Weighted Sharing and Uniqueness of Entire Functions whose Difference Polynomials Sharing a Polynomial of Certain Degree

Avinash B.,¹ Smitha S. D.² and Ashrith R. P.³

^{1,2,3} Assistant Professor, Department of Mathematics, The Oxford College of Science, Bangalore, INDIA.

Abstract. In this paper, we deal with the uniqueness problem of an entire functions whose difference polynomials sharing a polynomial of certain degree with finite weight. This paper extends and improves some classical results obtained by A. Banerjee and S. Majumder [20].

Keywords: Difference polynomials, Entire function, Weighted Sharing etc.,

I. Introduction and Main Results

In this paper by meromorphic functions we shall always mean meromorphic functions in the complex plane. Let f(z) and g(z) be two non-constant meromorphic functions and let $a \in \mathbb{C}$. We say that f(z) and g(z) share $a \, \mathrm{CM}$, provided that f(z) - a and g(z) - a have the same zeros with the same multiplicities. Similarly, we say that f(z) and g(z) share $a \, \mathrm{IM}$, provided that f(z) - a and g(z) - a have the same zeros with the same multiplicities. Similarly, we say that f(z) and g(z) share $a \, \mathrm{IM}$, provided that f(z) - a and g(z) - a have the same zeros with ignoring multiplicities. In addition we say that f(z) and g(z) share $\infty \, \mathrm{CM}$ if $\frac{1}{f(z)}$ and $\frac{1}{g(z)}$ share 0 CM, and we say that f and g share $\infty \, \mathrm{IM}$, if $\frac{1}{f(z)}$ and $\frac{1}{g(z)}$ share 0 IM. We adopt the standard notations of value distribution theory (see [6]). For a non-constant meromorphic function f(z), we denote by T(r, f) the Nevanlinna characteristic of f(z) and by S(r, f) any quantity satisfying $S(r, f) = o\{T(r, f)\}$ as $r \to \infty$ possibly outside a set of finite linear measure. We denote by T(r) the maximum of T(r, f) and T(r, g). The notation S(r) denotes any quantity satisfying S(r) = o(T(r)) as $r \to \infty$, outside of a possible exceptional set of finite linear measure. A meromorphic function a(z) is called a small function with respect to f(z), provided that T(r, a) = S(r, f). The order of f(z) is defined by

$$\sigma(f) = 1 - \lim_{r \to \infty} \frac{\log T(r, f)}{\log r}.$$

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be a small function with respect to f(z) and g(z). We say that f(z) and g(z) share a(z) CM (counting multiplicities) if f(z)-a and g(z)-a have the same zeros with the same multiplicities and we say that f(z), g(z) share a(z) IM (ignoring multiplicities) if we do not consider the multiplicities. We say that a finite value z_0 is called a fixed point of f(z) if $f(z_0) = z_0$ or z_0 is a zero of f(z) - z. For the sake of simplicity we also use the notation

$$m^* := \begin{cases} 0, \ if \ m = 0 \\ m, \ if \ m \in \mathbb{N}. \end{cases}$$

Let f(z) be a transcendental meromorphic function, n be a positive integer. During the last few decades many authors investigated the value distributions of $f^n f'$.

In 1959, W. K. Hayman (see [5]) proved the following theorem.

Theorem 1. [5] Let f be a transcendental meromorphic function and $n (\geq 3)$ is an integer. Then $f^n f' = 1$ has infinitely many solutions.

The case n = 2 was settled by Mues [14] in 1979. Bergweiler and Eremenko [1] showed that $f^n f' - 1$ has infinitely many zeros. For an analogue of the above results Laine and Yang investigated the value distribution of difference products of entire functions in the following manner.

Theorem 2. [10] Let f be a transcendental entire function of finite order, and c be a non-zero complex constants. Then, for $n \ge 2$, $f^n f(z+c)$ assumes every non-zero value $a \in \mathbb{C}$ infinitely often.

Afterwards, Liu and Yang [13] improved Theorem 2 and obtained next result.

Theorem 3. Let f be a transcendental entire function of finite order, and c be a non-zero complex constant. Then, for $n \ge 2$, $f^n f(z+c) - p(z)$ has infinitely many zeros, where p(z) is a non-zero polynomial.

Next we recall the uniqueness result corresponding to Theorem 1, obtained by Yang and Hua [17] which may be considered a gateway to a new research in the direction of sharing values of differential polynomials.

Theorem 4. Let f and g be two non-constant entire functions, $n \in \mathbb{N}$ such that $n \ge 6$. If $f^n f'$ and $g^n g'$ share 1 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$ where c_1 , c_2 , $c \in \mathbb{C}$ satisfying $4(c_1 c_2)^{n+1} c^2 = -1$, or $f \equiv tg$ for a constant t such that $t^{n+1} = 1$.

In 2001, Fang and Hong [4] studied the uniqueness of differential polynomials of the form $f^n(f-1)f'$ and proved the following result.

