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Abstract - Nonlinear Schrödinger Equation (NLSE) is a universal nonlinear model which por-

trays several physical nonlinear systems. Among other natural phenomena the one-dimensional

NLSE models, light pulses in optical fibers and the dilut-gas Bose-Einstein condensates (BEC)

in quasi one-dimensional regime. In this research application of the NLSE in optical fibers is

emphasized. However, the numerical solution for the NLSE encounters several computational

challenges such as cost and time. Therefore, we employ the Reduced Basis Method (RBM)

which significantly reduced these computational cost and time and thus accelerate numerical sim-

ulations. We came up with a faster and cheaper numerical solution of the NLSE in fiber optics

and our results presented can be applied in communication systems.
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I. INTRODUCTION

Nonlinear optical fiber is a division of optics that explores the nonlinear optical phenomena that takes place

inside optical fibers. When fiber losses fell below 20dB/Km in 1970, optical fiber communications became

financially viable, allowing the widespread adoption of optical fibers for communication purposes. Rayleigh

scattering was the primary constraint on performance in the 1.55µm wavelength range until 1979, when man-

ufacturing technology reduced the loss level to 0.2dB/Km [6] . The development of high-capacity fiber optic

communication networks, as well as significant breakthroughs in light wave technology, ensured that fiber op-

tics remained a dominant technology throughout the 1990s. We used optical amplifiers to neutralize the fiber

loss in these systems by amplifying the transmitted signals at regular intervals. Therefore, long distances can

collect nonlinear effects that are present in the fiber, resulting in an effective interaction length of thousands of

kilometres. Schrodinger equation governs the wave function in a quantum-mechanical system, a fundamental
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principle of quantum mechanics, its discovery marked a turning point in the development of the discipline.

Erwin Schrodinger (1887-1961) proposed the equation in 1925 and it was published in 1926. Thus, the name

Schrodinger Equation. This landmark established the foundation for his Nobel Prize in Physics in 1933.

The NLSE, is a classical field equation which is applicable to light propagation in nonlinear fiber optics,

Bose–Einstein condensates and to planar waveguides. Light has been our primary means of communication for

thousands of years. A single piece of information has been communicated by civilizations using mirrors, fire

beacons, and smoke signals (such as victory in a war). Campfires were utilised to illuminate our path back to

camp at night and to scare away any dangerous wildlife from our campsite. In order to warn of an impending

attack, signal bonfires were lighted on nearby hillsides. In this high-tech age of satellite communications, ships

still carry a bright lamp as a safety precaution [10].

Light was first used to broadcast speech in 1880, just four years after Alexander Graham Bell invented the

telephone. He termed his gadget photo-phone. It consisted a tube with a flexible mirror attached to the end. His

voice shook the mirror as he spoke into the tube, as a result, a photocell placed around 200m away recognised

the modulated light. While the method was far from flawless, it enabled the speaker to be understood within a

short distance [10]. With the introduction of telegraphy in the 1830s, Electricity superseded light as a medium

of communication. The use of intermediate relay stations (up to 1000Km) enabled long-distance communica-

tion, which was noteworthy at the time. When the telephone was invented in 1876, it radically changed the

electrical communication system. As telephone networks grew across the globe during the twentieth century,

developments were accelerated in its design. By changing from wire pairs to coaxial cables, the system’s capacity

was considerably increased. A coaxial cable of 3MHz with the capability of transmitting one television channel

or 300 voice channels was installed in 1940. In such systems, the frequency dependent cable losses limits the

bandwidth, which increases fast over 10MHz. As a result of this constraint, microwave communication systems

were developed, which carry data via an electromagnetic carrier wave at a frequency interval of 1 − 10GHz

[8]. The first microwave system was operational in 1948, with a carrier frequency of 4 − GHz. Since then,

substantial breakthroughs have been achieved in the building of coaxial and microwave systems, which can

today function at bit rates of up to 100Mb/s. As of 1975, the most current coaxial system could carry data at a

rate of 274Mb/s. The narrow repeater spacing (1km) in such coaxial lines is a big disadvantage, rendering the

system very costly to operate. As a result, fiber optics was proposed as the ideal solution for communication

networks [10].

