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I. Introduction and Main Results

In this paper by meromorphic functions we shall always mean meromorphic functions in the complex plane.

Let f(z) and g(z) be two non-constant meromorphic functions and let a ∈ C. We say that f(z) and g(z)

share a CM, provided that f(z)−a and g(z)−a have the same zeros with the same multiplicities. Similarly,

we say that f(z) and g(z) share a IM, provided that f(z)−a and g(z)−a have the same zeros with ignoring

multiplicities. In addition we say that f(z) and g(z) share∞ CM if 1
f(z) and 1

g(z) share 0 CM, and we say that

f and g share∞ IM, if 1
f(z) and 1

g(z) share 0 IM. We adopt the standard notations of value distribution theory

(see [6]). For a non-constant meromorphic function f(z), we denote by T (r, f) the Nevanlinna characteristic

of f(z) and by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} as r →∞ possibly outside a set of finite

linear measure. We denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r) denotes any

quantity satisfying S(r) = o(T (r)) as r → ∞, outside of a possible exceptional set of finite linear measure.

A meromorphic function a(z) is called a small function with respect to f(z), provided that T (r, a) = S(r, f).

The order of f(z) is defined by

σ(f) = 1− lim
r→∞

log T (r, f)

log r
.

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be a small function with respect to

f(z) and g(z). We say that f(z) and g(z) share a(z) CM (counting multiplicities) if f(z)−a and g(z)−a have

the same zeros with the same multiplicities and we say that f(z), g(z) share a(z) IM (ignoring multiplicities)

if we do not consider the multiplicities. We say that a finite value z0 is called a fixed point of f(z) if f(z0) = z0

or z0 is a zero of f(z)− z. For the sake of simplicity we also use the notation

m∗ :=

0, if m = 0

m, if m ∈ N.
1

ssrg 5
Text Box
International Journal of Mathematics Trends and Technology                                                             Volume 68 Issue 1, 130-142, January 2022ISSN: 2231  - 5373/doi:10.14445/22315373/IJMTT-V68I1P514                                                            © 2022 Seventh Sense Research Group®              

ssrg 5
Text Box
  This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

ssrg 5
Text Box
Weighted Sharing and Uniqueness of Entire Functions whose Difference Polynomials Sharing a Polynomial of Certain Degree



2 WEIGHTED SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS . . .

Let f(z) be a transcendental meromorphic function, n be a positive integer. During the last few decades

many authors investigated the value distributions of fnf ′.

In 1959, W. K. Hayman (see [5]) proved the following theorem.

Theorem 1. [5] Let f be a transcendental meromorphic function and n (≥ 3) is an integer. Then fnf ′ = 1

has infinitely many solutions.

The case n = 2 was settled by Mues [14] in 1979. Bergweiler and Eremenko [1] showed that fnf ′ − 1 has

infinitely many zeros. For an analogue of the above results Laine and Yang investigated the value distribution

of difference products of entire functions in the following manner.

Theorem 2. [10] Let f be a transcendental entire function of finite order, and c be a non-zero complex

constants. Then, for n ≥ 2, fnf(z + c) assumes every non-zero value a ∈ C infinitely often.

Afterwards, Liu and Yang [13] improved Theorem 2 and obtained next result.

Theorem 3. Let f be a transcendental entire function of finite order, and c be a non-zero complex constant.

Then, for n ≥ 2, fnf(z + c)− p(z) has infinitely many zeros, where p(z) is a non-zero polynomial.

Next we recall the uniqueness result corresponding to Theorem 1, obtained by Yang and Hua [17] which

may be considered a gateway to a new research in the direction of sharing values of differential polynomials.

Theorem 4. Let f and g be two non-constant entire functions, n ∈ N such that n ≥ 6. If fnf ′ and gng′

share 1 CM, then either f(z) = c1e
cz, g(z) = c2e

−cz where c1, c2, c ∈ C satisfying 4(c1c2)n+1c2 = −1, or

f ≡ tg for a constant t such that tn+1 = 1.

In 2001, Fang and Hong [4] studied the uniqueness of differential polynomials of the form fn(f − 1)f ′ and

proved the following result.

Theorem 5. [4] Let f and g be two non-constant entire functions, and let n ≥ 11 be a positive integer. If

fn(f − 1)f ′ and gn(g − 1)g′ share the value 1 CM, then f ≡ g.

In 2004, Lin and Yi [12] extended the above result in view of the fixed point and they proved the following.

Theorem 6. [12] Let f and g be two non-constant entire functions, and let n ≥ 7 be a positive integer. If

fn(f − 1)f ′ and gn(g − 1)g′ share the value z CM, then f ≡ g.