Theorem 5. [4] Let f and g be two non-constant entire functions, and let $n \ge 11$ be a positive integer. If $f^n(f-1)f'$ and $g^n(g-1)g'$ share the value 1 CM, then $f \equiv g$.

In 2004, Lin and Yi [12] extended the above result in view of the fixed point and they proved the following.

Theorem 6. [12] Let f and g be two non-constant entire functions, and let $n \ge 7$ be a positive integer. If $f^n(f-1)f'$ and $g^n(g-1)g'$ share the value $z \ CM$, then $f \equiv g$.

In 2010, Zhang [19] got a analogue result in difference

Theorem 7. [19] Let f(z) and g(z) be two transcendental entire functions of finite order and $\alpha(z)$ be a small functon with respect to both f(z) and g(z). Suppose that c is a non-zero complex constant and $n \ge 7$ is an integer. If $f^n(f-1)f(z+c)$ and $g^n(g-1)g(z+c)$ share $\alpha(z)$ CM, then $f(z) \equiv g(z)$.

In 2010, Qi, Yang and Liu [15] obtained the difference counterpart of Theorem 4 by proving the following theorem.

Theorem 8. [15] Let f and g be two transcendental entire functions of finite order, and c be a non-zero complex constant, let $n \ge 6$ be an integer. If $f^n f(z+c)$ and $g^n g(z+c)$ share z CM, then $f \equiv t_1 g$ for a constant t_1 satisfies $t_1^{n+1} = 1$.

Theorem 9. [15] Let f and g be two transcendental entire functions of finite order, and c be a non-zero complex constant, let $n \ge 6$ be an integer. If $f^n f(z+c)$ and $g^n g(z+c)$ share 1 CM, then $fg = t_2$ or $f \equiv t_3g$ for some constants t_2 and t_3 that satisfy $t_3^{n+1} = 1$.

In 2020, A. Banerjee and S. Majumder [20] proved the following result.

Theorem 10. Let f and g be two transcendental entire functions of finite order, c be a non-zero complex constant and let p(z) be a non-zero polynomial with $deg(p) \le n-1$, $n(\ge 1)$, $m^*(\ge 0)$ be two integers such that $n > m^* + 5$. Let $P(\omega) = a_m \omega^m + a_{m-1} \omega^{m-1} + \ldots + a_1 \omega + a_0$ be a non-zero polynomial. If $f^n P(f)f(z+c) - p$ and $g^n P(g)g(z+c) - p$ share (0,2) then

(I) when $P(\omega) = a_m \omega^m + a_{m-1} \omega^{m-1} + \ldots + a_1 \omega + a_0$ is a non-zero polynomial, one of the following three cases holds.

(11) $f \equiv tg$ for a constant t such that $t^d = 1$, where $d = GCD(n + m, \dots, n + m - i, \dots, n)$ and $a_{m-i} \neq 0$ for some $i = 1, 2, \dots, m$,

(I2) f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(\omega_1, \omega_2) = \omega_1(a_m\omega_1^n + \ldots + a_0) - \omega_2(a_m\omega_2^n + \ldots + a_0)$,

(13) $P(\omega)$ reduces to a non-zero monomial, viz., $P(\omega) = a_i \omega^i \neq 0$, for $i \in \{0, 1, 2, ..., m\}$ if p(z) is a non-zero constant b, then we have $f = e^{\alpha(z)}$ and $g = e^{\beta(z)}$ where α , β are two non-constant polynomials such that $\alpha + \beta \equiv d \in \mathbb{C}$ and $a_i^2 e^{(n_i+1)d} = b^2$:

(II) when $P(\omega) = \omega^m - 1$, then $f \equiv tg$ for some constant t such that $t^m = 1$;

(III) when $P(\omega) = (\omega - 1)^m$, $(m \ge 2)$ one of the following two cases holds:

(III1) $f \equiv g$,

(III2) f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(\omega_1, \omega_2) = \omega_1(a_m\omega_1^n + \ldots + a_0) - \omega_2(a_m\omega_2^n + \ldots + a_0);$

(IV) when $P(\omega) \equiv c_0$ one of the following two cases holds:

(IV1) $f \equiv tg$ for some constant t such that $t^{n+1} = 1$,

(IV2) $f = e^{\alpha(z)}$ and $g = e^{\beta(z)}$ where α , β are two non-constant polynomials such that $\alpha + \beta = d \in \mathbb{C}$ and $c_0^2 e^{(n+1)d} = b^2$.

In this paper we are replacing f(z+c) by $\sum_{j=1}^{p} a_j f(z+c_j)$ and obtained the following result.

