bmod p) \tag{31}
\end{equation*}
$$

Since $N \not \equiv 0(\bmod p)$, then $x_{0} \neq 0$. Thus, from equation in (31) we have

$$
\begin{equation*}
u \equiv \frac{x_{0}^{-1} N+x_{0}-6}{16}(\bmod p) \tag{32}
\end{equation*}
$$

for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$.
Conversely, if there exists $u \in\left[\frac{-3+\sqrt{N}}{8}, \frac{N-15}{40}\right)$ where $(8 u+3)-N$ is a perfect square, then

$$
\begin{equation*}
N=\left(8 u+3+\sqrt{(8 u+3)^{2}-N}\right)\left(8 u+3-\sqrt{(8 u+3)^{2}-N}\right) \tag{33}
\end{equation*}
$$

If N is prime, then $8 u+3-\sqrt{(8 u+1)^{2}-N}=1$, and hence, $u=m^{2}+m$ which is a contradiction since $u \in\left[\frac{-3+\sqrt{N}}{8}, \frac{N-15}{40}\right)$. Therefore, N is composite.

The equation in (22) is called the Fermat's factorization of $16(2 m+1)^{2}+1$. Note that statements $1-4$ of proposition 2.4 states the property of all factors of $16(2 m+1)^{2}+1$ if we factor $16(2 m+1)^{2}+1$ using Fermat's factorization method. This also gives a sieve method to determine the proper factor of composite $16(2 m+1)^{2}+1$. The next result characterized all proper factor of composite $16(2 m+1)^{2}+1$ in terms of its structure.

Proposition 2.5. Every proper factors of composite $N=16 m^{2}+1$ is can be expressed as

$$
\begin{equation*}
8 u+3 \pm \sqrt{(8 u+3)^{2}-N} \tag{34}
\end{equation*}
$$

where $u \in \mathbb{N}$ and

1. $(8 u+3)^{2}-N$ is a perfect square.
2. $u \in\left[\frac{-3+\sqrt{N}}{8}, \frac{N-15}{8}\right)$.
3. $4 u+1 \not \equiv 0(\bmod p)$ for all prime $p \equiv 3(\bmod 4)$.
4. For all odd prime p does not divide $N, u \equiv \frac{x_{0}^{-1} N+x_{0}-6}{16}(\bmod p)$, for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$.

Proof: The results follow directly from Proposition 2.4. Furthermore, (34) follows from the fact that $8 u+3 \pm$ $\sqrt{(8 u+3)^{2}-N}$ are roots of $f(x)=x^{2}-2(8 u+3) x+N$.

The next theorem is the main result of this study. The main result summarize the results in Proposition 2.3 and Proposition 2.5.

Theorem 2.6. Let $n \in \mathbb{N}$ and $N=4 n^{2}+1$.

1. If n is even, then every proper factors of composite $N=4 n^{2}+1$ is can be expressed as

$$
\begin{equation*}
8 u+1 \pm \sqrt{(8 u+1)^{2}-N} \tag{35}
\end{equation*}
$$

where $u \in \mathbb{N}$ and
1.1. $(8 u+1)-N$ is a perfect square.
1.2. $u \in\left[\frac{-1+\sqrt{N}}{8}, \frac{N-5}{40}\right)$.
1.3. $u \not \equiv 0(\bmod p)$ for all prime $p \equiv 3(\bmod 4)$.
1.4. For all odd prime p does not divide $N, u \equiv \frac{x_{0}^{-1} N+x_{0}-2}{16}(\bmod p)$, for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$.
2. If n is odd, then every proper factors of composite $N=4 n^{2}+1$ is can be expressed as

$$
\begin{equation*}
8 u+3 \pm \sqrt{(8 u+3)^{2}-N} \tag{36}
\end{equation*}
$$

where $u \in \mathbb{N}$ and
2.1. $(8 u+3)^{2}-N$ is a perfect square.
2.2. $u \in\left[\frac{-3+\sqrt{N}}{8}, \frac{N-15}{8}\right)$.
2.3. $4 u+1 \not \equiv 0(\bmod p)$ for all prime $p \equiv 3(\bmod 4)$.
2.4. For all odd prime p does not divide $N, u \equiv \frac{x_{0}^{-1} N+x_{0}-6}{16}(\bmod p)$, for some $x_{0} \in \mathbb{Z}_{p} \backslash\{0\}$.

