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Abstract – In this article, we factor the composite 4𝑛2 + 1 using Fermat’s factorization method. Consequently, we 

characterized all proper factors of composite 4𝑛2 + 1 in terms of its form. Furthermore, the composite Fermat’s number is 

considered in this study. 
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I. INTRODUCTION  

Fermat’s factorization is a method in factoring the odd composite natural number 𝑁 by expressing it as difference of two 

squares. If 𝑁 = 𝑎𝑏 where 𝑁 is odd positive composite number, and 𝑎 and 𝑏 are proper factor of 𝑁, then 𝑁 can be written as 

𝑁 = 𝑐2 − 𝑑2 = (𝑐 + 𝑑)(𝑐 − 𝑑) 

where 𝑐 =
𝑎+𝑏

2
 and 𝑑 =

𝑏−𝑎

2
[1]. For example, if we want to factor 9797 using Fermat’s factorization method, then the goal is to 

expressed 9797 as a difference of two square, that is, 9797 = 𝑐2 − 𝑑2 for some 𝑐, 𝑑 ∈ ℤ. In solving 𝑐 and 𝑑, note that  

𝑑2 = 𝑐2 − 9797 implies that 𝑐 ≥ ⌈√9797⌉, that is, 𝑐 ≥ 99. If 𝑐 = 99, then 𝑑2 = 992 − 9797 = 4 is a perfect square, and 

thus, 9797 = (99 − 2)(99 + 2). In general, the Fermat’s method might be slower than trial and error method to apply. In fact, 

Fermat’s factorization works best to 𝑁 when there is a factor 𝑎 of 𝑁 such that 𝑎 is near to √𝑁 [1]. Thus, some improvement is 

necessary to make the Fermat’s method effective [1,7,8,9]. In 1999, R. Lehman devised a systematic method to improve the 

Fermat’s method by multiplier improvement so that the Fermat’s method plus trial division can be factor 𝑁 in 𝑂 (𝑁
1

3) time [1].  

 

In this article, we study the Fermat’s factorization of composite 4𝑛2 + 1 and its proper factors. More precisely speaking, we 

proved that: 

1. If 𝑛 is even, then every proper factors of composite 𝑁 = 4𝑛2 + 1 is can be expressed as 

8𝑢 + 1 ± √(8𝑢 + 1)2 − 𝑁  

where 𝑢 ∈ ℕ and 

1.1. (8𝑢 + 1) − 𝑁 is a perfect square. 

1.2. 𝑢 ∈ [
−1+√𝑁

8
,

𝑁−5

40
). 

1.3. 𝑢 ≢ 0(𝑚𝑜𝑑 𝑝) for all prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4). 

1.4. For all odd prime 𝑝 does not divide 𝑁, 𝑢 ≡
𝑥0

−1𝑁+𝑥0−2

16
 (𝑚𝑜𝑑 𝑝), for some 𝑥0 ∈ ℤ𝑝\{0}.  

 

2. If 𝑛 is odd, then every proper factors of composite 𝑁 = 4𝑛2 + 1 is can be expressed as 

8𝑢 + 3 ± √(8𝑢 + 3)2 − 𝑁  

where 𝑢 ∈ ℕ and 

2.1. (8𝑢 + 3)2 − 𝑁 is a perfect square. 

2.2. 𝑢 ∈ [
−3+√𝑁

8
,

𝑁−15

8
). 

2.3. 4𝑢 + 1 ≢ 0(𝑚𝑜𝑑 𝑝) for all prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4). 

2.4. For all odd prime 𝑝 does not divide 𝑁, 𝑢 ≡
𝑥0

−1𝑁+𝑥0−6

16
 (𝑚𝑜𝑑 𝑝), for some 𝑥0 ∈ ℤ𝑝\{0}.  
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The main results characterized all proper factors of 4𝑛2 + 1 in terms of its form.  

 

II. MAIN RESULTS 

First, we study 4𝑛2 + 1 when 𝑛 is even. The following lemma is vital in the proof of main results of this study. The proof 

of Lemma 2.1 follows from the fact that every factor of 16𝑚2 + 1 is can be expressed as 4𝑎 + 1 where 𝑎 is a positive integer 

[5]. 