Theorem 11. Let f and g be two transcendental entire functions of finite order, c be a non-zero complex constant and let p(z) be a non-zero polynomial with $deg(p) \le n - 1$, $n(\ge 1)$, $m^*(\ge 0)$ be two integers such that $n > m^* + p + 4$. Let $P(\omega) = a_m \omega^m + a_{m-1} \omega^{m-1} + \ldots + a_1 \omega + a_0$ be a non-zero polynomial. If $f^n P(f) \sum_{j=1}^p a_j f(z+c_j) - p$ and $g^n P(g) \sum_{j=1}^p a_j g(z+c_j) - p$ share (0,2) then (I) when $p(\omega) = a_m \omega^m + a_{m-1} \omega^{m-1} + \ldots + a_1 \omega + a_0$ is a non-zero polynomial, one of the following three

(11) $f \equiv tg$ for a constant t such that $t^d = 1$, where d = GCD(n + m + p, ..., n + m + p - i, ..., n) and $a_{m-i} \neq 0$ for some i = 1, 2, ..., m,

(12) f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where

$$R(\omega_1,\omega_2) = \omega_1(a_m\omega_1^n + \ldots + a_0) - \omega_2(a_m\omega_2^n + \ldots + a_0),$$

(13) $P(\omega)$ reduces to a non-zero monomial, viz., $P(\omega) = a_i \omega^i \neq 0$, for $i \in \{0, 1, 2, ..., m\}$ if p(z) is a non-zero constant b, then we have $f = e^{\alpha(z)}$ and $g = e^{\beta(z)}$ where α , β are two non-constant polynomials such that $\alpha + \beta \equiv d \in \mathbb{C}$ and $a_i^2 e^{(n_i + p)d} = b^2$;

(II) when $P(\omega) = \omega^m - 1$, then $f \equiv tg$ for some constant t such that $t^m = 1$;

(III) when $p(\omega) = (\omega - 1)^m$, $(m \ge 2)$ one of the following two cases holds:

(III1) $f \equiv g$,

(III2) f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where

$$R(\omega_1,\omega_2) = \omega_1(a_m\omega_1^n + \ldots + a_0) - \omega_2(a_m\omega_2^n + \ldots + a_0);$$

(IV) when $P(\omega) \equiv c_0$ one of the following two cases holds: (IV1) $f \equiv tg$ for some constant t such that $t^{n+1} = 1$, (IV2) $f = e^{\alpha(z)}$ and $g = e^{\beta(z)}$ where α , β are two non-constant polynomials such that $\alpha + \beta = d \in \mathbb{C}$ and $c_0^2 e^{(n+p)d} = b^2$.

II. Auxiliary Definitions

Definition 1. [7] Let $a \in \mathbb{C} \cup \{\infty\}$. For a positive integer p we denote by $N(r, a; f| \leq p)$ the counting function of those a-points of f (counted with multiplicities) whose multiplicities are not greater than p. By $\overline{N}(r, a; f| \leq p)$ we denote the corresponding reduced counting function. In an analogous manner we can define $N(r, a; f| \geq p)$ and $\overline{N}(r, a; f| \geq p)$.

Definition 2. [9] Let k be a positive integer or infinity. We denote by $N_k(r, a; f)$ the counting function of a-points of f where an a-point of multiplicity m is counted m times if $m \le k$ and k times if m > k. Then

$$N_k(r,a;f) = \overline{N}(r,a;f) + \overline{N}_{(2}(r,a;f) + \ldots + \overline{N}_{(k}(r,a;f)).$$

Clearly, $N_1(r, a; f) = \overline{N}(r, a; f)$.

Definition 3. [8], [9] Let k be a positive integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and k + 1 times if m > k. If $E_k(a; f) = E_k(a; g)$ we say that f, g share the value a with weight k. The definition implies that if f, g share a value a with weight k, then z_0 is an a-point of f with multiplicity $m(\leq k)$ if and only if it is an a-point of g with multiplicity $m(\leq k)$ and z_0 is an a-point of f with multiplicity m(>k) if and only if it is an a-point of g with multiplicity n(>k), where m is not necessarily equal to n. We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly, if f, g share (a, k) then f, g share (a, p) for any integer p, $0 \leq p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

III. Lemmas

Lemma 1. [16] Let f be a non-constant meromorphic function, and let $a_n (\neq 0)$, a_{n-1}, \ldots, a_0 be meromorphic functions such that $T(r, a_i) = S(r, f)$ for $i = 0, 1, \ldots, n$. Then

$$T(r, a_n f^n + a_{n-1} f^{n-1} + \dots + a_0) = nT(r, f) + S(r, f).$$

Lemma 2. [2] Let f be a meromorphic function function of inite order σ , and let c be fixed non-zero complex constant. Then for each $\epsilon > 0$, we have

$$m\left(r,\frac{f(z+c)}{f(z)}\right) + m\left(r,\frac{f(z)}{f(z+c)}\right) = O(r^{\sigma-1+\epsilon}).$$

Lemma 3. [2] Let f be a meromorphic function function of inite order σ , $c \neq 0$ be fixed. Then for each $\epsilon > 0$, we have

$$T(r, f(z+c)) = O(r^{\sigma-1+\epsilon}).$$

Lemma 4. Let f be an entire function of finite order σ , c be a fixed non-zero complex constant and let $n \in \mathbb{N}$ and $P(\omega)$ be defined as in Theorem 10. Then for each $\epsilon > 0$, we have

$$T(r, f^n P(f) \sum_{j=0}^p a_j f(z+c_j)) = T(r, f^{n+p} P(f)) + O(r^{\sigma-1+\epsilon}).$$