Proof: Follows from Proposition 2.3 and Proposition 2.5.

III. FERMAT'S NUMBER

Fermat's number is a natural number of the form $F_{n}=2^{2^{n}}+1$ where n is a nonnegative integer [2,10,11]. Note that determining the proper factors of composite Fermat's number is not easy by handful computation [2], for instance see [12, 13, $14,15,16,17,18,19,20,21,22,23,24,25,26]$. In this section, we apply the same technique in section 2 to study the structure of proper factors of a Fermat's number.

Let n be nonnegative integer and p be prime factor of F_{n}. Lucas proved that if n is nonnegative integer and p is a prime factor of the Fermat's number $F_{n}=2^{2^{n}}+1$, then there exists a natural number k where $p=2^{n+2} k+1$.[3] Consequently, every proper factor of composite Fermat's number is of the form $2^{n+2} k+1$ where k is a positive integer. Thus, the following lemma holds.

Lemma 3.1. Let $n \geq 4$. If the Fermat's number $F_{n}=2^{2^{n}}+1$ is composite, then there exists a natural number $s<\frac{\sqrt{F_{n}}-1}{2^{n+2}}$ where

$$
\begin{equation*}
2^{2^{n}-2(n+2)}+s^{2} \equiv 0\left(\bmod \left(2^{n+2} s+1\right)\right) \tag{37}
\end{equation*}
$$

Furthermore, $2^{n+2} s+1$ is a proper factor of F_{n}.
Proof: Assume F_{n} is composite. Then, by [3] there exists r and s such that:

$$
\begin{equation*}
2^{2^{n}}+1=\left(2^{n+2} s+1\right)\left(2^{n+2} r+1\right) \tag{38}
\end{equation*}
$$

where $2^{n+2} s+1<F_{n}$ is a proper factor of F_{n}. Manipulate, then we have,

$$
\begin{equation*}
2^{2^{n}-(n+2)}=2^{n+2} r s+r+s \tag{39}
\end{equation*}
$$

Since $n \geq 4$, then $2^{n}-2(n+2) \geq 0$, and hence, there exists $\lambda \in \mathbb{N}$ such that $2^{n+2} \lambda=r+s$. Thus,

$$
\begin{equation*}
2^{2^{n}-(n+2)}=2^{n+2}\left(2^{n+2} \lambda-s\right) s+2^{n+2} \lambda \tag{40}
\end{equation*}
$$

which gives

$$
\begin{equation*}
2^{2^{n}-2(n+2)}+s^{2}=\lambda\left(2^{n+2} s+1\right) \tag{41}
\end{equation*}
$$

where $s<\frac{\sqrt{F_{n}}-1}{2^{n+2}}$, as desired.ם
The following proposition follows from lemma 3.1.
Proposition 3.2. Let $n \geq 5$. If the Fermat's number $F_{n}=2^{2^{n}}+1$ is composite, then there exists a natural number λ where 1. $\left(2^{2 n+3} \lambda+1\right)^{2}-F_{n}$ is a perfect square,
2. $\lambda \in\left[\frac{-1+\sqrt{F_{n}}}{2^{2 n+3}}, 2^{2^{n}-(3 n+5)}\right)$.
3. $\lambda \not \equiv 0(\bmod p)$ where $p \equiv 3(\bmod 4)$.
4. $\lambda \not \equiv 2(\bmod 4)$.
5. $\lambda \equiv 1(\bmod 3)$.