Lemma 2.1. Let 𝑚 ∈ ℕ. If 16𝑚2 + 1 is composite, then there is a natural number 𝑏 ≤
−1+√16𝑚2+1

4
 where 

𝑚2 + 𝑏2 ≡ 0 (𝑚𝑜𝑑 (4𝑏 + 1)). (1) 

Furthermore, 4𝑏 + 1 is a proper factor of 16𝑚2 + 1.  

 

Proof: Assume 16𝑚2 + 1 is composite. Then, by [5] there exists a natural number 𝑎 and 𝑏 such that 

16𝑚2 + 1 = (4𝑎 + 1)(4𝑏 + 1) (2) 

where 4𝑏 + 1 ≤ √16𝑚2 + 1 is a proper factor of 16𝑚2 + 1. Manipulate equation in (2), then we have 

4𝑚2 = 4𝑎𝑏 + 𝑎 + 𝑏. (3) 

 So, there exists 𝑢 ∈ ℕ such that 4𝑢 = 𝑎 + 𝑏. Replacing 𝑎 = 4𝑢 − 𝑏 and 𝑎 + 𝑏 = 4𝑢 in equation (3), then we obtain 

4𝑚2 = 4(4𝑢 − 𝑏)𝑏 + 4𝑢 (4) 

which gives 

𝑚2 + 𝑏2 = 𝑢(4𝑏 + 1) (5) 

where 𝑏 ≤
−1+√16𝑚2+1

4
, as desired. □ 

 

The following proposition follows from lemma 2.1. 

Proposition 2.2. Let 𝑚 ∈ ℕ. If 𝑁 = 16𝑚2 + 1 is composite, then there exists a natural number 𝑢 such that 

𝑁 = (8𝑢 + 1 + √(8𝑢 + 1)2 − 𝑁) (8𝑢 + 1 − √(8𝑢 + 1)2 − 𝑁) (6) 

where 

1. (8𝑢 + 1) − 𝑁 is a perfect square. 

2. 𝑢 ∈ [
−1+√𝑁

8
,

𝑁−5

40
). 

3. 𝑢 ≢ 0(𝑚𝑜𝑑 𝑝) for all prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4). 

4. For all odd prime 𝑝 does not divide 𝑁, 𝑢 ≡
𝑥0

−1𝑁+𝑥0−2

16
 (𝑚𝑜𝑑 𝑝), for some 𝑥0 ∈ ℤ𝑝\{0}.  

Furthermore, the following holds: 

5. If 𝑛 is even, then 𝑢 ≡ 2 (𝑚𝑜𝑑 4). 

6. If 𝑛 is not divisible by 3, then 𝑢 ≡ 1 (𝑚𝑜𝑑 3). 

Conversely, if there exists 𝑢 ∈ [
−1+√𝑁

8
,

𝑁−5

40
) where (8𝑢 + 1) − 𝑁 is a perfect square, then 𝑁 is composite.  

 

Proof: Assume 𝑁 = 16𝑚2 + 1 is composite, then by lemma 2.1 there exists a natural number 𝑏 and natural number 𝑢 where 

𝑢 =
𝑚2 + 𝑏2

4𝑏 + 1
 

(7) 

and 4𝑏 + 1 is a proper factor of 𝑁. Consider the quadratic polynomial defined by 

𝑓(𝑥) = 𝑥2 − 2(8𝑢 + 1)𝑥 + 𝑁. (8) 

Note that 𝑓(4𝑏 + 1) = 0 and the product of the roots of 𝑓(𝑥) is 𝑁, and thus, every roots of 𝑓(𝑥) is a proper factor of 𝑁. 

Computing the zeroes 𝑟1  and 𝑟2  of 𝑓(𝑥) yields 
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𝑟1 = 8𝑢 + 1 − √(8𝑢 + 1)2 − 𝑁 (9) 

𝑟2 = 8𝑢 + 1 + √(8𝑢 + 1)2 − 𝑁. (10) 

Thus,  

𝑁 = (8𝑢 + 1 + √(8𝑢 + 1)2 − 𝑁) (8𝑢 + 1 − √(8𝑢 + 1)2 − 𝑁). (11) 

 

1. Since 𝑟1 = 8𝑢 + 1 − √(8𝑢 + 1)2 − 𝑁 ∈ ℕ, then (8𝑢 + 1) − 𝑁 is a perfect square. 

 

2. Note that we have 

(8𝑢 + 1)2 − 𝑁 ≥ 0. (12) 

Solve the inequality in (12) with the assumption that 𝑢 > 0 yields 

𝑢 ≥
−1 + √𝑁

8
. 