Proof. By Lemma 2 we have

$$T(r, f^n P(f)f(z+c)) = m(r, f^n P(f) \sum_{j=0}^p a_j f(z+c_j))$$

$$\leq m(r, f^n P(f)f) + m\left(r, \frac{\sum_{j=0}^p a_j f(z+c_j)}{f(z)}\right)$$

$$\leq m(r, f^{n+p} P(f)) + O(r^{\sigma-1+\epsilon})$$

$$\leq T(r, f^{n+p} P(f)) + O(r^{\sigma-1+\epsilon}).$$

Also, we have

$$\begin{split} T(r, f^{n+p}P(f)) &= m(r, f^n P(f) \sum_{j=0}^p a_j f(z+c_j)) \\ &\leq m \bigg(r, f^n P(f) \sum_{j=0}^p a_j f(z+c_j) \bigg) + m \bigg(r, \frac{\sum_{j=0}^p a_j f(z+c_j)}{f(z)} \bigg) \\ &\leq m \bigg(r, f^n P(f) \sum_{j=0}^p a_j f(z+c_j) \bigg) + O(r^{\sigma-1+\epsilon}) \\ &\leq m \bigg(r, f^n P(f) \sum_{j=0}^p a_j f(z+c_j) \bigg) + O(r^{\sigma-1+\epsilon}) \leq T \bigg(r, f^n P(f) \sum_{j=0}^p a_j f(z+c_j) \bigg) + O(r^{\sigma-1+\epsilon}). \end{split}$$

Hence

$$T(r, f^{n+p}P(f)) = T\left(r, f^n P(f) \sum_{j=0}^p a_j f(z+c_j)\right) + O(r^{\sigma-1+\epsilon}).$$

Remark 1. Under the conditions of Lemma 4, by Lemma 1 we have $S\left(r, f^n P(f) \sum_{j=0}^p a_j f(z+c_j)\right) = S(r, f)$.

Lemma 5. ([3]) Let f be a non-constant meromorphic function of finite order and $c \in \mathbb{C}$. Then

$$\begin{split} N(r,0;f(z+c)) &= N(r,0;f) + S(r,f).\\ \overline{N}(r,0;f(z+c)) &= \overline{N}(r,0;f) + S(r,f).\\ N(r,\infty;f(z+c)) &= N(r,\infty;f) + S(r,f).\\ \overline{N}(r,\infty;f(z+c)) &= \overline{N}(r,\infty;f) + S(r,f). \end{split}$$

Lemma 6. Let f be transcendental entire function of finite order σ , c be a fixed non-zero complex constant, $n(\geq 1)$, $m^*(\geq 0)$ be two integers and let $a(z) \neq 0, \infty$ be a small function with respect to f. If n > 1, then $f^n P(f) \sum_{j=0}^p a_j f(z+c_j) - \alpha(z)$ has infinitely many zeros.

Proof. Let $\phi = f^n P(f) \sum_{j=0}^p a_j f(z+c_j)$. Now in view of Lemma 5 and second fundamental theorem of small functions (see [18]) we get

$$\begin{split} T(r,\phi) &= \overline{N}(r,0;\phi) + \overline{N}(r,\infty;\phi) + \overline{N}(r,a;\phi) + (\epsilon + o(1)) + T(r,f) \\ &\leq \overline{N}(r,0;f^n P(f)) + \overline{N}\Big(r,0;\sum_{j=0}^p a_j f(z+c_j)\Big) + \overline{N}(r,a;\phi) + (\epsilon + o(1)) + T(r,f) \\ &\leq 2\overline{N}(r,0;f) + \overline{N}(r,0;P(f)) + \overline{N}(r,a;\phi) + (\epsilon + o(1)) + T(r,f) \\ &\leq (p+m^*+1)T(r,f) + \overline{N}(r,a;\phi) + (\epsilon + o(1)) + T(r,f). \end{split}$$

for all $\epsilon > 0$. From Lemmas 1 and 4 we get

$$(n+m^*+p)T(r,f) \le (p+m^*+1)T(r,f) + \overline{N}(r,a;\phi) + (\epsilon+o(1)) + T(r,f).$$

Take $\epsilon < 1$. Since n > 1 from the above one can easily say that $\phi - a(z)$ has infinitely many zeros. This completes the Lemma.

Lemma 7. [9] Let f and g be two non-constant meromorphic functions sharing (1,2). Then one of the following holds. $(i)T(r,f) \leq N_2(r,0;f) + N_2(r,0;g) + N_2(r,\infty;f) + N_2(r,\infty;g) + S(r,f) + S(r,g).$ $(ii)fg \equiv 1.$ $(iii)f \equiv g.$

Lemma 8. [Hadamard Factorization Theorem]. Let f be an entire function of finite order ρ with zeros a_1, \ldots each zeros is counted as often as its multiplicity. Then f can be expressed in the form

$$f(z) = Q(z)e^{\alpha(z)},$$

where $\alpha(z)$ is a polynomial of degree not exceeding ρ and Q(z) is the canonical product formed with the zeros of f.