According to [3], the expansion of fiber optics was encouraged by considerable improvements in light wave

technology during the 1990s, especially the introduction of high-amplitude optical fiber communication sys-

tems, the periodic amplification of transmitted signals by optical amplifiers compensates the continuing fiber

loss. Thus, the nonlinear properties of the fiber can accumulate over extended distances, resulting in an effective

interaction length of thousands of miles. An optical fiber’s core is enclosed in a cladding with a refractive index

slightly lower than the core.
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A dimensionless parameter characterize The guiding principless of an optical fiber defined as V = a(ω/c)(n21−

n22)1/2 where number of modes the fiber can accomodate is determined by V , a represents core radius, ω rep-

resents light frequency and n1, n2 represents the core and cladding refractive indices, respectively. Fibers

were V < 2.405 only accomodate single modes, thus the term single-mode fibers [2]. This research focuses

on light propagation in single-mode fibers by the nonlinear Schrodinger equation in the presence of dispersion

and nonlinearity. While evolutionary partial differential equations (PDEs) often employ a ’space’ variable as

the evolution variable, our NLSE uses the longitudinal coordinate of the fiber as the evolution variable. The

Schrodinger equation, which is nonlinear in nature, regulates narrowband signal propagation in a single-mode

fiber. Thus, adopting the signal received as boundary condition (BC), an initial value problem (IVP) can be

utilised to recover the broadcast signal in the absence of noise. In practice, an analog-to-digital converter is

employed to convert the signal received to digital form, from which we can solve the IVP through a digital

signal processing (DSP). We called such a technique digital back propagation (DBP) [5].

Since the NLSE cannot be solved analytically, numerical procedures are used. Numerical solutions to PDE-

constrained optimization challenges are often computationally demanding. Substantial computational savings

becomes possible using the reduced basis method (RBM) [7]. Numerous SSFM and S-SSFM algorithms have

been presented to ease the computational pressures associated with NLSE numerical solutions, but their ac-

curacy, processing time, and cost can potentially be improved. Thus, our purpose is to lower the computing

complexity of the NLSE in fiber optics by implementing the RBM, to acquire a more accurate solution and

requires less computational time and money to implement than the other techniques.

II. FIBER CHARACTERISTICS

An optical fiber is constructed of pure glass (silica). It operates as a waveguide between the two fiber ends,

conveying light. Fiber-optic communications, which are capable of transmitting across higher bandwidths and

greater distances, makes substantial use of fiber optics, which are prevalent in this technology. Because fibers

have less signal loss and electromagnetic interference than metal lines, they are used in place of metal wires [6].

The optically transparent core is surrounded by a lower refractive index cladding material, which is common

in optical fiber. When a light beam contacts a medium boundary at an angle where the critical angle relative

to the surface normal is smaller than that angle, the light remains in the core, and such a phenomenon is called

Total internal reflection. Light cannot travel through a boundary if on the other side its refractive index is

lower and the critical angle is smaller than the incidence angle. As a result, the fiber serves as a waveguide.

Fibers with low loss are made of pure silica glass, which is formed by fusing SiO2 molecules together. The

selective application of dopants during the core and cladding manufacturing processes results in a refractive-

index discrepancy. Fluorine and Boron are suitable for cladding, since they diminish silica’s refractive index,

making them acceptable for the core of an optical fiber [10].
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III. THE REDUCED BASIS METHOD

The RBM provides computational speedup to parametrized PDE solutions without compromising the ac-

curacy of its approximation. The RBM is part of a large category of model order reduction methods, whose

main goal is reducing the computational burden of a particular problem while preserving relevant properties

like stability and accuracy of the system [14].

The RBM is a mathematical and computational scheme for parametric model order reduction of PDEs. We

enter the parameters as coefficients in a parametrized PDE or via coefficient functions that defines the systems

physical properties or the systems connection with the environment. The key observation of the RBM is that the

parameter dependence induced a typically low-dimensional manifold where the answer of this equation dwell.

The PDE’s solution smoothly varies with the parameters, when the manifold is smooth. The reconstruction of

a good approximation of the solution associated with any parameter value should be possible with only little

knowledge of the manifold [9].