(13) 

Furthermore, by Rolle’s theorem, there exists 𝜃 ∈ (𝑟1, 𝑟2) ⊂ (𝑟1 ,
𝑁

5
] where 𝑓′(𝜃) = 0. Thus,  

2𝜃 − 2(8𝑢 + 1) = 0. (14) 

Hence, 𝑢 =
𝜃−1

8
. Since 𝜃 ∈ (𝑟1 , 𝑟2) ⊂ (𝑟1 ,

𝑁

5
], then 𝑢 ≤

𝑁−5

40
. Therefore, we will have 

𝑢 ∈ [
−1 + √𝑁

8
,
𝑁 − 5

40
). 

(15) 

3. We claim that 𝑢 ≢ 0(𝑚𝑜𝑑 𝑝) for all prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4). Indeed, assume there is a prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4) where 𝑢 ≡
0 (𝑚𝑜𝑑 𝑝). Then, we have 

𝑟1
2 − 2(8𝑢 + 1)𝑟1 + 𝑁 = 0 

𝑟1
2 − 2(8𝑢 + 1)𝑟1 + 𝑁 ≡ 0 (𝑚𝑜𝑑 𝑝) 

𝑟1
2 − 2𝑟1 + 16𝑚2 ≡ 0 (𝑚𝑜𝑑 𝑝) 

(𝑟1 − 1)2 + (4𝑚)2 ≡ 0 (𝑚𝑜𝑑 𝑝). 

Note that (𝑟1 − 1)2 + (4𝑚)2 ≡ 0 (𝑚𝑜𝑑 𝑝) is impossible for 𝑝 ≡ 3 (𝑚𝑜𝑑 4), a contradiction. 

4. Let 𝑝 be an odd prime where 𝑁 ≢ 0 (𝑚𝑜𝑑 𝑝). Then, we claim that 𝑢 ≡
𝑥0

−1𝑁+𝑥0−2

16
 (𝑚𝑜𝑑 𝑝), for some 𝑥0 ∈ ℤ𝑝\{0}. Indeed, 

since 𝑓(4𝑏 + 1) = 0, then 𝑓(𝑥) is reducible over ℤ, and thus, 𝑓(𝑥) is reducible over ℤ𝑝. Therefore, there is 𝑥0 ∈ ℤ𝑝 such that 

𝑥0
2 − 2(8𝑢 + 1)𝑥0 + 𝑁 ≡ 0 (𝑚𝑜𝑑 𝑝). (16) 

Since 𝑁 ≢ 0 (𝑚𝑜𝑑 𝑝), then 𝑥0 ≠ 0. Thus, from equation in (16) we have 

𝑢 ≡
𝑥0

−1𝑁 + 𝑥0 − 2

16
 (𝑚𝑜𝑑 𝑝) 

(17) 

for some 𝑥0 ∈ ℤ𝑝\{0}. 

 

5. Suppose 𝑛 is even. We claim that 𝑢 ≢ 2 (𝑚𝑜𝑑 4). Indeed, if 𝑢 ≡ 2 (𝑚𝑜𝑑 4), then there exists 𝑘 ∈ ℤ where 𝑢 = 4𝑘 + 2. 

Thus, we have 

𝑓(𝑥) = 𝑥2 − 2(8(4𝑘 + 2) + 1)𝑥 + 𝑁. (18) 

Replacing 𝑥 = 4𝑦 + 1 in equation 𝑥2 − 2(8(4𝑘 + 2) + 1)𝑥 + 𝑁 = 0, then we have 

𝑦2 − 4(4𝑘 + 2)𝑦 − (4𝑘 + 2) + 𝑛2 = 0. (19) 