Proof:

1. Assume F_{n} is composite. By lemma 3.1 there exists a natural number s and integer λ where

$$
\begin{equation*}
\frac{2^{2^{n}-2(n+2)}+s^{2}}{2^{n+2} s+1}=\lambda \tag{42}
\end{equation*}
$$

Since $s \in \mathbb{N}$, then $\lambda>0$. Consider the quadratic polynomial

$$
\begin{equation*}
f(x)=x^{2}-2\left(2^{2 n+3} \lambda+1\right) x+F_{n} \tag{43}
\end{equation*}
$$

Since $f\left(2^{n+2} s+1\right)=0$ and the product of the roots of $f(x)$ is F_{n}, then every roots of $f(x)$ is a proper factor of F_{n}. Computing the zeroes r_{1} and r_{2} of $f(x)$, then we have

$$
\begin{equation*}
r_{1}, r_{2}=2^{2 n+3} \lambda+1 \pm \sqrt{\left(2^{2 n+3} \lambda+1\right)^{2}-F_{n}} \tag{44}
\end{equation*}
$$

Thus, $\sqrt{\left(2^{2 n+3} \lambda+1\right)^{2}-F_{n}} \in \mathbb{N} \cup\{0\}$, that is, $\left(2^{2 n+3} \lambda+1\right)^{2}-F_{n}$ is a perfect square.
2. Note that we have

$$
\begin{equation*}
\left(2^{2 n+3} \lambda+1\right)^{2}-F_{n} \geq 0 \tag{45}
\end{equation*}
$$

Solving the inequality above with the assumption that $\lambda>0$, then we have $\lambda \geq \frac{-1+\sqrt{F_{n}}}{2^{2 n+3}}$. In addition, by Rolle's theorem, there exists $\theta \in\left[r_{1}, r_{2}\right] \subset\left[r_{1}, 2^{2^{n}-(n+2)}+1\right]$ where $f^{\prime}(\theta)=0$. Thus,

$$
\begin{equation*}
2 \theta-2\left(2^{2 n+3} \lambda+1\right)=0 \tag{46}
\end{equation*}
$$

Thus, $\lambda=\frac{\theta-1}{2^{2 n+3}}$. Since $\theta \in\left[r_{1}, r_{2}\right] \subset\left[r_{1}, 2^{2^{n}-(n+2)}+1\right]$, then $\lambda \leq 2^{2^{n}-(3 n+5)}$. Therefore, we have $\lambda \in\left[\frac{-1+\sqrt{F_{n}}}{2^{2 n+3}}, 2^{2^{n}-(3 n+5)}\right)$. 3. Follows from statement 3 of proposition 2.2.
4. Follows from statement 5 of proposition 2.2.
5. Follows from statement 6 of proposition 2.2.ם

The following theorem are direct consequence of proposition 3.2.
Theorem 3.3. Let $n \geq 5$. Then, every proper factors of F_{n} is can be expressed as

$$
\begin{equation*}
2^{2 n+3} \lambda+1 \pm \sqrt{\left(2^{2 n+3} \lambda+1\right)^{2}-F_{n}} \tag{47}
\end{equation*}
$$

where $\lambda \in \mathbb{N}$ and

1. $\left(2^{2 n+3} \lambda+1\right)^{2}-F_{n}$ is a perfect square
2. $\lambda \in\left[\frac{-1+\sqrt{F_{n}}}{2^{2 n+3}}, 2^{2^{n}-(3 n+5)}\right)$
3. $\lambda \not \equiv 0(\bmod p)$ where $p \equiv 3(\bmod 4)$
4. $\lambda \not \equiv 2(\bmod 4)$
5. $\lambda \equiv 1(\bmod 3)$

Proof: Theorem 3.3 follows from proposition 3.2. Furthermore, equation (47) follows from (44).ם

VI. CONCLUSIONS

In this study, we give a characterization of all proper factors of $4 n^{2}+1$ in terms of its form by applying Fermat's method. In addition, we derived the property of all factors of $4 n^{2}+1$ that depends on the parity of n (see Theorem 2.6). In addition, the results in Proposition 2.2 and Proposition 2.5 give a new sieve method to determine the factors of $4 n^{2}+1$. Fermat's number is also considered in this study by deriving a new property of composite Fermat's number that is similar in proposition 2.2 and theorem 2.6 (see Proposition 3.2 and Theorem 3.2).

