Weighted Sharing and Uniqueness of Entire Functions whose Difference Polynomials Sharing a Polynomial of Certain Degree

Avinash B., ${ }^{1}$ Smitha S. D. ${ }^{2}$ and Ashrith R. P. ${ }^{3}$
${ }^{1,2,3}$ Assistant Professor, Department of Mathematics, The Oxford College of Science, Bangalore, INDIA.

Abstract

In this paper, we deal with the uniqueness problem of an entire functions whose difference polynomials sharing a polynomial of certain degree with finite weight. This paper extends and improves some classical results obtained by A. Banerjee and S. Majumder [20].

Keywords: Difference polynomials, Entire function, Weighted Sharing etc.,

I. Introduction and Main Results

In this paper by meromorphic functions we shall always mean meromorphic functions in the complex plane. Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions and let $a \in \mathbb{C}$. We say that $f(z)$ and $g(z)$ share a CM, provided that $f(z)-a$ and $g(z)-a$ have the same zeros with the same multiplicities. Similarly, we say that $f(z)$ and $g(z)$ share a IM, provided that $f(z)-a$ and $g(z)-a$ have the same zeros with ignoring multiplicities. In addition we say that $f(z)$ and $g(z)$ share ∞ CM if $\frac{1}{f(z)}$ and $\frac{1}{g(z)}$ share 0 CM , and we say that f and g share ∞ IM, if $\frac{1}{f(z)}$ and $\frac{1}{g(z)}$ share 0 IM. We adopt the standard notations of value distribution theory (see [6]). For a non-constant meromorphic function $f(z)$, we denote by $T(r, f)$ the Nevanlinna characteristic of $f(z)$ and by $S(r, f)$ any quantity satisfying $S(r, f)=o\{T(r, f)\}$ as $r \rightarrow \infty$ possibly outside a set of finite linear measure. We denote by $T(r)$ the maximum of $T(r, f)$ and $T(r, g)$. The notation $S(r)$ denotes any quantity satisfying $S(r)=o(T(r))$ as $r \rightarrow \infty$, outside of a possible exceptional set of finite linear measure. A meromorphic function $a(z)$ is called a small function with respect to $f(z)$, provided that $T(r, a)=S(r, f)$. The order of $f(z)$ is defined by

$$
\sigma(f)=1-\varlimsup_{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions. Let $a(z)$ be a small function with respect to $f(z)$ and $g(z)$. We say that $f(z)$ and $g(z)$ share $a(z)$ CM (counting multiplicities) if $f(z)-a$ and $g(z)-a$ have the same zeros with the same multiplicities and we say that $f(z), g(z)$ share $a(z)$ IM (ignoring multiplicities) if we do not consider the multiplicities. We say that a finite value z_{0} is called a fixed point of $f(z)$ if $f\left(z_{0}\right)=z_{0}$ or z_{0} is a zero of $f(z)-z$. For the sake of simplicity we also use the notation

$$
m^{*}:=\left\{\begin{array}{c}
0, \text { if } m=0 \\
m, \text { if } m \in \mathbb{N} \\
1
\end{array}\right.
$$

Let $f(z)$ be a transcendental meromorphic function, n be a positive integer. During the last few decades many authors investigated the value distributions of $f^{n} f^{\prime}$.

In 1959, W. K. Hayman (see [5) proved the following theorem.

Theorem 1. [5] Let f be a transcendental meromorphic function and $n(\geq 3)$ is an integer. Then $f^{n} f^{\prime}=1$ has infinitely many solutions.

The case $n=2$ was settled by Mues [14] in 1979. Bergweiler and Eremenko [1] showed that $f^{n} f^{\prime}-1$ has infinitely many zeros. For an analogue of the above results Laine and Yang investigated the value distribution of difference products of entire functions in the following manner.

Theorem 2. [10] Let f be a transcendental entire function of finite order, and c be a non-zero complex constants. Then, for $n \geq 2, f^{n} f(z+c)$ assumes every non-zero value $a \in \mathbb{C}$ infinitely often.

Afterwards, Liu and Yang [13] improved Theorem 2 and obtained next result.

Theorem 3. Let f be a transcendental entire function of finite order, and c be a non-zero complex constant. Then, for $n \geq 2, f^{n} f(z+c)-p(z)$ has infinitely many zeros, where $p(z)$ is a non-zero polynomial.

Next we recall the uniqueness result corresponding to Theorem 1, obtained by Yang and Hua 17 which may be considered a gateway to a new research in the direction of sharing values of differential polynomials.

Theorem 4. Let f and g be two non-constant entire functions, $n \in \mathbb{N}$ such that $n \geq 6$. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$ where $c_{1}, c_{2}, c \in \mathbb{C}$ satisfying $4\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$, or $f \equiv t g$ for a constant t such that $t^{n+1}=1$.