Since 𝑓(𝑥) is reducible over ℤ, then the polynomial 𝑔(𝑥) = 𝑥2 − 4(4𝑘 + 2)𝑥 − (4𝑘 + 2) + 𝑛2 is also reducible over ℤ in 

which one of the zeroes is 𝑏. Notice that 2 ∤ 1, 2|4(4𝑘 + 2), 2|(−(4𝑘 + 2) + 𝑛2) but 22 ∤ (−(4𝑘 + 2) + 𝑛2), so by 

Eisenstein Criterion theorem [6], 𝑔(𝑥) is irreducible over ℚ which is a contradiction. Therefore, 𝑢 ≢ 2 (𝑚𝑜𝑑 4). 

 

6. The proof is follow from statement 3 by setting 𝑝 = 3.  
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Conversely, if there exists 𝑢 ∈ [
−1+√𝑁

8
,

𝑁−5

40
) where (8𝑢 + 1) − 𝑁 is a perfect square, then 

𝑁 = (8𝑢 + 1 + √(8𝑢 + 1)2 − 𝑁) (8𝑢 + 1 − √(8𝑢 + 1)2 − 𝑁). (20) 

If 𝑁 is prime, then 8𝑢 + 1 − √(8𝑢 + 1)2 − 𝑁 = 1, and hence, 𝑢 = 𝑚2 which is a contradiction since 𝑢 ∈ [
−1+√𝑁

8
,

𝑁−5

40
). 

Therefore, 𝑁 is composite. □ 

 

The equation in (6) is called the Fermat’s factorization of 16𝑚2 +  1. Note that statements 1-6 of proposition 2.2 states the 

property of all factors of 16𝑚2  +  1 if we factor 16𝑚2  +  1 using Fermat’s factorization method. This also gives a sieve 

method to determine the proper factor of composite 16𝑚2  +  1. The next result characterized all proper factor of composite 

16𝑚2 +  1 in terms of its structure. 

 

Proposition 2.3. Every proper factors of composite 𝑁 = 16𝑚2 + 1 is can be expressed as 

8𝑢 + 1 ± √(8𝑢 + 1)2 − 𝑁 (21) 

where 𝑢 ∈ ℕ and 

1. (8𝑢 + 1) − 𝑁 is a perfect square. 

2. 𝑢 ∈ [
−1+√𝑁

8
,

𝑁−5

40
). 

3. 𝑢 ≢ 0(𝑚𝑜𝑑 𝑝) for all prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4). 

4. For all odd prime 𝑝 does not divide 𝑁, 𝑢 ≡
𝑥0

−1𝑁+𝑥0−2

16
 (𝑚𝑜𝑑 𝑝), for some 𝑥0 ∈ ℤ𝑝\{0}.  

Furthermore, the following holds: 

5. If 𝑛 is even, then 𝑢 ≡ 2 (𝑚𝑜𝑑 4). 

6. If 𝑛 is not divisible by 3, then 𝑢 ≡ 1 (𝑚𝑜𝑑 3). 

 

Proof: The results follow directly from Proposition 2.2. Furthermore, (21) follows from (9) and (10). □ 

 

Now, we study the factorization of 4𝑛2 + 1 where 𝑛 is odd number using Fermat’s factorization method.  

 

Proposition 2.4. Let 𝑚 ∈ ℕ. If 𝑁 = 4(2𝑚 + 1)2 + 1 is composite, then there is 𝑢 ∈ ℕ such that 

𝑁 = (8𝑢 + 3 + √(8𝑢 + 3)2 − 𝑁) (8𝑢 + 3 − √(8𝑢 + 3)2 − 𝑁). (22) 

where 

1. (8𝑢 + 3)2 − 𝑁 is a perfect square. 

2. 𝑢 ∈ [
−3+√𝑁

8
,

𝑁−15

8
). 

3. 4𝑢 + 1 ≢ 0(𝑚𝑜𝑑 𝑝) for all prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4). 

4. For all odd prime 𝑝 does not divide 𝑁, 𝑢 ≡
𝑥0

−1𝑁+𝑥0−6

16
 (𝑚𝑜𝑑 𝑝), for some 𝑥0 ∈ ℤ𝑝\{0}.  