IV. DISCRETIZATION OF THE NLSE

The NLSE governing optical pulse propagation inside single-mode fiber [1] is presented as follows:

i
∂ψ(z, t)

∂t
− β2

2

∂2ψ(z, t)

∂z2
+ γ|ψ(z, t)|2ψ(z, t) = 0 (1)

where ψ(z, t) is the slowly varying amplitude of the pulse envelope, (β2 ∈ R\{0}) is the Chromatic Dispersion

(CD), (γ > 0) is the nonlinear parameter and i =
√
−1.

given the initial condition

ψ(z, 0) = g(z) (2)

and the boundary condition

∂ψ

∂z
(z, t) = 0, atz = zL, zR, (3)

We are using the Crank–Nicolson method to solve the NLSE (equation 1). To enforce such a method, we

propose that the complex function ψ(z, t) takes the form below:

ψ(z, t) = u(z, t) + ˙iv(z, t) (4)

where v(z, t) and u(z, t) are real functions, therefore, the BC (3) takes the form:

∂u

∂z
(z, t) =

∂v

∂z
(z, t) = 0, when z = zL, zR (5)

Substituting Equation (4) into (1) and writing the real and imaginary parts of the subsequent equation sepa-

rately we have:

∂u

∂t
− β2

2

∂2v

∂z2
+ γ

(
u2 + v2

)
v = 0 (6)
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∂v

∂t
+
β2
2

∂2u

∂z2
− γ

(
u2 + v2

)
u = 0 (7)

we can now write Equations (6) and (7) in the following form:

∂

∂t

 u

v

− β2
2

 0 1

−1 0

 ∂2

∂z2

 u

v

+ γ

 0 u2 + v2

−
(
u2 + v2

)
0

 u

v

 =

 0

0

 (8)

Let

ψ =

 u

v

 , A =

 0 1

−1 0

 , G(ψ) =

 0 u2 + v2

−
(
u2 + v2

)
0

 (9)

Therefore Equations (6) and (7) takes the following form:

∂ψ

∂t
− β2

2
A
∂2ψ

∂z2
+ γG(ψ)ψ = 0 (10)

Space Discretization

To generate a numerical method that can solve Equation (10), we assume that the region R = [zL < z <

zR]× [t > 0] and its boundary ∂R comprising the coordinates z = zL, z = zR and the axis t = 0 is covered with

mesh of points that is rectangular in nature and has the coordinates below:

z = zm = zL + (m− 1)h (11)

h =
zR − zL
N − 1

,m = 1, 2, . . . , N (12)

where h is the length of any two consecutive points and N is the number of points in the grid. Approximate

the exact solutions u(zm, t) = um and v(zm, t) = vm, by the approximation solutions U(zm, t) = Um and

V (zm, t) = Vm, respectively. Also, use the central difference formula below to approximate the second derivative

in Equation (10). [
∂2u(z, t)

∂z2

]
(z=zm,t)

=
1

h2
[
δ2zu
]
(z=zm,t)

+O
(
h2
)

(13)

where [
δ2zu
]
(z=zm,t)

= v (zm + h, t)− 2u (zm, t) + u (zm − h, t) (14)

which can be written briefly as follows:

∂2um
∂z2

=
1

h2
(um+1 − 2um + um−1) +O

(
h2
)

(15)

Similarly, v(z, t) takes the form:

∂2vm
∂z2

=
1

h2
[
δ2zv
]
(z=zn,t)

+O
(
h2
)

=
1

h2
(vm+1 − 2vm + vm−1) +O

(
h2
)

(16)

Substituting Equations (15) and (16) into (6) and (7) gives the following correlations:

U̇m −
β2
2h2

(Vm+1 − 2Vm + Vm−1) + γ
(
U2
m + V 2

m

)
Vm = 0, m = 1, 2, . . . , N (17)

V̇m +
β2
2h2

(Um+1 − 2Um + Um−1)− γ
(
U2
m + V 2

m

)
Um = 0 (18)

which we can write as:

Ψ̇m −
β2
2h2

Aδ2zΦm + γG (Ψm) Ψm = 0 (19)
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where after using the approximate solutions U and V , we drop the error term, 0 is a 2N × 1 zero vector, and

Ψ =

 U

V

 (20)

Further, we approximate the BC (3) using the central difference formula:

∂Um

∂z
=

1

2h
(Um+1 − Um−1) = 0 (21)

∂Vm
∂z

=
1

2h
(Vm+1 − Vm−1) = 0, when m = 1, N (22)

where z1 = zL and zN = zR which imply the following relation:

U0 = U2, V0 = V2, UN+1 = UN−1, VN+1 = VN−1 (23)

Using the BC (23), we can write equations (17) and (18) as follows:

Ψ + [S +B(Ψ)]Ψ = 0 (24)

where

Ψ =
[
ΨT

1 ,Ψ
T
2 , · · · ,ΨT

N

]T
,Ψm = [Um, Vm]

T
,m = 1, 2, . . . N (25)

S and B(Ψ) are N ×N block tridiagonal matrices in the form below:

S =
β2
2h2



2A −2A x x · · · x

−A 2A −A x · · · x

x −A · · · −A · · ·
...