In 2001, Fang and Hong [4] studied the uniqueness of differential polynomials of the form $f^{n}(f-1) f^{\prime}$ and proved the following result.

Theorem 5. [4] Let f and g be two non-constant entire functions, and let $n \geq 11$ be a positive integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value $1 C M$, then $f \equiv g$.

In 2004, Lin and Yi [12] extended the above result in view of the fixed point and they proved the following.

Theorem 6. 12 Let f and g be two non-constant entire functions, and let $n \geq 7$ be a positive integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value $z C M$, then $f \equiv g$.

In 2010, Zhang [19] got a analogue result in difference

Theorem 7. [19] Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order and $\alpha(z)$ be a small functon with respect to both $f(z)$ and $g(z)$. Suppose that c is a non-zero complex constant and $n \geq 7$ is an integer. If $f^{n}(f-1) f(z+c)$ and $g^{n}(g-1) g(z+c)$ share $\alpha(z) C M$, then $f(z) \equiv g(z)$.

In 2010, Qi, Yang and Liu [15] obtained the difference counterpart of Theorem 4 by proving the following theorem.

Theorem 8. [15] Let f and g be two transcendental entire functions of finite order, and c be a non-zero complex constant, let $n \geq 6$ be an integer. If $f^{n} f(z+c)$ and $g^{n} g(z+c)$ share $z C M$, then $f \equiv t_{1} g$ for a constant t_{1} satisfies $t_{1}^{n+1}=1$.

Theorem 9. 15 Let f and g be two transcendental entire functions of finite order, and c be a non-zero complex constant, let $n \geq 6$ be an integer. If $f^{n} f(z+c)$ and $g^{n} g(z+c)$ share $1 C M$, then $f g=t_{2}$ or $f \equiv t_{3} g$ for some constants t_{2} and t_{3} that satisfy $t_{3}^{n+1}=1$.

In 2020, A. Banerjee and S. Majumder [20] proved the following result.
Theorem 10. Let f and g be two transcendental entire functions of finite order, c be a non-zero complex constant and let $p(z)$ be a non-zero polynomial with $\operatorname{deg}(p) \leq n-1, n(\geq 1), m^{*}(\geq 0)$ be two integers such that $n>m^{*}+5$. Let $P(\omega)=a_{m} \omega^{m}+a_{m-1} \omega^{m-1}+\ldots+a_{1} \omega+a_{0}$ be a non-zero polynomial. If $f^{n} P(f) f(z+c)-p$ and $g^{n} P(g) g(z+c)-p$ share $(0,2)$ then
(I) when $P(\omega)=a_{m} \omega^{m}+a_{m-1} \omega^{m-1}+\ldots+a_{1} \omega+a_{0}$ is a non-zero polynomial, one of the following three cases holds.
(I1) $f \equiv t g$ for a constant t such that $t^{d}=1$, where $d=G C D(n+m, \ldots, n+m-i, \ldots, n)$ and $a_{m-i} \neq 0$ for some $i=1,2, \ldots, m$,
(I2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}\left(a_{m} \omega_{1}^{n}+\ldots+a_{0}\right)-\omega_{2}\left(a_{m} \omega_{2}^{n}+\right.$ $\ldots+a_{0}$),
(I3) $P(\omega)$ reduces to a non-zero monomial, viz., $P(\omega)=a_{i} \omega^{i} \not \equiv 0$, for $i \in\{0,1,2, \ldots, m\}$ if $p(z)$ is a non-zero constant b, then we have $f=e^{\alpha(z)}$ and $g=e^{\beta(z)}$ where α, β are two non-constant polynomials such that $\alpha+\beta \equiv d \in \mathbb{C}$ and $a_{i}^{2} e^{\left(n_{i}+1\right) d}=b^{2}$;
(II) when $P(\omega)=\omega^{m}-1$, then $f \equiv t g$ for some constant t such that $t^{m}=1$;
(III) when $P(\omega)=(\omega-1)^{m},(m \geq 2)$ one of the following two cases holds:
(III1) $f \equiv g$,
(III2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}\left(a_{m} \omega_{1}^{n}+\ldots+a_{0}\right)-\omega_{2}\left(a_{m} \omega_{2}^{n}+\right.$ $\ldots+a_{0}$);
(IV) when $P(\omega) \equiv c_{0}$ one of the following two cases holds:
(IV1) $f \equiv t g$ for some constant t such that $t^{n+1}=1$,
(IV2) $f=e^{\alpha(z)}$ and $g=e^{\beta(z)}$ where α, β are two non-constant polynomials such that $\alpha+\beta=d \in \mathbb{C}$ and $c_{0}^{2} e^{(n+1) d}=b^{2}$.

In this paper we are replacing $f(z+c)$ by $\sum_{j=1}^{p} a_{j} f\left(z+c_{j}\right)$ and obtained the following result.