Conversely, if there exists 𝑢 ∈ [
−3+√𝑁

8
,

𝑁−15

8
) where (8𝑢 + 3) − 𝑁 is a perfect square, then 𝑁 is composite.  

 

Proof: Let 𝑎, 𝑏 ∈ ℕ such that 4(2𝑚 + 1)2 + 1 = (4𝑎 + 1)(4𝑏 + 1). Then, 𝑎 + 𝑏 = 4(𝑚2 + 𝑚 − 𝑎𝑏) + 1 ∈ ℕ. Take 𝑢 =
𝑚2 + 𝑚 − 𝑎𝑏 ∈ ℕ. Then,  

𝑎 + 𝑏 = 4𝑢 + 1. (23) 

Applying Fermat’s factorization method in 4(2𝑚 + 1)2 + 1, then we have 

𝑁 = (2𝑎 + 2𝑏 + 1 + √(2𝑎 + 2𝑏 + 1)2 − 𝑁) (2𝑎 + 2𝑏 + 1 − √(2𝑎 + 2𝑏 + 1)2 − 𝑁). (24) 

Thus, we have 
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𝑁 = (8𝑢 + 3 + √(8𝑢 + 3)2 − 𝑁) (8𝑢 + 3 − √(8𝑢 + 3)2 − 𝑁). (25) 

1. Since 8𝑢 + 3 + √(8𝑢 + 3)2 − 𝑁 ∈ ℕ, then (8𝑢 + 3)2 − 𝑁 is a perfect square. 

 

2. Note that we have 

(8𝑢 + 3)2 − 𝑁 ≥ 0. (26) 

Solving the inequality in (26) with the assumption that 𝑢 > 0, then we have 

𝑢 ≥
−3 + √𝑁

8
. 

(27) 

Consider the quadratic function 

𝑓(𝑥) =  𝑥2 − 2(8𝑢 + 3)𝑥 + 𝑁. (28) 

Since 𝑓(4𝑏 + 1) = 0 and the product of the roots of 𝑓(𝑥) is 𝑁, then all roots of 𝑓 is a proper factor of 𝑁. Let 𝑟1  and 𝑟2  be the 

roots of 𝑓(𝑥). Applying Rolle’s theorem, then there is 𝜃 ∈ (𝑟1 , 𝑟2) ⊂ (𝑟1 ,
𝑁

5
] where 𝑓′(𝜃) = 0. Thus, we have 

2𝜃 − 2(8𝑢 + 3) = 0. (29) 

So, 𝜃 = 8𝑢 + 3 >
𝑁

5
, and thus, 𝑢 >

𝑁−15

8
. Therefore, 

𝑢 ∈ [
−3 + √𝑁

8
,
𝑁 − 15

8
). 

(30) 

3. We claim that 4𝑢 + 1 ≢ 0(𝑚𝑜𝑑 𝑝) for all prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4). Indeed, assume there is a prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4) where 

4𝑢 + 1 ≡ 0 (𝑚𝑜𝑑 𝑝). Then, we have 

𝑟1
2 − 2(8𝑢 + 3)𝑟1 + 𝑁 = 0 

𝑟1
2 − 2(2(4𝑢 + 1) + 1)𝑟1 + 𝑁 ≡ 0 (𝑚𝑜𝑑 𝑝) 

𝑟1
2 − 2𝑟1 + 16𝑚2 ≡ 0 (𝑚𝑜𝑑 𝑝) 

(𝑟1 − 1)2 + (4𝑚)2 ≡ 0 (𝑚𝑜𝑑 𝑝). 

Note that (𝑟1 − 1)2 + (4𝑚)2 ≡ 0 (𝑚𝑜𝑑 𝑝) is impossible for 𝑝 ≡ 3 (𝑚𝑜𝑑 4), a contradiction. 

 

4. Since 𝑓 is reducible over ℤ, then 𝑓 is reducible over ℤ𝑝, for all odd prime 𝑝. Thus, there exists 𝑥0 ∈ ℤ𝑝 such that 

𝑥0
2 − 2(8𝑢 + 3)𝑥0 + 𝑁 ≡ 0 (𝑚𝑜𝑑 𝑝). (31) 

Since 𝑁 ≢ 0 (𝑚𝑜𝑑 𝑝), then 𝑥0 ≠ 0. Thus, from equation in (31) we have 

𝑢 ≡
𝑥0

−1𝑁 + 𝑥0 − 6

16
 (𝑚𝑜𝑑 𝑝) 

(32) 

for some 𝑥0 ∈ ℤ𝑝\{0}. 