... · · · · · · · · · · · · x

x · · · x −A 2A −A

x x · · · x −2A 2A


, B(Ψ) = diag [B1 (Ψ1) , B2 (Ψ2) , . . . , BN (ΨN )] (26)

Bm (Ψm) =

 0 γ
(
V 2
m +W 2

m

)
−γ
(
V 2
m +W 2

m

)
0

 (27)

0 is 2N × 1 zero vector and x is 2× 2 zero matrix.

Time Discretization

Suppose that Ψn
m is the fully discrete approximation to

Ψ (zm, tn) = U (zm, tn) + iV (zm, tn), where

tn = nk, n = 0, 1, 2, . . .

and k is time increment.

For the integration with respect to time of the system in (24), we use the implicit point rule below

Ψn
m =

Ψn+1
m + Ψn

m

2
,m = 1, 2, . . . N (28)

and using the forward difference below for the derivatives in time,

(Ψ̇)nm =
Ψn+1

m −Ψn
m

k
(29)
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Ignoring the truncation error O(k). Then, the system in (24) takes the following form:

Ψn+1 −Ψn + k

[
S +B

(
Ψn+1 + Ψn

2

)](
Ψn+1 + Ψn

2

)
= 0 (30)

representing a block nonlinear tridiagonal system of 2N nonlinear algebraic equations which we can solve by

the Newton’s method.

Newton’s Method

We can write equation (30) as follows:

F (Ψ) = 0 (31)

where 0 is 2N × 1 zero vector and

F (Ψ) =
[
fT1 , f

T
2 , . . . , f

T
N

]T
, fm = [(f1)m, (f2)m]

T
,Ψ =

[
ΨT

1 ,Ψ
T
2 , · · · ,ΨT

N

]T
,Ψm = [Um, Vm]

T
,m = 1, 2,

. . . , N
(32)

where (f1)m and (f2)m are nonlinear functions.

We can apply Newton’s method as:

Ψ(j+1) = Ψ(j) − J−1
(

Ψ(j)
)
F
(

Ψ(j)
)
, j = 0, 1, 2, . . . (33)

where j is the number of iterations and J is the Jacobian N ×N block tridiagonal matrix as:

J(Ψ) =



A1 C1 x · · · x

B2 A2

...
...

...

x
...

...
... x

...
...

...
... CN−1

x · · · x BN AN


(34)

where A,B and C are 2× 2 matrices in the form:

Ai =

 ∂(f1)i
∂Ui

∂(f1)i
∂Vi

∂(f2)i
∂Ui

∂(f2)i
∂Vi

 , i = 1, 2, . . . , N,Bi =

 ∂(f1)i
∂Ui−1

∂(f1)i
∂Vi−1

∂(f2)i
∂Ui−1

∂(f2)i
∂Vi−1

 , i = 2, 3, . . . , N

Ci =

 ∂(f1)i
∂Ui+1

∂(f1)i
∂Vi+1

∂(f2)i
∂Ui+1

∂(f2)i
∂Vi+1

 , i = 1, 2, ..., N − 1 we can calculate the system (33) by firstly, introducing the 2N × 1

vector y to satisfy the relation below:

J
(

Ψ(j)
)
y = F

(
Ψ(j)

)
, j = 0, 1 . . . (35)

which we can obtain by using Gauss elimination to solve the system in (35). And secondly by substituting the

vector y in the relation below:

Ψ(j+1) = Ψ(j) − y (36)

to update the initial guess vector Ψ(j). Therefore, we apply (35) and (36) until the relation below is satisfied:∥∥∥Ψ(j+1) −Ψ(j)
∥∥∥
∞
< tol (37)
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where tol refers to a small value prescribed to measure the errors.