Lemma 9. Let f and g be two transcendental entire functions of finite order, $c \in \mathbb{C} \setminus \{0\}$ and p(z) be a non-zero polynomial such that $deg(p) \leq n-1$, where $n \in \mathbb{N}$. Let $P(\omega)$ be a non-zero polynomial defined as in Theorem 10. Suppose

$$f^{n}P(f)\sum_{j=0}^{p}a_{j}f(z+c_{j})g^{n}P(g)\sum_{j=0}^{p}a_{j}g(z+c_{j}) \equiv p^{2}.$$

Then $P(\omega)$ reduces to a non-zero monomial, namely $P(\omega) = a_i \omega^i \neq 0$, for $i \in \{0, 1, ..., m\}$. If $p(z) = b \in \mathbb{C} \setminus \{0\}$, then $f(z) = e^{\alpha(z)}$, $g(z) = e^{\beta(z)}$, where $\alpha(z)$, $\beta(z)$ are two non-constant polynomials such that $\alpha + \beta \equiv d \in \mathbb{C}$ and $a_i^2 e^{(n+i+p)d} = b^2$.

Proof. Suppose

(0.1)
$$f^n P(f) \sum_{j=0}^p a_j f(z+c_j) g^n P(g) \sum_{j=0}^p a_j g(z+c_j) \equiv p^2.$$

We consider the following cases:

Case 1. Let $deg(p(z)) = l (\geq 1)$. From the assumption that f and g are two transcendental entire functions, we deduce by (0.1) that $N(r, 0; f^n P(f)) = O(\log r)$ and $N(r, 0; g^n P(g)) = O(\log r)$. First we suppose that $P(\omega)$ is not a non-zero monomial. for the sake of simplicity let $P(\omega) = \omega - a$ where $a \in \mathbb{C} \setminus \{0\}$ clearly $\Theta(0; f) + \Theta(a; f) = 2$ which is impossible for an entire function. Thus $P(\omega)$ reduces to a non-zero monomial, namely $P(\omega) \not\equiv a_i \omega^i$ for some $i \in \{0, 1, ..., m\}$ and so (0.1) reduces to

(0.2)
$$a_1^2 f^{n+i} \sum_{j=0}^p a_j f(z+c_j) g^{n+i} \sum_{j=0}^p a_j g(z+c_j) \equiv p^2.$$

From (0.2) it follows that $N(r, 0; f) = O(\log r)$ and $N(r, 0; g) = O(\log r)$. Now by Lemma 8 we obtain that $f = h_1 e^{\alpha_1}$ and $g = h_2 e^{\beta_1}$, where h_1 , h_2 are two non-zero polynomials. By virtue of the polynomials p(z), from (0.2) we arrive at a contradiction.

Case 2. Let $p(z) = b \in \mathbb{C} \setminus \{0\}$. Then from (0.1) we alve

(0.3)
$$f^n P(f) \sum_{j=0}^p a_j f(z+c_j) = g^n P(g) \sum_{j=0}^p a_j g(z+c_j) \equiv b^2.$$

Now from the assumption that f and g are two non-constant entire functions, we deduce by (0.3) that $f^n P(f) \neq 0$ and $g^n P(g) \neq 0$. By Picard's Theorem, we claim that $P(\omega) = a_i \omega^i$ for $i \in \{0, 1, ..., m\}$, otherwise the Picard's exceptional values are atleast three, which is a contradiction. Then (0.3) reduces to

(0.4)
$$a_i^2 f^{n+i} \sum_{j=0}^p a_j f(z+c_j) g^{n+i} \sum_{j=0}^p a_j g(z+c_j) \equiv b^2.$$

Hence by Lemma 8 we obtain that

(0.5)
$$f = e^{\alpha(z)}, \quad g = e^{\beta(z)},$$

where $\alpha(z)$, $\beta(z)$ are twow non-constant polynomials. Now from (0.4) and (0.5) we obtain

$$(n+i)(\alpha(z) + \beta(z)) + \sum_{j=0}^{p} a_{j}\alpha(z+c_{j}) + \sum_{j=0}^{p} a_{j}\beta(z+c_{j}) \equiv d_{1}.$$

where $d_1 \in \mathbb{C}$, i.e.,

(0.6)
$$(n+i)(\alpha'(z)+\beta'(z)) + \sum_{j=0}^{p} a_j \alpha'(z+c_j) + \sum_{j=0}^{p} a_j \beta'(z+c_j) \equiv 0.$$