In 2010, Zhang [19] got a analogue result in difference

Theorem 7. [19] Let f(z) and g(z) be two transcendental entire functions of finite order and α(z) be a

small functon with respect to both f(z) and g(z). Suppose that c is a non-zero complex constant and n ≥ 7

is an integer. If fn(f − 1)f(z + c) and gn(g − 1)g(z + c) share α(z) CM, then f(z) ≡ g(z).

ssrg 5
Text Box
Avinash B et al. / IJMTT, 68(1), 130-142, 2022

ssrg 5
Text Box
131



WEIGHTED SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS . . . 3

In 2010, Qi, Yang and Liu [15] obtained the difference counterpart of Theorem 4 by proving the following

theorem.

Theorem 8. [15] Let f and g be two transcendental entire functions of finite order, and c be a non-zero

complex constant, let n ≥ 6 be an integer. If fnf(z + c) and gng(z + c) share z CM, then f ≡ t1g for a

constant t1 satisfies tn+1
1 = 1.

Theorem 9. [15] Let f and g be two transcendental entire functions of finite order, and c be a non-zero

complex constant, let n ≥ 6 be an integer. If fnf(z+ c) and gng(z+ c) share 1 CM, then fg = t2 or f ≡ t3g

for some constants t2 and t3 that satisfy tn+1
3 = 1.

In 2020, A. Banerjee and S. Majumder [20] proved the following result.

Theorem 10. Let f and g be two transcendental entire functions of finite order, c be a non-zero complex

constant and let p(z) be a non-zero polynomial with deg(p) ≤ n−1, n(≥ 1), m∗(≥ 0) be two integers such that

n > m∗+5. Let P (ω) = amω
m+am−1ω

m−1 + . . .+a1ω+a0 be a non-zero polynomial. If fnP (f)f(z+c)−p

and gnP (g)g(z + c)− p share (0, 2) then

(I) when P (ω) = amω
m + am−1ω

m−1 + . . . + a1ω + a0 is a non-zero polynomial, one of the following three

cases holds.

(I1) f ≡ tg for a constant t such that td = 1, where d = GCD(n + m, . . . , n + m − i, . . . , n) and am−i 6= 0

for some i = 1, 2, . . . ,m,

(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) = ω1(amω
n
1 + . . .+ a0)−ω2(amω

n
2 +

. . .+ a0),

(I3) P (ω) reduces to a non-zero monomial, viz., P (ω) = aiω
i 6≡ 0, for i ∈ {0, 1, 2, . . . ,m} if p(z) is a

non-zero constant b, then we have f = eα(z) and g = eβ(z) where α, β are two non-constant polynomials

such that α+ β ≡ d ∈ C and a2i e
(ni+1)d = b2;

(II) when P (ω) = ωm − 1, then f ≡ tg for some constant t such that tm = 1;

(III) when P (ω) = (ω − 1)m, (m ≥ 2) one of the following two cases holds:

(III1) f ≡ g,

(III2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) = ω1(amω
n
1 + . . .+a0)−ω2(amω

n
2 +

. . .+ a0);

(IV) when P (ω) ≡ c0 one of the following two cases holds:

(IV1) f ≡ tg for some constant t such that tn+1 = 1,

(IV2) f = eα(z) and g = eβ(z) where α, β are two non-constant polynomials such that α + β = d ∈ C and

c20e
(n+1)d = b2.

In this paper we are replacing f(z + c) by

p∑
j=1

ajf(z + cj) and obtained the following result.
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4 WEIGHTED SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS . . .

Theorem 11. Let f and g be two transcendental entire functions of finite order, c be a non-zero complex

constant and let p(z) be a non-zero polynomial with deg(p) ≤ n − 1, n(≥ 1), m∗(≥ 0) be two integers such

that n > m∗ + p + 4. Let P (ω) = amω
m + am−1ω

m−1 + . . . + a1ω + a0 be a non-zero polynomial. If

fnP (f)

p∑
j=1

ajf(z + cj)− p and gnP (g)

p∑
j=1

ajg(z + cj)− p share (0, 2) then

(I) when p(ω) = amω
m + am−1ω

m−1 + . . . + a1ω + a0 is a non-zero polynomial, one of the following three

cases holds.