Accuracy and Stability of the Method

A numerical method’s order of accuracy means how fast errors decrease in the limit as the step size tends

to zero. Studying the accuracy of the Crank–Nicolson method used here, Equations (28) and (29) will be sub-

stituted into the system (19) to have

ψn+1
m − ψn

m

k
− β

2h2
Aδ2z

(
ψn+1
m + ψn

m

2

)
+ γg

(
ψn+1
m + ψn

m

2

)
= 0 (38)

where

G (ψm)ψm = g (ψm) (39)

To obtain the expansions below we use Taylor’s series expansion of all terms in (38) about ψn
m where it is the

exact solution vector of the NLSE.

ψn+1
m =

[
ψ + k

∂ψ

∂t
+
k2

2!

∂2ψ

∂t2
+O

(
k3
)]n

m

ψn
m±1 =

[
ψ ± h∂ψ

∂z
+
h2

2!

∂2ψ

∂z2
± h3

3!

δ3ψ

∂z3
+
h4

4!

∂4ψ

∂z4
+O

(
h5
)]n

m

ψn+1
m+1 =

∞∑
p=0

1

p!

[
h
∂

∂z
+ k

∂

∂t

]p
ψn
m

ψn+1
m−1 =

∞∑
p=0

1

p!

[
k
∂

∂t
− h ∂

∂z

]p
ψn
m

where

δ2zψ
n
m = ψn

m+1 − 2ψn
m + ψn

m−1

δ2zψ
n+1
m = ψn+1

m+1 − 2ψn+1
m + ψn

m−1

(40)

which gives

δ2zψ
n
m =

[
h2
∂2ψ

∂z2
+

1

12
h4
∂4ψ

∂z4

]n
m

+ . . .

δ2zψ
n+1
m =

[
h2
∂2ψ

∂z2
+ kh2

∂3ψ

∂z2∂t
+
k2h2

2

∂4ψ

∂z2∂t2
+
k4

12

∂4ψ

∂t+
+
h4

12

∂4ψn

∂z4

]n
m

+ . . .

(41)

and thus, the following expansions are obtained:

ψn+1
m − ψn

m

k
=

[
∂ψ

∂t
+
k

2

∂2ψ

∂t2
+
k2

3!

∂3ψ

∂t3
+O

(
k3
)]n

m

(42)

1

4h2
δ2z
(
ψn+1

m +ψn
m

)
=

[
1

2

∂2ψ

∂z2
+
k

4

∂3ψ

∂z2∂t
+
h2

24

∂4ψ

∂z4
+
kh2

48

∂5ψ

∂z4∂t
+
k2

8

∂4ψ

∂z2∂t2
+O

(
k2h2 + k3

)]n
m

(43)

g

(
ψn+1
m + ψn

m

2

)
= g (ψn

m) +
k

2

∂g (ψı
m)

∂t
+
k2

4

∂2g (ψn
m)

∂t2
+O

(
k3
)

(44)

Now substituting Equations (42) - (44) into Equation (38) gives:

Tn
m =

[
∂ψ

∂t
− β2

2
A
∂2ψ

∂z2
+ γg(ψ)

]n
m

+
k

2

∂

∂t

[
∂ψ

∂t
− β2

2
A
∂2ψ

∂z2
+ γg(ψ)

]n
m

+

[
k2

3!

∂3ψ

∂t3
− β2A

(
h2

24

∂2ψ

∂z4
+
kh2

48

∂5ψ

∂t∂z4
+
k2

8

∂4ψ

∂z2∂t2

)
+ γ

∂2g(ψ)

∂t2

]n
m

+O
(
K2h2 + k3 + h4

)
,

(45)
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where Tn
m represents the truncation error.

Since ψ is the exact solution vector of (1) then from (10), the first two brackets equals zero. Thus the truncation

error becomes:

Tn
m = O

(
K2 + kh2 + h2

)
(46)

Proving that the method used is second order in space and time and Crank–Nicolson method is naturally

unconditionally stable.

V. EFFECTS OF NONLINEARITY AND DISPERSION IN THE

NLSE

Since the optical fiber communication systems first generation were discovered early in the 80’s, fiber optic

technology has significantly expanded [15]. in order to satisfy the needs of network users, these developments

were done. which extends the length of the transmission channel and increases transmission capacity especially

for high bit rate communications like real-time image transmission, video conferencing etc [13]. The NLSE

shows that the two main phenomenons that affects the fiber optic communication systems are nonlinearity and

dispersion and they distort the input pulse signal through the transmission system [12]. It also shows that the

dispersion effect and nonlinear effect are closely related.

the medium response when an electromagnetic wave interacts with the bound electrons of a dielectric, depends

generally on the optical frequency ω. A property, termed as chromatic dispersion, is manifested via the fre-

quency dependence of the refractive index n(ω) [11]

In short optical pulse propagation, fiber dispersion performs an important duty, as it is dangerous for optical

communication systems to have different spectral components associated with the pulse broadening. Mathe-

matically, by expanding the mode-propagation coeffcient β in a Taylor series about the frequency ω0 at which

the pulse spectrum is centred, fiber dispersion effects are accounted for.