Let $\gamma(z) = \alpha'(z) + \beta'(z)$. Then from (0.6) we have

(0.7)
$$(n+i)\gamma(z) + \sum_{j=0}^{p} a_j \gamma(z+c_j) \equiv 0.$$

We assert that $\gamma(z) \equiv 0$. It is not suppose $\gamma \neq 0$. Note that if $\gamma(z) \equiv d_2 \in \mathbb{C}$, from (0.7) we must have $d_2 = 0$. Suppose that $deg(\gamma) \geq 1$. Let $\gamma(z) = \sum_{j=1}^{m} b_j z^j$, where $b_m \neq 0$. Therefore the co-efficient of z^m in

 $(n+i)\gamma(z) + \sum_{j=0}^{p} a_j\gamma(z+c_j)$ is $(n+p+i)b_m \neq 0$. Thus we arrive at a contradiction from (0.7). Hence $\gamma(z) \equiv 0$, i.e., $\alpha + \beta \equiv d \in \mathbb{C}$. Also from (0.4) we have $a_i^2 e^{(n+i+p)d} = b^2$. This completes the proof. \Box

Lemma 10. Let f and g be two transcendental entire functions of finite order, $c \in \mathbb{C} \setminus \{0\}$ and p(z) be a non-zero polynomial such that $deg(p) \leq n - 1$, where $n \in \mathbb{N}$. Let $P(\omega)$ be defined as in Theorem 10 with atleast two of a_i , i = 0, 1, ..., m are non-zero. Then

$$f^n P(f) \sum_{j=0}^p a_j f(z+c_j) g^n P(g) \sum_{j=0}^p a_j g(z+c_j) \neq p^2.$$

Proof. Proof of the Lemma follows from Lemma 9.

Lemma 11. Let f, g be two transcendental entire functions of finite order, $c \in \mathbb{C} \setminus \{0\}$ and $n \in \mathbb{N}$ with n > 1. If $f^n P(f) \sum_{j=0}^p a_j f(z+c_j) \equiv g^n P(g) \sum_{j=0}^p a_j g(z+c_j)$ where $P(\omega)$ is defined as in Theorem 10 then (I) when $p(\omega) = a_m \omega^m + a_{m-1} \omega^{m-1} + \ldots + a_1 \omega + a_0$, one of the following two cases holds: (I1) $f \equiv tg$ for a constant t such that $t^d = 1$, where $d = GCD(n+m,\ldots,n+m-i,\ldots,n)$, $a_{m-i} \neq 0$ for some $i = 1, 2, \ldots, m$,

(12) f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where

$$R(\omega_1, \omega_2) = \omega_1 P(\omega_1) \sum_{j=0}^p a_j \omega_1(z+c_j) - \omega_2 P(\omega_2) \sum_{j=0}^p a_j \omega_2(z+c_j).$$

(II) when $P(\omega) = \omega^m - 1$, then $f \equiv tg$ for some constant t such that $t^m = 1$; (III) when $p(\omega) = (\omega - 1)^m$, $(m \ge 2)$ one of the following two cases holds: (III1) $f \equiv g$,

(III2) f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where

$$R(\omega_1, \omega_2) = \omega_1^n (\omega_1 - 1)^m \sum_{j=0}^p a_j \omega_1 (z + c_j) - \omega_2^n (\omega_2 - 1)^m \sum_{j=0}^p a_j \omega_2 (z + c_j);$$

(IV) when $P(\omega) \equiv c_0$ then $f \equiv tg$ for some constant t such that $t^{n+1} = 1$.

Proof. Suppose

(0.8)
$$f^n P(f) \sum_{j=0}^p a_j f(z+c_j) \equiv g^n P(g) \sum_{j=0}^p a_j f(z+c_j).$$

Since g is transcendental entire function, hence g(z), $\sum_{j=0}^{p} a_j g(z+c_j) \neq 0$. We consider following two cases. **Case 1.** $P(\omega) \equiv c_0$. Let $h = \frac{f}{g}$. If h is a constant, by putting f = hg in (0.8) we get

$$a_m g^m (h^{m+n+p} - 1) + a_{m-1} g^{m-1} (h^{m+n} - 1) + \ldots + a_0 (h^{n+1} - 1) \equiv 0,$$

which implies that $h^d = 1$, where d = GCD(n + m + p, ..., n + m + p - i, ..., n + 1), $a_{m-i} \neq 0$ for some $i \in \{0, 1, ..., m\}$. Thus $f \equiv tg$ for a constant t such that $t^d = 1$, where d = GCD(n + m + p, ..., n + m + p).

 $p-i, \ldots, n+1$, $a_{m-i} \neq 0$ for some $i \in \{0, 1, \ldots, m\}$. If h is not a constant, we know by (0.8) that f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where

$$R(\omega_1, \omega_2) = \omega_1^n P(\omega_1) \sum_{j=0}^p a_j \omega_1(z+c_j) - \omega_2^n P(\omega_2) \sum_{j=0}^p a_j \omega_2(z+c_j)$$

We now discuss the following subcases.