Theorem 11. Let f and g be two transcendental entire functions of finite order, c be a non-zero complex constant and let $p(z)$ be a non-zero polynomial with $\operatorname{deg}(p) \leq n-1, n(\geq 1), m^{*}(\geq 0)$ be two integers such that $n>m^{*}+p+4$. Let $P(\omega)=a_{m} \omega^{m}+a_{m-1} \omega^{m-1}+\ldots+a_{1} \omega+a_{0}$ be a non-zero polynomial. If $f^{n} P(f) \sum_{j=1}^{p} a_{j} f\left(z+c_{j}\right)-p$ and $g^{n} P(g) \sum_{j=1}^{p} a_{j} g\left(z+c_{j}\right)-p$ share $(0,2)$ then
(I) when $p(\omega)=a_{m} \omega^{m}+a_{m-1} \omega^{m-1}+\ldots+a_{1} \omega+a_{0}$ is a non-zero polynomial, one of the following three cases holds.
(I1) $f \equiv$ tg for a constant t such that $t^{d}=1$, where $d=G C D(n+m+p, \ldots, n+m+p-i, \ldots, n)$ and $a_{m-i} \neq 0$ for some $i=1,2, \ldots, m$,
(I2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}\left(a_{m} \omega_{1}^{n}+\ldots+a_{0}\right)-\omega_{2}\left(a_{m} \omega_{2}^{n}+\ldots+a_{0}\right)
$$

(I3) $P(\omega)$ reduces to a non-zero monomial, viz., $P(\omega)=a_{i} \omega^{i} \not \equiv 0$, for $i \in\{0,1,2, \ldots, m\}$ if $p(z)$ is a non-zero constant b, then we have $f=e^{\alpha(z)}$ and $g=e^{\beta(z)}$ where α, β are two non-constant polynomials such that $\alpha+\beta \equiv d \in \mathbb{C}$ and $a_{i}^{2} e^{\left(n_{i}+p\right) d}=b^{2}$;
(II) when $P(\omega)=\omega^{m}-1$, then $f \equiv$ tg for some constant t such that $t^{m}=1$;
(III) when $p(\omega)=(\omega-1)^{m},(m \geq 2)$ one of the following two cases holds:
(III1) $f \equiv g$,
(III2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}\left(a_{m} \omega_{1}^{n}+\ldots+a_{0}\right)-\omega_{2}\left(a_{m} \omega_{2}^{n}+\ldots+a_{0}\right)
$$

(IV) when $P(\omega) \equiv c_{0}$ one of the following two cases holds:
(IV1) $f \equiv t g$ for some constant t such that $t^{n+1}=1$,
(IV2) $f=e^{\alpha(z)}$ and $g=e^{\beta(z)}$ where α, β are two non-constant polynomials such that $\alpha+\beta=d \in \mathbb{C}$ and $c_{0}^{2} e^{(n+p) d}=b^{2}$.

II. Auxiliary Definitions

Definition 1. [7] Let $a \in \mathbb{C} \cup\{\infty\}$. For a positive integer p we denote by $N(r, a ; f \mid \leq p)$ the counting function of those a-points of f (counted with multiplicities) whose multiplicities are not greater than p. By $\bar{N}(r, a ; f \mid \leq p)$ we denote the corresponding reduced counting function. In an analogous manner we can define $N(r, a ; f \mid \geq p)$ and $\bar{N}(r, a ; f \mid \geq p)$.

Definition 2. 9] Let k be a positive integer or infinity. We denote by $N_{k}(r, a ; f)$ the counting function of a - points of f where an a - point of multiplicity m is counted m times if $m \leq k$ and k times if $m>k$. Then

$$
N_{k}(r, a ; f)=\bar{N}(r, a ; f)+\bar{N}_{(2}(r, a ; f)+\ldots+\bar{N}_{(k}(r, a ; f)
$$

Clearly, $N_{1}(r, a ; f)=\bar{N}(r, a ; f)$.

Definition 3. [8, [9] Let k be a positive integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$ we say that f, g share the value a with weight k. The definition implies that if f, g share a value a with weight k, then z_{0} is an a-point of f with multiplicity $m(\leq k)$ if and only if it is an a-point of g with multiplicity $m(\leq k)$ and z_{0} is an a-point of f with multiplicity $m(>k)$ if and only if it is an a-point of g with multiplicity $n(>k)$, where m is not necessarily equal to n. We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly, if f, g share (a, k) then f, g share (a, p) for any integer $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

III. Lemmas

Lemma 1. [16] Let f be a non-constant meromorphic function, and let $a_{n}(\not \equiv 0), a_{n-1}, \ldots, a_{0}$ be meromorphic functions such that $T\left(r, a_{i}\right)=S(r, f)$ for $i=0,1, \ldots, n$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2. [2] Let f be a meromorphic function function of inite order σ, and let c be fixed non-zero complex constant. Then for each $\epsilon>0$, we have