β(ω) + n(ω)
ω

c
= β0 + β1 (ω − ω0) +

1

2
β2 (ω − ω0)

2
+ · · · ,

where c is the speed of light and

βm =

(
dmβ

dωm

)
ω=ω0

(m = 0, 1, 2, · · · )

Parameters β1 and β2 has a relation to the refractive index n and its derivative via the relations

β1 =
1

vg
=
ng
c

=
1

c

(
n+ ω

dn

dω

)
, β2 =

1

c

(
2
dn

dω
+ ω

d2n

dω2

)
,

where vg represents group velocity and ng represents group index. Since different spectral components of the

pulse do not simultaneously reach the fiber output, then the group velocity frequency dependence leads to pulse

broadening. Consider an optical fiber of length L; a particular spectral component at the frequency ω would

reach at the output end of the fiber at a time delay of T = L/vg: the extent of pulse broadening is governed by

the equation below if the spectral width of the pulse is ∆ω.

∆T =
dT

dω
∆ω =

d

dω

(
L

vg

)
∆ω = L

d

dω

(
dβ

dω

)
∆ω =

d2β

dω2
∆ω ≡ Lβ2∆ω
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Such a phenomenon is referred to as the group-velocity dispersion (GVD), and β2 is its parameter. from this

it follows that the physical dimension of β2 is L−1T 2. Depending on the sign of β2 qualitatively different

behaviors can be manifested by the nonlinear effects in optical fiber. β2 disappear at a wavelength of about

1270nm in standard silica fibers and becomes negative for longer wavelength, such a wavelength is termed as

the zero-dispersion wavelength and represented as γD. As β2 > 0 at a wavelength γ < γD The fiber exhibits

normal dispersion. Low-frequency components of optical pulse travel faster than high frequency components

of the same pulse in the normal-dispersion regime. By contrast, in the anomalous-dispersion regime in which

β2 < 0, the opposite occurs. When the light wavelength goes beyond γD, silica fibers exhibit anomalous dis-

persion. For the study of nonlinear effects the anomalous dispersion regime is of considerable interest as it is in

this regime that optical fibers accommodates solitons via a balance between the nonlinear and dispersive effects.

VI. RESULTS AND ANALYSIS

In order to justify the conservation of the quantities hamiltonian, momentum and energy associated to the

propagation of pulses, we solve equation (1) using the reduced basis method. The numerical study focuses on

the solution of the first-order soliton propagation problem in a single-mode fiber. Computations were done on

a personal computer with the following specifications (HP ProBook 450 G7 Intel Core i5-10210U 10th Gen,

500GB HDD and 8GB RAM). In this paper, we discretized the NLSE by the Crank–Nicolson method to obtain

the FOM and we implemented the numerical computations in MATLAB, version R2021a.

Figure 1: Input Pulse

Figure 2: Pulse Evolution
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Figure 3: Pulse Broadening Ratio

Figure 4: Phase Change with Distance Comparision

Figure 5: Iterative integration over z-propagation for (a) the SSFM and (b) the S-SSFM.

The pulse input and evolution are presented in Figures 1 and 2 respectively, while Figure 3 represents the

pulse broadening ratio with respect to step size, and we noticed that the ratio tends to decrease at small step

size (< 5) and tend to increase as the step size increases from 5. Figure 4 represents the phase change with

respect to distance travelled and in Figure 5 we illustrate how the SSFM and S-SSFM operates over different

subdivisions of the spartial iterative steps. The SSFM is executed over two subgroups of h, the consider the
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dispersion contribution to integrate the NLSE in the frequency domain in the first subgroup, then we integrate

the nonlinear part in the temporal domain in the second subgroup. In contrast, the S-SSFM operates over three

subgroups, in the first and third subgroups we integrate the dispersion contribution and in the second subgroup

we integrate the nonlinear part.