Subcase 1. $P(\omega) = \omega - 1$. Then from (0.8) we have

(0.9)
$$f^{n}(f^{m}-1)\sum_{j=0}^{p}a_{j}f(z+c_{j}) \equiv g^{n}(g^{m}-1)\sum_{j=0}^{p}a_{j}g(z+c_{j})$$

Let $h = \frac{f}{q}$. clearly from (0.9) we get

(0.10)
$$g^{m}[h^{m+n}\sum_{j=0}^{p}a_{j}h(z+c_{j})-1] \equiv h^{n}\sum_{j=0}^{p}a_{j}h(z+c_{j})-1$$

First we suppose that h is non-constant. We assert that $h^{m+n} \sum_{j=0}^{p} a_j h(z+c_j)$ is a non-constant. If not let

 $h^{m+n}\sum_{j=0}^p a_j h(z+c_j) \equiv c_1 \in \mathbb{C} \setminus \{0\}.$ Then we have

$$h^{n+m} \equiv \frac{c_1}{\sum_{j=0}^p a_j h(z+c_j)}$$

Now by Lemmas 1 and refL3 we get

$$(n+m)T(r,h) \le T(r,\sum_{j=0}^{p} a_j h(z+c_j)) + S(r,h),$$

which contradicts with n > m + p + 4. Thus from (0.10) we have

(0.11)
$$g^{m} \equiv \frac{h^{n} \sum_{j=0}^{p} a_{j} h(z+c_{j}) - 1}{h^{m+n} \sum_{j=0}^{p} a_{j} h(z+c_{j}) - 1}.$$

Let z_0 be a zero of $h^{m+n} \sum_{j=0}^p a_j h(z+c_j) - 1$. Since g is an entire function, it follows that z_0 is also a zero of $h^n \sum_{j=0}^p a_j h(z+c_j) - 1$. Consequently z_0 is a zero of $h^m - 1$ and so

$$\overline{N}(r,0;h^{m+n}\sum_{j=0}^p a_j h(z+c_j)) \le \overline{N}(r,0;h^m) \le mT(r,h) + O(1).$$

So in view of Lemmas 1, 4, 5 and second fundamental theorem we get

$$\begin{aligned} (n+m+p)T(r,h) &= T(r,h^{m+n}\sum_{j=0}^{p}a_{j}h(z+c_{j})) + S(r,h) \\ &\leq \overline{N}(r,0;h^{m+n}\sum_{j=0}^{p}a_{j}h(z+c_{j})) + \overline{N}(r,1;h^{m+n}\sum_{j=0}^{p}a_{j}h(z+c_{j})) + S(r,h) \\ &\leq N(r,0;h) + mT(r,h) + pT(r,h) + S(r,h) \\ &\leq (m+p+1)T(r,h) + S(r,h), \end{aligned}$$

which contradicts with n > 1. Hence h is a constant. Since g is transcendental entire function, from (0.10) we have

$$h^{n+m} \sum_{j=0}^{p} a_{j}h(z+c_{j}) - 1 \equiv 0 \iff h^{n} \sum_{j=0}^{p} a_{j}h(z+c_{j}) - 1 \equiv 0$$

and so $h^m = 1$. Thus f = tg for a constant t such that $t^m = 1$.

Subcase 2. Let $P(\omega) = (\omega - 1)^m$. Then from (0.8) we have

(0.12)
$$f^{n}(f-1)^{m}\sum_{j=0}^{p}a_{j}f(z+c_{j}) = g^{n}(g-1)^{m}\sum_{j=0}^{p}a_{j}g(z+c_{j}).$$

Let $h = \frac{f}{g}$. If m = 1, then the result follows from Subcase 1. For $m \ge 2$: first we suppose that h is non-constant. Then from (0.12) we can say that f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where

$$R(\omega_1, \omega_2) = \omega_1^n (\omega_1 - 1)^m \sum_{j=0}^p a_j \omega_1 (z + c_j) - \omega_2^n (\omega_2 - 1)^m \sum_{j=0}^p a_j \omega_2 (z + c_j);$$

Next, we suppose that h is a constant, then from (0.12) we get

(0.13)
$$f^n \sum_{j=0}^p a_j f(z+c_j) \sum_{i=0}^m {}^m C_{m-i} f^{m-i} \equiv g^n \sum_{j=0}^p a_j g(z+c_j) \sum_{i=0}^m {}^m C_{m-i} g^{m-i}$$

Now substituting f = gh in (0.13) we get

$$\sum_{i=0}^{m} (-1)^{im} C_{m-i} g^{m-i} (h^{m+n+p-i} = 1) \equiv 0.$$

which implies that h = 1. Hence $f \equiv g$.

Case 2. $P(\omega) \equiv c_0$. Let $h = \frac{f}{q}$. Then from (0.8) we have

(0.14)
$$h^{n}(z) \equiv \frac{1}{\sum_{j=0}^{p} a_{j}h(z+c_{j})}.$$

Thus from Lemmas 1 and 3 we have

$$nT(r,h) = T(r,\sum_{j=0}^{p} a_j h(z+c_j)) + O(1) = pT(r,h) + S(r,h),$$

which is a contradiction since $n \ge 2$. Hence h must be a constant, which implies that $h^{n+p} = 1$, thus f = tgand $t^{n+p} = 1$. This completes the proof.