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)+m\left(r, \frac{f(z)}{f(z+c)}\right)=O\left(r^{\sigma-1+\epsilon}\right)
$$

Lemma 3. 2] Let f be a meromorphic function function of inite order $\sigma, c \neq 0$ be fixed. Then for each $\epsilon>0$, we have

$$
T(r, f(z+c))=O\left(r^{\sigma-1+\epsilon}\right)
$$

Lemma 4. Let f be an entire function of finite order σ, c be a fixed non-zero complex constant and let $n \in \mathbb{N}$ and $P(\omega)$ be defined as in Theorem 10. Then for each $\epsilon>0$, we have

$$
T\left(r, f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)=T\left(r, f^{n+p} P(f)\right)+O\left(r^{\sigma-1+\epsilon}\right)
$$

Proof. By Lemma 2 we have

$$
\begin{aligned}
T\left(r, f^{n} P(f) f(z+c)\right) & =m\left(r, f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right) \\
& \leq m\left(r, f^{n} P(f) f\right)+m\left(r, \frac{\sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)}{f(z)}\right) \\
& \leq m\left(r, f^{n+p} P(f)\right)+O\left(r^{\sigma-1+\epsilon}\right) \\
& \leq T\left(r, f^{n+p} P(f)\right)+O\left(r^{\sigma-1+\epsilon}\right)
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
T\left(r, f^{n+p} P(f)\right) & =m\left(r, f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right) \\
& \leq m\left(r, f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)+m\left(r, \frac{\sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)}{f(z)}\right) \\
& \leq m\left(r, f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)+O\left(r^{\sigma-1+\epsilon}\right) \\
& \leq m\left(r, f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)+O\left(r^{\sigma-1+\epsilon}\right) \leq T\left(r, f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)+O\left(r^{\sigma-1+\epsilon}\right)
\end{aligned}
$$

Hence

$$
T\left(r, f^{n+p} P(f)\right)=T\left(r, f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)+O\left(r^{\sigma-1+\epsilon}\right)
$$

Remark 1. Under the conditions of Lemma 4. by Lemma $\sqrt{1}$ we have $S\left(r, f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)=S(r, f)$.
Lemma 5. (3]) Let f be a non-constant meromorphic function of finite order and $c \in \mathbb{C}$. Then

$$
\begin{aligned}
N(r, 0 ; f(z+c)) & =N(r, 0 ; f)+S(r, f) \\
\bar{N}(r, 0 ; f(z+c)) & =\bar{N}(r, 0 ; f)+S(r, f) \\
N(r, \infty ; f(z+c)) & =N(r, \infty ; f)+S(r, f) \\
\bar{N}(r, \infty ; f(z+c)) & =\bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

Lemma 6. Let f be transcendental entire function of finite order σ, c be a fixed non-zero complex constant, $n(\geq 1), m^{*}(\geq 0)$ be two integers and let $a(z)(\not \equiv 0, \infty)$ be a small function with respect to f. If $n>1$, then $f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)-\alpha(z)$ has infinitely many zeros.

Proof. Let $\phi=f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)$. Now in view of Lemma 5 and second fundamental theorem of small functions (see [18]) we get

$$
\begin{aligned}
T(r, \phi) & =\bar{N}(r, 0 ; \phi)+\bar{N}(r, \infty ; \phi)+\bar{N}(r, a ; \phi)+(\epsilon+o(1))+T(r, f) \\
& \leq \bar{N}\left(r, 0 ; f^{n} P(f)\right)+\bar{N}\left(r, 0 ; \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)+\bar{N}(r, a ; \phi)+(\epsilon+o(1))+T(r, f) \\
& \leq 2 \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; P(f))+\bar{N}(r, a ; \phi)+(\epsilon+o(1))+T(r, f) \\
& \leq\left(p+m^{*}+1\right) T(r, f)+\bar{N}(r, a ; \phi)+(\epsilon+o(1))+T(r, f)
\end{aligned}
$$

for all $\epsilon>0$. From Lemmas 1 and 4 we get

$$
\left(n+m^{*}+p\right) T(r, f) \leq\left(p+m^{*}+1\right) T(r, f)+\bar{N}(r, a ; \phi)+(\epsilon+o(1))+T(r, f) .
$$

Take $\epsilon<1$. Since $n>1$ from the above one can easily say that $\phi-a(z)$ has infinitely many zeros. This completes the Lemma.

Lemma 7. 9 Let f and g be two non-constant meromorphic functions sharing $(1,2)$. Then one of the following holds.
$(i) T(r, f) \leq N_{2}(r, 0 ; f)+N_{2}(r, 0 ; g)+N_{2}(r, \infty ; f)+N_{2}(r, \infty ; g)+S(r, f)+S(r, g)$.
(ii) $f g \equiv 1$.
$(i i i) f \equiv g$.