(I1) f ≡ tg for a constant t such that td = 1, where d = GCD(n + m + p, . . . , n + m + p − i, . . . , n) and

am−i 6= 0 for some i = 1, 2, . . . ,m,

(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ω1(amω
n
1 + . . .+ a0)− ω2(amω

n
2 + . . .+ a0),

(I3) P (ω) reduces to a non-zero monomial, viz., P (ω) = aiω
i 6≡ 0, for i ∈ {0, 1, 2, . . . ,m} if p(z) is a

non-zero constant b, then we have f = eα(z) and g = eβ(z) where α, β are two non-constant polynomials

such that α+ β ≡ d ∈ C and a2i e
(ni+p)d = b2;

(II) when P (ω) = ωm − 1, then f ≡ tg for some constant t such that tm = 1;

(III) when p(ω) = (ω − 1)m, (m ≥ 2) one of the following two cases holds:

(III1) f ≡ g,

(III2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ω1(amω
n
1 + . . .+ a0)− ω2(amω

n
2 + . . .+ a0);

(IV) when P (ω) ≡ c0 one of the following two cases holds:

(IV1) f ≡ tg for some constant t such that tn+1 = 1,

(IV2) f = eα(z) and g = eβ(z) where α, β are two non-constant polynomials such that α + β = d ∈ C and

c20e
(n+p)d = b2.

II. Auxiliary Definitions

Definition 1. [7] Let a ∈ C ∪ {∞}. For a positive integer p we denote by N(r, a; f | ≤ p) the counting

function of those a-points of f (counted with multiplicities) whose multiplicities are not greater than p. By

N(r, a; f | ≤ p) we denote the corresponding reduced counting function. In an analogous manner we can

define N(r, a; f | ≥ p) and N(r, a; f | ≥ p).

Definition 2. [9] Let k be a positive integer or infinity. We denote by Nk(r, a; f) the counting function of

a- points of f where an a- point of multiplicity m is counted m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N (2(r, a; f) + . . .+N (k(r, a; f).

Clearly, N1(r, a; f) = N(r, a; f).
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WEIGHTED SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS . . . 5

Definition 3. [8], [9] Let k be a positive integer or infinity. For a ∈ C ∪ {∞} we denote by Ek(a; f) the

set of all a-points of f where an a-point of multiplicity m is counted m times if m ≤ k and k + 1 times if

m > k. If Ek(a; f) = Ek(a; g) we say that f, g share the value a with weight k. The definition implies that

if f, g share a value a with weight k, then z0 is an a-point of f with multiplicity m(≤ k) if and only if it is

an a-point of g with multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only if it

is an a-point of g with multiplicity n(> k), where m is not necessarily equal to n. We write f, g share (a, k)

to mean that f, g share the value a with weight k. Clearly, if f, g share (a, k) then f, g share (a, p) for any

integer p, 0 ≤ p < k. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or

(a,∞) respectively.

III. Lemmas

Lemma 1. [16] Let f be a non-constant meromorphic function, and let an(6≡ 0), an−1, . . . , a0 be meromor-

phic functions such that T (r, ai) = S(r, f) for i = 0, 1, . . . , n. Then

T (r, anf
n + an−1f

n−1 + ...+ a0) = nT (r, f) + S(r, f).

Lemma 2. [2] Let f be a meromorphic function function of inite order σ, and let c be fixed non-zero complex

constant. Then for each ε > 0, we have

m
(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O(rσ−1+ε).

Lemma 3. [2] Let f be a meromorphic function function of inite order σ, c 6= 0 be fixed. Then for each

ε > 0, we have

T
(
r, f(z + c)

)
= O(rσ−1+ε).

Lemma 4. Let f be an entire function of finite order σ, c be a fixed non-zero complex constant and let

n ∈ N and P (ω) be defined as in Theorem 10. Then for each ε > 0, we have

T (r, fnP (f)

p∑
j=0

ajf(z + cj)) = T (r, fn+pP (f)) +O(rσ−1+ε).

Proof. By Lemma 2 we have

T (r, fnP (f)f(z + c)) = m(r, fnP (f)

p∑
j=0

ajf(z + cj))

≤ m(r, fnP (f)f) +m

(
r,

p∑
j=0

ajf(z + cj)

f(z)

)
≤ m(r, fn+pP (f)) +O(rσ−1+ε)

≤ T (r, fn+pP (f)) +O(rσ−1+ε).
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6 WEIGHTED SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS . . .

Also, we have

T (r, fn+pP (f)) = m(r, fnP (f)

p∑
j=0

ajf(z + cj))

≤ m

(
r, fnP (f)

p∑
j=0

ajf(z + cj)

)
+m

(
r,

p∑
j=0

ajf(z + cj)

f(z)

)

≤ m

(
r, fnP (f)

p∑
j=0

ajf(z + cj)

)
+O(rσ−1+ε)

≤ m

(
r, fnP (f)

p∑
j=0

ajf(z + cj)

)
+O(rσ−1+ε) ≤ T

(
r, fnP (f)

p∑
j=0

ajf(z + cj)

)
+O(rσ−1+ε).