Table 1: SSFM

h-step size (m) Hamiltonian Momentum Energy Comp. time (s)

0.005 2.1× 10−10 5.9× 10−12 7.1× 10−11 249.7

1 1.7× 10−7 2.9× 10−14 4.3× 10−13 1.5

5 3× 10−3 5.7× 10−15 4.9× 10−14 0.3

10 1.7× 10−5 2.7× 10−15 4.4× 10−14 0.15

20 6.9× 10−5 1.2× 10−15 1.8× 10−14 0.08

Table 2: S-SSFM

h-step size (m) Hamiltonian Momentum Energy Comp. time (s)

0.005 4.8× 10−10 1.2× 10−11 1.6× 10−10 410

1 3× 10−11 5.9× 10−14 6.8× 10−13 2.2

5 8.1× 10−11 1.2× 10−14 1.5× 10−13 0.45

10 3.5× 10−9 6.2× 10−15 4.9× 10−14 0.23

20 1.7× 10−8 2.9× 10−15 4.5× 10−14 0.12

Table 3: RK4IP

h-step size (m) Hamiltonian Momentum Energy Comp. time (s)

0.005 5× 10−10 1.2× 10−11 1.6× 10−10 1350

1 2× 10−12 5.6× 10−14 6.7× 10−13 6.6

5 8.4× 10−13 1.3× 10−14 2.9× 10−13 1.3

10 1.3× 10−11 6.3× 10−15 4.5× 10−12 0.65

20 4.2× 10−10 3× 10−15 1.4× 10−10 0.34

Table 4: RBM

h-step size (m) Hamiltonian Momentum Energy Comp. time (s)

0.005 4.6× 10−10 1.3× 10−11 1.5× 10−10 255

1 1.8× 10−12 5.7× 10−14 6.5× 10−13 1.8

5 8.1× 10−13 1.5× 10−14 2.7× 10−13 0.4

10 1.8× 10−12 6.6× 10−15 4.8× 10−14 0.18

20 4.9× 10−11 3.2× 10−15 4.1× 10−14 0.10
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Tables 1-4 Shows a comparative table of the errors associated to the conservative quantities: Hamiltonian,

Momentum and Energy and the computational time of the first-order soliton propagation for a couple of h-step

size values using the SSFM, the S-SSFM, the RK4IP and the RBM methods respectively.

As h-step size increases the individual contribution of the round-off error tends to decrease [4]. From this

argument, we can decipher that in the cases of (SSFM, S-SSFM, RK4IP and RBM) momentum and energy

presents a negligible truncation error (< 10−8), so that the the round-off error dominates the total error, which

as the h-step size increases tends to decrease. Also, in the case of RK4IP method the energy error for step size

h > 5 shows that the contribution of the round-off error became amaller than the truncation error; as a result

when the h-step size increases the error also increases.

Additionally, Hamiltonian is reproduced properly over the whole h-step size domain by the RK4IP, the RBM

and the S-SSFM methods; On the contrary, Hamiltonian in the SSFM only yields a negligible error level for a

small h-step size of h < 1 , as shown in Table 1. Also, Hamiltonian only yields a negligible fluctuation in its

error trace for small h-step sizes (h < 1) in the case of the S-SSFM and (h < 5) in the cases of RK4IP and

RBM, showing a round-off error contribution; the numerical methods introduce their typical truncation error

contribution for larger h-step size values, which tends to increase as the h-step size increases. On the contrary,

the SSFM provides a Hamiltonian error trace driven by the truncation error over the whole h-step size domain.

Finally, order of accuracy and computational time of the methods, from the above tables shows that the

RBM and the RK4IP methods has a higher order of accuracy whereas the SSFM and RBM has the least com-

putational time.

VII. CONCLUSION

We studied the pulse propagation in fiber optics formalism modelled by the Nonlinear Schrodinger Equation,

in the presence of nonlinearity and dispersion. We solved the NLSE by the reduced basis method (RBM) and

the numerical results shows that the properties Hamiltonian, Momentum and Energy are conservative. We

compare our solution with several other numerical approaches that had been used in the past to solve the NLSE

like S-SSFM, RK4IP and SSFM methods, we came with the conclusion that compared to these three methods

the RBM has a higher order of accuracy and after the SSFM it has the least computational time compared to

S-SSFM and RK4IP methods.
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