Lemma 8. [Hadamard Factorization Theorem]. Let f be an entire function of finite order ρ with zeros a_{1}, \ldots each zeros is counted as often as its multiplicity. Then f can be expressed in the form

$$
f(z)=Q(z) e^{\alpha(z)},
$$

where $\alpha(z)$ is a polynomial of degree not exceeding ρ and $Q(z)$ is the canonical product formed with the zeros of f.

Lemma 9. Let f and g be two transcendental entire functions of finite order, $c \in \mathbb{C} \backslash\{0\}$ and $p(z)$ be a non-zero polynomial such that $\operatorname{deg}(p) \leq n-1$, where $n \in \mathbb{N}$. Let $P(\omega)$ be a non-zero polynomial defined as in Theorem 10. Suppose

$$
f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) g^{n} P(g) \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \equiv p^{2} .
$$

Then $P(\omega)$ reduces to a non-zero monomial, namely $P(\omega)=a_{i} \omega^{i} \not \equiv 0$, for $i \in\{0,1, \ldots, m\}$. If $p(z)=$ $b \in \mathbb{C} \backslash\{0\}$, then $f(z)=e^{\alpha(z)}, g(z)=e^{\beta(z)}$, where $\alpha(z), \beta(z)$ are two non-constant polynomials such that $\alpha+\beta \equiv d \in \mathbb{C}$ and $a_{i}^{2} e^{(n+i+p) d}=b^{2}$.

Proof. Suppose

$$
\begin{equation*}
f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) g^{n} P(g) \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \equiv p^{2} . \tag{0.1}
\end{equation*}
$$

We consider the following cases:
Case 1. Let $\operatorname{deg}(p(z))=l(\geq 1)$. From the assumption that f and g are two transcendental entire functions, we deduce by (0.1) that $N\left(r, 0 ; f^{n} P(f)\right)=O(\log r)$ and $N\left(r, 0 ; g^{n} P(g)\right)=O(\log r)$. First we suppose that $P(\omega)$ is not a non-zero monomial. for the sake of simplicity let $P(\omega)=\omega-a$ where $a \in \mathbb{C} \backslash\{0\}$ clearly
$\Theta(0 ; f)+\Theta(a ; f)=2$ which is impossible for an entire function. Thus $P(\omega)$ reduces to a non-zero monomial, namely $P(\omega) \not \equiv a_{i} \omega^{i}$ for some $i \in\{0,1, \ldots, m\}$ and so 0.1 reduces to

$$
\begin{equation*}
a_{1}^{2} f^{n+i} \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) g^{n+i} \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \equiv p^{2} \tag{0.2}
\end{equation*}
$$

From (0.2) it follows that $N(r, 0 ; f)=O(\log r)$ and $N(r, 0 ; g)=O(\log r)$. Now by Lemma 8 we obtain that $f=h_{1} e^{\alpha_{1}}$ and $g=h_{2} e^{\beta_{1}}$, where h_{1}, h_{2} are two non-zero polynomials. By virtue of the polynomials $p(z)$, from 0.2 we arrive at a contradiction.
Case 2. Let $p(z)=b \in \mathbb{C} \backslash\{0\}$. Then from (0.1) we ahve

$$
\begin{equation*}
f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)=g^{n} P(g) \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \equiv b^{2} \tag{0.3}
\end{equation*}
$$

Now from the assumption that f and g are two non-constant entire functions, we deduce by 0.3 that $f^{n} P(f) \neq 0$ and $g^{n} P(g) \neq 0$. By Picard's Theorem, we clain that $P(\omega)=a_{i} \omega^{i}$ for $i \in\{0,1, \ldots, m\}$, otherwise the Picard's exceptional values are atleast three, which is a contradiction. Then 0.3 reduces to

$$
\begin{equation*}
a_{i}^{2} f^{n+i} \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) g^{n+i} \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \equiv b^{2} . \tag{0.4}
\end{equation*}
$$

Hence by Lemma 8 we obtain that

$$
\begin{equation*}
f=e^{\alpha(z)}, \quad g=e^{\beta(z)} \tag{0.5}
\end{equation*}
$$

where $\alpha(z), \beta(z)$ are twow non-constant polynomials. Now from 0.4 and 0.5 we obtain

$$
(n+i)(\alpha(z)+\beta(z))+\sum_{j=0}^{p} a_{j} \alpha\left(z+c_{j}\right)+\sum_{j=0}^{p} a_{j} \beta\left(z+c_{j}\right) \equiv d_{1}
$$

where $d_{1} \in \mathbb{C}$, i.e.,

$$
\begin{equation*}
(n+i)\left(\alpha^{\prime}(z)+\beta^{\prime}(z)\right)+\sum_{j=0}^{p} a_{j} \alpha^{\prime}\left(z+c_{j}\right)+\sum_{j=0}^{p} a_{j} \beta^{\prime}\left(z+c_{j}\right) \equiv 0 \tag{0.6}
\end{equation*}
$$