IV. Proof of Main Results

Proof of Theorem 11.

Proof. Let
$$F = \frac{f^n P(f) \sum_{j=0}^p a_j f(z+c_j)}{p}$$
 and $G = \frac{g^n P(g) \sum_{j=0}^p a_j g(z+c_j)}{p}$. Then F and G share (1,2) except the zeris of $p(z)$. Now applying Lemma we see that one of the following three cases holds.
Case 1. Suppose

$$T(r, F) \le N_2(r, 0; F) + N_2(r, 0; G) + S(r, F) + S(r, G).$$

Now by applying Lemmas 1 and we have

$$\begin{split} T(r,F) &\leq N_2(r,0;F) + N_2(r,0;G) + S(r,F) + S(r,G) \\ &\leq N_2(r,0;f^nP(f)\sum_{j=0}^p a_j f(z+c_j)) + N_2(r,0;g^nP(g)\sum_{j=0}^p a_j g(z+c_j)) + S(r,f) + S(r,g) \\ &\leq N_2(r,0;f^nP(f)) + N_2(r,0;g^nP(g)) + N_2(r,0;\sum_{j=0}^p a_j f(z+c_j)) + N_2(r,0;\sum_{j=0}^p a_j g(z+c_j)) + S(r,f) + S(r,g) \\ &\leq 2N(r,0;f) + N(r,0;P(f)) + N(r,0;\sum_{j=0}^p a_j f(z+c_j)) + 2N(r,0;g) + N(r,0;P(g)) \\ &+ N(r,0;\sum_{j=0}^p a_j g(z+c_j)) + S(r,f) + S(r,g) \\ &\leq (2+m^*+p)T(r,f) + N(r,0;f) + (2+m^*+p)T(r,g) + N(r,0;g) + S(r,f) + S(r,g) \\ &\leq (2+m^*+p)T(r,f) + (2+m^*+p)T(r,g) + S(r,f) + S(r,g) \\ &\leq (4+2m^*+2p)T(r) + S(r). \end{split}$$

From Lemmas 1 and Lemma 4 wwe have

(0.15)
$$(n+m^*+p)T(r,f) \le (4+2m^*+2p)T(r)+S(r).$$

Similarly, we have

(0.16)
$$(n+m^*+p)T(r,g) \le (4+2m^*+2p)T(r)+S(r).$$

Combining the inequalities (0.15) and (0.16), we get

$$(n + m^* + p)T(r) \le (4 + 2m^* + 2p)T(r) + S(r),$$

which contradicts with $n > m^* + p + 4$.

Case 2. $F \equiv G$. Then we have

$$f^n P(f) \sum_{j=0}^p a_j f(z+c_j) \equiv g^n P(g) \sum_{j=0}^p a_j g(z+c_j).$$

and so the result follows from Lemma 11.

Case 3. $FG \equiv 1$. Then we have

$$f^n P(f) \sum_{j=0}^p a_j f(z+c_j) g^n P(g) \sum_{j=0}^p a_j g(z+c_j) \equiv p^2.$$

and so result from Lemma 9. This completes the proof.

References

- W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355–373.
- [2] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z + η) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105–129.
- J. Heittokangas et al., Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352–363.
- [4] M. L. Fang and W. Hong, A unicity theorem for entire functions concerning differential polynomials, Indian J. Pure Appl. Math. 32 (2001), no. 9, 1343–1348.
- [5] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9–42.
- [6] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- [7] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci. 28 (2001), no. 2, 83–91.
- [8] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193–206.
- [9] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl. 46 (2001), no. 3, 241–253.
- [10] I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 8, 148–151.
- [11] X. M. Li et al., Uniqueness theorems for entire functions whose difference polynomials share a meromorphic function of a smaller order, Ann. Polon. Math. 102 (2011), no. 2, 111–127.
- [12] W. Lin and H. Yi, Uniqueness theorems for meromorphic functions concerning fixed-points, Complex Var. Theory Appl. 49 (2004), no. 11, 793–806.
- [13] K. Liu and L. Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (2009), no. 3, 270–278.
- [14] E. Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), no. 3, 239–259.
- [15] X. G. Qi, L. Z. Yang and K. Liu, Uniqueness and periodicity of meromorphic functions concerning the difference operator, Comput. Math. Appl. 60 (2010), no. 6, 1739–1746.
- [16] C. C. Yang, On deficiencies of differential polynomials. II, Math. Z. 125 (1972), 107–112.
- [17] C. C. Yang and X. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395–406.
- [18] K. Yamanoi, The second main theorem for small functions and related problems, Acta Math. 192 (2004), no. 2, 225–294.
- [19] J. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367 (2010), no. 2, 401–408.
- [20] A. Banerjee and S. Majumder, Uniqueness of entire functions whose difference polynomials sharing a polynomial of certain degree with finite weight, An. Univ. Craiova Ser. Mat. Inform. 47 (2020), no. 2, 215–225.