Conversely, if there exists 𝑢 ∈ [
−3+√𝑁

8
,

𝑁−15

40
) where (8𝑢 + 3) − 𝑁 is a perfect square, then 

𝑁 = (8𝑢 + 3 + √(8𝑢 + 3)2 − 𝑁) (8𝑢 + 3 − √(8𝑢 + 3)2 − 𝑁). (33) 

If 𝑁 is prime, then 8𝑢 + 3 − √(8𝑢 + 1)2 − 𝑁 = 1, and hence, 𝑢 = 𝑚2 + 𝑚 which is a contradiction since 𝑢 ∈ [
−3+√𝑁

8
,

𝑁−15

40
). 

Therefore, 𝑁 is composite. □ 

 

The equation in (22) is called the Fermat’s factorization of 16(2𝑚 + 1)2 +  1. Note that statements 1-4 of proposition 2.4 

states the property of all factors of 16(2𝑚 + 1)2  +  1 if we factor 16(2𝑚 + 1)2  +  1 using Fermat’s factorization method. 

This also gives a sieve method to determine the proper factor of composite 16(2𝑚 + 1)2  +  1. The next result characterized 

all proper factor of composite 16(2𝑚 + 1)2 +  1 in terms of its structure. 

 

Proposition 2.5. Every proper factors of composite 𝑁 = 16𝑚2 + 1 is can be expressed as 

8𝑢 + 3 ± √(8𝑢 + 3)2 − 𝑁 (34) 

where 𝑢 ∈ ℕ and 

1. (8𝑢 + 3)2 − 𝑁 is a perfect square. 
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2. 𝑢 ∈ [
−3+√𝑁

8
,

𝑁−15

8
). 

3. 4𝑢 + 1 ≢ 0(𝑚𝑜𝑑 𝑝) for all prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4). 

4. For all odd prime 𝑝 does not divide 𝑁, 𝑢 ≡
𝑥0

−1𝑁+𝑥0−6

16
 (𝑚𝑜𝑑 𝑝), for some 𝑥0 ∈ ℤ𝑝\{0}.  

 

Proof: The results follow directly from Proposition 2.4. Furthermore, (34) follows from the fact that 8𝑢 + 3 ±

√(8𝑢 + 3)2 − 𝑁 are roots of 𝑓(𝑥) = 𝑥2 − 2(8𝑢 + 3)𝑥 + 𝑁. □ 

 

The next theorem is the main result of this study. The main result summarize the results in Proposition 2.3 and Proposition 

2.5. 

Theorem 2.6. Let 𝑛 ∈ ℕ and 𝑁 = 4𝑛2 + 1. 

1. If 𝑛 is even, then every proper factors of composite 𝑁 = 4𝑛2 + 1 is can be expressed as 

8𝑢 + 1 ± √(8𝑢 + 1)2 − 𝑁 (35) 

where 𝑢 ∈ ℕ and 

1.1. (8𝑢 + 1) − 𝑁 is a perfect square. 

1.2. 𝑢 ∈ [
−1+√𝑁

8
,

𝑁−5

40
). 

1.3. 𝑢 ≢ 0(𝑚𝑜𝑑 𝑝) for all prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4). 

1.4. For all odd prime 𝑝 does not divide 𝑁, 𝑢 ≡
𝑥0

−1𝑁+𝑥0−2

16
 (𝑚𝑜𝑑 𝑝), for some 𝑥0 ∈ ℤ𝑝\{0}.  

 

2. If 𝑛 is odd, then every proper factors of composite 𝑁 = 4𝑛2 + 1 is can be expressed as 

8𝑢 + 3 ± √(8𝑢 + 3)2 − 𝑁 (36) 

where 𝑢 ∈ ℕ and 

2.1. (8𝑢 + 3)2 − 𝑁 is a perfect square. 