Let $\gamma(z)=\alpha^{\prime}(z)+\beta^{\prime}(z)$. Then from 0.6 we have

$$
\begin{equation*}
(n+i) \gamma(z)+\sum_{j=0}^{p} a_{j} \gamma\left(z+c_{j}\right) \equiv 0 \tag{0.7}
\end{equation*}
$$

We assert that $\gamma(z) \equiv 0$. It is not suppose $\gamma \not \equiv 0$. Note that if $\gamma(z) \equiv d_{2} \in \mathbb{C}$, from (0.7) we must have $d_{2}=0$. Suppose that $\operatorname{deg}(\gamma) \geq 1$. Let $\gamma(z)=\sum_{j=1}^{m} b_{i} z^{i}$, where $b_{m} \neq 0$. Therefore the co-efficient of z^{m} in $(n+i) \gamma(z)+\sum_{j=0}^{p} a_{j} \gamma\left(z+c_{j}\right)$ is $(n+p+i) b_{m} \neq 0$. Thus we arrive at a contradiction from (0.7). Hence $\gamma(z) \equiv 0$, i.e., $\alpha+\beta \equiv d \in \mathbb{C}$. Also from 0.4 we have $a_{i}^{2} e^{(n+i+p) d}=b^{2}$. This completes the proof.

Lemma 10. Let f and g be two transcendental entire functions of finite order, $c \in \mathbb{C} \backslash\{0\}$ and $p(z)$ be a non-zero polynomial such that $\operatorname{deg}(p) \leq n-1$, where $n \in \mathbb{N}$. Let $P(\omega)$ be defined as in Theorem 10 with atleast two of $a_{i}, i=0,1, \ldots, m$ are non-zero. Then

$$
f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) g^{n} P(g) \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \not \equiv p^{2} .
$$

Proof. Proof of the Lemma follows from Lemma 9.

Lemma 11. Let f, g be two transcendental entire functions of finite order, $c \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$ with $n>1$. If $f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) \equiv g^{n} P(g) \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right)$ where $P(\omega)$ is defined as in Theorem 10 then
(I) when $p(\omega)=a_{m} \omega^{m}+a_{m-1} \omega^{m-1}+\ldots+a_{1} \omega+a_{0}$, one of the following two cases holds:
(I1) $f \equiv t g$ for a constant t such that $t^{d}=1$, where $d=G C D(n+m, \ldots, n+m-i, \ldots, n), a_{m-i} \neq 0$ for some $i=1,2, \ldots, m$,
(I2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(\omega_{1}, \omega_{2}\right)=\omega_{1} P\left(\omega_{1}\right) \sum_{j=0}^{p} a_{j} \omega_{1}\left(z+c_{j}\right)-\omega_{2} P\left(\omega_{2}\right) \sum_{j=0}^{p} a_{j} \omega_{2}\left(z+c_{j}\right)
$$

(II) when $P(\omega)=\omega^{m}-1$, then $f \equiv$ tg for some constant t such that $t^{m}=1$;
(III) when $p(\omega)=(\omega-1)^{m},(m \geq 2)$ one of the following two cases holds:
(III1) $f \equiv g$,
(III2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n}\left(\omega_{1}-1\right)^{m} \sum_{j=0}^{p} a_{j} \omega_{1}\left(z+c_{j}\right)-\omega_{2}^{n}\left(\omega_{2}-1\right)^{m} \sum_{j=0}^{p} a_{j} \omega_{2}\left(z+c_{j}\right)
$$

(IV) when $P(\omega) \equiv c_{0}$ then $f \equiv$ tg for some constant t such that $t^{n+1}=1$.

Proof. Suppose

$$
\begin{equation*}
f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) \equiv g^{n} P(g) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) \tag{0.8}
\end{equation*}
$$

Since g is transcendental entire function, hence $g(z), \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \not \equiv 0$. We consider following two cases.
Case 1. $P(\omega) \equiv c_{0}$. Let $h=\frac{f}{g}$. If h is a constant, by putting $f=h g$ in 0.8 we get

$$
a_{m} g^{m}\left(h^{m+n+p}-1\right)+a_{m-1} g^{m-1}\left(h^{m+n}-1\right)+\ldots+a_{0}\left(h^{n+1}-1\right) \equiv 0
$$

which implies that $h^{d}=1$, where $d=G C D(n+m+p, \ldots, n+m+p-i, \ldots, n+1), a_{m-i} \neq 0$ for some $i \in\{0,1, \ldots, m\}$. Thus $f \equiv t g$ for a constant t such that $t^{d}=1$, where $d=G C D(n+m+p, \ldots, n+m+$
$p-i, \ldots, n+1), a_{m-i} \neq 0$ for some $i \in\{0,1, \ldots, m\}$. If h is not a constant, we know by 0.8 that f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n} P\left(\omega_{1}\right) \sum_{j=0}^{p} a_{j} \omega_{1}\left(z+c_{j}\right)-\omega_{2}^{n} P\left(\omega_{2}\right) \sum_{j=0}^{p} a_{j} \omega_{2}\left(z+c_{j}\right) .
$$