ACKNOWLEDGMENT

The authors are grateful to the Department of Mathematics and Statistics of Polytechnic University of the Philippines, Manila for their unending support to finish this paper.

REFERENCES

[1] Mckee J. Speeding Fermat's Factoring Method. American Mathematical Society. Mathematics Computation. 68(228) 1729-1737.
[2] Lenstra HW Jr.. Factoring integers with elliptic curves. New Jersey. Annals of Mathematics; (1987).
[3] Krizek M, Luca F, Somer L. The Most Beautiful Theorems on Fermat Numbers. New York. Springer Science; (2002) 33-40.
[4] Rotman J. Galois Theory. First Edition. New York. Springer-Verlag New York Inc.; (1990).
[5] Burton DM. Elementary Number Theory. Sixth Edition. New York. McGraw-Hill Companies, Inc.; Chapter 9, The Quadratic Reciprocity Law; (2007) 190.
[6] Fraleigh JB. Katz V. A First Course in Abstract Algebra. Sixth Edition. Singapore. Pearson Education Asia Pte Ltd; Chapter 5, INTRODUCTION TO RINGS AND FIELDS; (2002) 304.
[7] Pomerance, C. A Tale of Two Sieves. Not. Amer. Math. Soc. 43 (1996) 1473-1485.
[8] Lehmer, D. H. and Powers, R. E. On Factoring Large Numbers. Bull. Amer. Math. Soc. 37 (1931) 770-776.
[9] Gardner, M. Patterns in Primes are a Clue to the Strong Law of Small Numbers. Sci. Amer. 243, Dec. (1980) 18-28.
[10] Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, (1979) 14-15 and 19.
[11] Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, (1998) P. 200.
[12] Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, (1987), 68-69 and 94-95.
[13] Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21 st Century. Wellesley, MA: A K Peters, 2003.
[14] Brent, R. P. Factorization of the Eighth Fermat Number. Amer. Math. Soc. Abstracts 1, (1980) 565.
[15] Brent, R. P. Factorisation of F_{10}. http://cslab.anu.edu.au/~rpb/F10.html.
[16] Brent, R. P. "Factorization of the Tenth Fermat Number." Math. Comput. 68 (1999) 429-451.
[17] Brent, R. P. and Pollard, J. M. Factorization of the Eighth Fermat Number. Math. Comput. 36 (1981) 627-630.
[18] Brillhart, J.; Lehmer, D. H.; Selfridge, J.; Wagstaff, S. S. Jr.; and Tuckerman, B.Factorizations of b-n+/-1, b=2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers, rev. ed.
[19] Conway, J. H. and Guy, R. K. Fermat's Numbers. In The Book of Numbers. New York: Springer-Verlag, (1996) 137-141.
[20] Cormack, G. V. and Williams, H. C. Some Very Large Primes of the Form k $\cdot 2^{\mathrm{m}}+1$. Math. Comput. 35 (1980) 1419-1421.
[21] Crandall, R.; Doenias, J.; Norrie, C.; and Young, J. The Twenty-Second Fermat Number is Composite. Math. Comput. 64(1995) 863-868.
[22] Crandall, R. E.; Mayer, E. W.; and Papadopoulos, J. S. The Twenty-Fourth Fermat Number is Composite. Math. Comput. 72 (2003) 1555-1572.
[23] Gardner, M. Patterns in Primes are a Clue to the Strong Law of Small Numbers. Sci. Amer. 243, Dec. (1980) 18-28.
[24] Krížek, M. and Somer, L. A Necessary and Sufficient Condition for the Primality of Fermat Numbers. Math. Bohem. 126 (2001) 541-549.
[25] Lenstra, A. K.; Lenstra, H. W. Jr.; Manasse, M. S.; and Pollard, J. M. The Factorization of the Ninth Fermat Number. Math. Comput. 61 (1993) 319-349.
[26] Shorey, T. N. and Stewart, C. L. On Divisors of Fermat, Fibonacci, Lucas and Lehmer Numbers, 2. J. London Math. Soc. 23(1981) 17-23.