2.2. 𝑢 ∈ [
−3+√𝑁

8
,

𝑁−15

8
). 

2.3. 4𝑢 + 1 ≢ 0(𝑚𝑜𝑑 𝑝) for all prime 𝑝 ≡ 3 (𝑚𝑜𝑑 4). 

2.4. For all odd prime 𝑝 does not divide 𝑁, 𝑢 ≡
𝑥0

−1𝑁+𝑥0−6

16
 (𝑚𝑜𝑑 𝑝), for some 𝑥0 ∈ ℤ𝑝\{0}.  

Proof: Follows from Proposition 2.3 and Proposition 2.5. □ 

III. FERMAT’S NUMBER 

Fermat’s number is a natural number of the form 𝐹𝑛 = 22𝑛
+ 1 where 𝑛 is a nonnegative integer [2,10,11]. Note that 

determining the proper factors of composite Fermat's number is not easy by handful computation [2], for instance see [12, 13, 
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. In this section, we apply the same technique in section 2 to study the structure 

of proper factors of a Fermat's number.  

 

Let 𝑛 be nonnegative integer and 𝑝 be prime factor of 𝐹𝑛. Lucas proved that if 𝑛 is nonnegative integer and 𝑝 is a prime 

factor of the Fermat’s number 𝐹𝑛 = 22𝑛
+ 1, then there exists a natural number 𝑘 where 𝑝 = 2𝑛+2𝑘 + 1.[3] Consequently, 

every proper factor of composite Fermat's number is of the form 2𝑛+2𝑘 + 1 where 𝑘 is a positive integer. Thus, the following 

lemma holds. 

 

Lemma 3.1. Let 𝑛 ≥ 4. If the Fermat's number 𝐹𝑛 = 22𝑛
+ 1 is composite, then there exists a natural number 𝑠 <

√𝐹𝑛−1

2𝑛+2  where 

22𝑛−2(𝑛+2) + 𝑠2 ≡ 0 ( 𝑚𝑜𝑑( 2𝑛+2𝑠 + 1)). (37) 

Furthermore, 2𝑛+2𝑠 + 1 is a proper factor of 𝐹𝑛. 

 

Proof: Assume 𝐹𝑛 is composite. Then, by [3] there exists 𝑟 and 𝑠 such that:  

22𝑛
+ 1 = (2𝑛+2𝑠 + 1)(2𝑛+2𝑟 + 1) (38) 
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where 2𝑛+2𝑠 + 1 < 𝐹𝑛 is a proper factor of 𝐹𝑛. Manipulate, then we have, 

22𝑛−(𝑛+2) = 2𝑛+2𝑟𝑠 + 𝑟 + 𝑠. (39) 

Since 𝑛 ≥ 4, then 2𝑛 − 2(𝑛 + 2) ≥ 0, and hence, there exists 𝜆 ∈ ℕ such that 2𝑛+2𝜆 = 𝑟 + 𝑠. Thus,  

22𝑛−(𝑛+2) = 2𝑛+2(2𝑛+2𝜆 − 𝑠)𝑠 + 2𝑛+2𝜆 (40) 

which gives 

22𝑛−2(𝑛+2) + 𝑠2 = 𝜆(2𝑛+2𝑠 + 1) (41) 

where 𝑠 <
√𝐹𝑛−1

2𝑛+2 , as desired.□ 

 

The following proposition follows from lemma 3.1. 
 

Proposition 3.2. Let 𝑛 ≥ 5. If the Fermat’s number 𝐹𝑛 = 22𝑛
+ 1 is composite, then there exists a natural number 𝜆 where  

1. (22𝑛+3𝜆 + 1)2 − 𝐹𝑛 is a perfect square, 

2. 𝜆 ∈ [
−1+√𝐹𝑛

22𝑛+3 , 22𝑛−(3𝑛+5)). 

3. 𝜆 ≢ 0(𝑚𝑜𝑑 𝑝) where 𝑝 ≡ 3(𝑚𝑜𝑑 4). 

4. 𝜆 ≢ 2(𝑚𝑜𝑑4). 

5. 𝜆 ≡ 1(𝑚𝑜𝑑3). 
 