We now discuss the following subcases.
Subcase 1. $P(\omega)=\omega-1$. Then from 0.8 we have

$$
\begin{equation*}
f^{n}\left(f^{m}-1\right) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) \equiv g^{n}\left(g^{m}-1\right) \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \tag{0.9}
\end{equation*}
$$

Let $h=\frac{f}{g}$. clearly from 0.9 we get

$$
\begin{equation*}
g^{m}\left[h^{m+n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)-1\right] \equiv h^{n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)-1 . \tag{0.10}
\end{equation*}
$$

First we suppose that h is non-constant. We assert that $h^{m+n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)$ is a non-constant. If not let $h^{m+n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right) \equiv c_{1} \in \mathbb{C} \backslash\{0\}$. Then we have

$$
h^{n+m} \equiv \frac{c_{1}}{\sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)} .
$$

Now by Lemmas 1 and refL3 we get

$$
(n+m) T(r, h) \leq T\left(r, \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)\right)+S(r, h)
$$

which contradicts with $n>m+p+4$. Thus from 0.10 we have

$$
\begin{equation*}
g^{m} \equiv \frac{h^{n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)-1}{h^{m+n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)-1} \tag{0.11}
\end{equation*}
$$

Let z_{0} be a zero of $h^{m+n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)-1$. Since g is an entire function, it follows that z_{0} is also a zero of $h^{n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)-1$. Consequently z_{0} is a zero of $h^{m}-1$ and so

$$
\bar{N}\left(r, 0 ; h^{m+n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)\right) \leq \bar{N}\left(r, 0 ; h^{m}\right) \leq m T(r, h)+O(1) .
$$

So in view of Lemmas 1, 4.5 and second fundamental theorem we get

$$
\begin{aligned}
(n+m+p) T(r, h) & =T\left(r, h^{m+n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)\right)+S(r, h) \\
& \leq \bar{N}\left(r, 0 ; h^{m+n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)\right)+\bar{N}\left(r, 1 ; h^{m+n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)\right)+S(r, h) \\
& \leq N(r, 0 ; h)+m T(r, h)+p T(r, h)+S(r, h) \\
& \leq(m+p+1) T(r, h)+S(r, h),
\end{aligned}
$$

which contradicts with $n>1$. Hence h is a constant. Since g is transcendental entire funtion, from 0.10 we have

$$
h^{n+m} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)-1 \equiv 0 \Longleftrightarrow h^{n} \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)-1 \equiv 0
$$

and so $h^{m}=1$. Thus $f=t g$ for a constant t such that $t^{m}=1$.
Subcase 2. Let $P(\omega)=(\omega-1)^{m}$. Then from (0.8) we have

$$
\begin{equation*}
f^{n}(f-1)^{m} \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)=g^{n}(g-1)^{m} \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \tag{0.12}
\end{equation*}
$$

Let $h=\frac{f}{g}$. If $m=1$, then the result follows from Subcase 1. For $m \geq 2$: first we suppose that h is non-constant. Then from (0.12) we can say that f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n}\left(\omega_{1}-1\right)^{m} \sum_{j=0}^{p} a_{j} \omega_{1}\left(z+c_{j}\right)-\omega_{2}^{n}\left(\omega_{2}-1\right)^{m} \sum_{j=0}^{p} a_{j} \omega_{2}\left(z+c_{j}\right) ;
$$

Next, we suppose that h is a constant, then from (0.12) we get

$$
\begin{equation*}
f^{n} \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) \sum_{i=0}^{m}{ }^{m} C_{m-i} f^{m-i} \equiv g^{n} \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \sum_{i=0}^{m}{ }^{m} C_{m-i} g^{m-i} . \tag{0.13}
\end{equation*}
$$

Now substituting $f=g h$ in (0.13) we get

$$
\sum_{i=0}^{m}(-1)^{i m} C_{m-i} g^{m-i}\left(h^{m+n+p-i}=1\right) \equiv 0 .
$$

which implies that $h=1$. Hence $f \equiv g$.
Case 2. $P(\omega) \equiv c_{0}$. Let $h=\frac{f}{g}$. Then from 0.8 we have

$$
\begin{equation*}
h^{n}(z) \equiv \frac{1}{\sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)} . \tag{0.14}
\end{equation*}
$$

Thus from Lemmas 1 and 3 we have

$$
n T(r, h)=T\left(r, \sum_{j=0}^{p} a_{j} h\left(z+c_{j}\right)\right)+O(1)=p T(r, h)+S(r, h),
$$

which is a contradiction since $n \geq 2$. Hence h must be a constant, which implies that $h^{n+p}=1$, thus $f=t g$ and $t^{n+p}=1$. This completes the proof.