Proof:  

1. Assume 𝐹𝑛 is composite. By lemma 3.1 there exists a natural number 𝑠 and integer 𝜆 where  

22𝑛−2(𝑛+2) + 𝑠2

2𝑛+2𝑠 + 1
= 𝜆. 

(42) 

Since 𝑠 ∈ ℕ, then 𝜆 > 0. Consider the quadratic polynomial  

𝑓(𝑥) = 𝑥2 − 2(22𝑛+3𝜆 + 1)𝑥 + 𝐹𝑛 . (43) 

Since 𝑓(2𝑛+2𝑠 + 1) = 0 and the product of the roots of 𝑓(𝑥) is 𝐹𝑛, then every roots of 𝑓(𝑥) is a proper factor of 𝐹𝑛. 

Computing the zeroes 𝑟1  and 𝑟2  of 𝑓(𝑥), then we have 

𝑟1 , 𝑟2 = 22𝑛+3𝜆 + 1 ± √(22𝑛+3𝜆 + 1)2 − 𝐹𝑛 . (44) 

Thus, √(22𝑛+3𝜆 + 1)2 − 𝐹𝑛 ∈ ℕ ∪ {0}, that is, (22𝑛+3𝜆 + 1)2 − 𝐹𝑛 is a perfect square. 

  

2. Note that we have 

(22𝑛+3𝜆 + 1)2 − 𝐹𝑛 ≥ 0. (45) 

Solving the inequality above with the assumption that 𝜆 > 0, then we have 𝜆 ≥
−1+√𝐹𝑛

22𝑛+3 . In addition, by Rolle’s theorem, there 

exists 𝜃 ∈ [𝑟1 , 𝑟2] ⊂ [𝑟1 , 22𝑛−(𝑛+2) + 1] where 𝑓′(𝜃) = 0. Thus,  

2𝜃 − 2(22𝑛+3𝜆 + 1) = 0. (46) 

Thus, 𝜆 =
𝜃−1

22𝑛+3. Since 𝜃 ∈ [𝑟1 , 𝑟2] ⊂ [𝑟1 , 22𝑛−(𝑛+2) + 1], then  𝜆 ≤ 22𝑛−(3𝑛+5). Therefore, we have 𝜆 ∈ [
−1+√𝐹𝑛

22𝑛+3 , 22𝑛−(3𝑛+5)).  

3. Follows from statement 3 of proposition 2.2. 

4. Follows from statement 5 of proposition 2.2. 

5. Follows from statement 6 of proposition 2.2.□ 

 
The following theorem are direct consequence of proposition 3.2. 

 

Theorem 3.3. Let 𝑛 ≥ 5. Then, every proper factors of 𝐹𝑛 is can be expressed as 

22𝑛+3𝜆 + 1 ± √(22𝑛+3𝜆 + 1)2 − 𝐹𝑛 (47) 

where 𝜆 ∈ ℕ and 

1. (22𝑛+3𝜆 + 1)2 − 𝐹𝑛 is a perfect square 

2. 𝜆 ∈ [
−1+√𝐹𝑛

22𝑛+3 , 22𝑛−(3𝑛+5)) 

3. 𝜆 ≢ 0(𝑚𝑜𝑑 𝑝) where 𝑝 ≡ 3(𝑚𝑜𝑑 4) 

4. 𝜆 ≢ 2(𝑚𝑜𝑑4) 

5. 𝜆 ≡ 1(𝑚𝑜𝑑3) 
 

Proof: Theorem 3.3 follows from proposition 3.2. Furthermore, equation (47) follows from (44).□ 
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VI. CONCLUSIONS 

In this study, we give a characterization of all proper factors of 4𝑛2 + 1 in terms of its form by applying Fermat’s method. 

In addition, we derived the property of all factors of 4𝑛2 + 1 that depends on the parity of 𝑛 (see Theorem 2.6). In addition, the 

results in Proposition 2.2 and Proposition 2.5 give a new sieve method to determine the factors of 4𝑛2 + 1. Fermat’s number is 

also considered in this study by deriving a new property of composite Fermat’s number that is similar in proposition 2.2 and 

theorem 2.6 (see Proposition 3.2 and Theorem 3.2).  
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