IV. Proof of Main Results

Proof of Theorem 11.

Proof. Let $F=\frac{f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)}{p}$ and $G=\frac{g^{n} P(g) \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right)}{p}$. Then F and G share (1,2) except the zeris of $p(z)$. Now applying Lemma \|we see that one of the following three cases holds.
Case 1. Suppose

$$
T(r, F) \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+S(r, F)+S(r, G) .
$$

Now by applying Lemmas 1 and \rrbracket we have

$$
\begin{aligned}
T(r, F) & \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+S(r, F)+S(r, G) \\
& \leq N_{2}\left(r, 0 ; f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)+N_{2}\left(r, 0 ; g^{n} P(g) \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right)\right)+S(r, f)+S(r, g) \\
& \leq N_{2}\left(r, 0 ; f^{n} P(f)\right)+N_{2}\left(r, 0 ; g^{n} P(g)\right)+N_{2}\left(r, 0 ; \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)+N_{2}\left(r, 0 ; \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right)\right)+S(r, f)+S(r, g) \\
& \leq 2 N(r, 0 ; f)+N(r, 0 ; P(f))+N\left(r, 0 ; \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right)\right)+2 N(r, 0 ; g)+N(r, 0 ; P(g)) \\
& +N\left(r, 0 ; \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right)\right)+S(r, f)+S(r, g) \\
& \leq\left(2+m^{*}+p\right) T(r, f)+N(r, 0 ; f)+\left(2+m^{*}+p\right) T(r, g)+N(r, 0 ; g)+S(r, f)+S(r, g) \\
& \leq\left(2+m^{*}+p\right) T(r, f)+\left(2+m^{*}+p\right) T(r, g)+S(r, f)+S(r, g) \\
& \leq\left(4+2 m^{*}+2 p\right) T(r)+S(r) .
\end{aligned}
$$

From Lemmas 1 and Lemma 4 wwe have

$$
\begin{equation*}
\left(n+m^{*}+p\right) T(r, f) \leq\left(4+2 m^{*}+2 p\right) T(r)+S(r) \tag{0.15}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left(n+m^{*}+p\right) T(r, g) \leq\left(4+2 m^{*}+2 p\right) T(r)+S(r) . \tag{0.16}
\end{equation*}
$$

Combining the inequalities 0.15) and 0.16, we get

$$
\left(n+m^{*}+p\right) T(r) \leq\left(4+2 m^{*}+2 p\right) T(r)+S(r),
$$

which contradicts with $n>m^{*}+p+4$.
Case 2. $F \equiv G$. Then we have

$$
f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) \equiv g^{n} P(g) \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) .
$$

and so the result follows from Lemma 11 .

Case 3. $F G \equiv 1$. Then we have

$$
f^{n} P(f) \sum_{j=0}^{p} a_{j} f\left(z+c_{j}\right) g^{n} P(g) \sum_{j=0}^{p} a_{j} g\left(z+c_{j}\right) \equiv p^{2} .
$$

and so result from Lemma 9 This completes the proof.

References

[1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373.
[2] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129.
[3] J. Heittokangas et al., Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363.
[4] M. L. Fang and W. Hong, A unicity theorem for entire functions concerning differential polynomials, Indian J. Pure Appl. Math. 32 (2001), no. 9, 1343-1348.
[5] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9-42.
[6] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[7] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci. 28 (2001), no. 2, 83-91.
[8] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193-206.
[9] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl. 46 (2001), no. $3,241-253$.
[10] I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. $8,148-151$.
[11] X. M. Li et al., Uniqueness theorems for entire functions whose difference polynomials share a meromorphic function of a smaller order, Ann. Polon. Math. 102 (2011), no. 2, 111-127.
[12] W. Lin and H. Yi, Uniqueness theorems for meromorphic functions concerning fixed-points, Complex Var. Theory Appl. 49 (2004), no. 11, 793-806.
[13] K. Liu and L. Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (2009), no. 3, $270-278$.
[14] E. Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), no. 3, 239-259.
[15] X. G. Qi, L. Z. Yang and K. Liu, Uniqueness and periodicity of meromorphic functions concerning the difference operator, Comput. Math. Appl. 60 (2010), no. 6, 1739-1746.
[16] C. C. Yang, On deficiencies of differential polynomials. II, Math. Z. 125 (1972), 107-112.
[17] C. C. Yang and X. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
[18] K. Yamanoi, The second main theorem for small functions and related problems, Acta Math. 192 (2004), no. 2, $225-294$.
[19] J. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367 (2010), no. 2, 401-408.
[20] A. Banerjee and S. Majumder, Uniqueness of entire functions whose difference polynomials sharing a polynomial of certain degree with finite weight, An. Univ. Craiova Ser. Mat. Inform. 47 (2020), no. 2, 215-225.