Hence

T (r, fn+pP (f)) = T

(
r, fnP (f)

p∑
j=0

ajf(z + cj)

)
+O(rσ−1+ε).

�

Remark 1. Under the conditions of Lemma 4, by Lemma 1 we have S
(
r, fnP (f)

p∑
j=0

ajf(z+cj)
)

= S(r, f).

Lemma 5. ([3]) Let f be a non-constant meromorphic function of finite order and c ∈ C. Then

N(r, 0; f(z + c)) = N(r, 0; f) + S(r, f).

N(r, 0; f(z + c)) = N(r, 0; f) + S(r, f).

N(r,∞; f(z + c)) = N(r,∞; f) + S(r, f).

N(r,∞; f(z + c)) = N(r,∞; f) + S(r, f).

Lemma 6. Let f be transcendental entire function of finite order σ, c be a fixed non-zero complex constant,

n(≥ 1), m∗(≥ 0) be two integers and let a(z)( 6≡ 0,∞) be a small function with respect to f . If n > 1, then

fnP (f)

p∑
j=0

ajf(z + cj)− α(z) has infinitely many zeros.

Proof. Let φ = fnP (f)

p∑
j=0

ajf(z + cj). Now in view of Lemma 5 and second fundamental theorem of small

functions (see [18]) we get

T (r, φ) = N(r, 0;φ) +N(r,∞;φ) +N(r, a;φ) + (ε+ o(1)) + T (r, f)

≤ N(r, 0; fnP (f)) +N
(
r, 0;

p∑
j=0

ajf(z + cj)
)

+N(r, a;φ) + (ε+ o(1)) + T (r, f)

≤ 2N(r, 0; f) +N(r, 0;P (f)) +N(r, a;φ) + (ε+ o(1)) + T (r, f)

≤ (p+m∗ + 1)T (r, f) +N(r, a;φ) + (ε+ o(1)) + T (r, f).
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WEIGHTED SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS . . . 7

for all ε > 0. From Lemmas 1 and 4 we get

(n+m∗ + p)T (r, f) ≤ (p+m∗ + 1)T (r, f) +N(r, a;φ) + (ε+ o(1)) + T (r, f).

Take ε < 1. Since n > 1 from the above one can easily say that φ − a(z) has infinitely many zeros. This

completes the Lemma. �

Lemma 7. [9] Let f and g be two non-constant meromorphic functions sharing (1, 2). Then one of the

following holds.

(i)T (r, f) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r, f) + S(r, g).

(ii)fg ≡ 1.

(iii)f ≡ g.

Lemma 8. [Hadamard Factorization Theorem]. Let f be an entire function of finite order ρ with zeros

a1, . . . each zeros is counted as often as its multiplicity. Then f can be expressed in the form

f(z) = Q(z)eα(z),

where α(z) is a polynomial of degree not exceeding ρ and Q(z) is the canonical product formed with the zeros

of f .

Lemma 9. Let f and g be two transcendental entire functions of finite order, c ∈ C \ {0} and p(z) be a

non-zero polynomial such that deg(p) ≤ n − 1, where n ∈ N. Let P (ω) be a non-zero polynomial defined as

in Theorem 10. Suppose

fnP (f)

p∑
j=0

ajf(z + cj)g
nP (g)

p∑
j=0

ajg(z + cj) ≡ p2.

Then P (ω) reduces to a non-zero monomial, namely P (ω) = aiω
i 6≡ 0, for i ∈ {0, 1, . . . ,m}. If p(z) =

b ∈ C \ {0}, then f(z) = eα(z), g(z) = eβ(z), where α(z), β(z) are two non-constant polynomials such that

α+ β ≡ d ∈ C and a2i e
(n+i+p)d = b2.

Proof. Suppose

(0.1) fnP (f)

p∑
j=0

ajf(z + cj)g
nP (g)

p∑
j=0

ajg(z + cj) ≡ p2.

We consider the following cases:

Case 1. Let deg(p(z)) = l (≥ 1). From the assumption that f and g are two transcendental entire functions,

we deduce by (0.1) that N(r, 0; fnP (f)) = O(log r) and N(r, 0; gnP (g)) = O(log r). First we suppose that

P (ω) is not a non-zero monomial. for the sake of simplicity let P (ω) = ω − a where a ∈ C \ {0} clearly

ssrg 5
Text Box
136

ssrg 5
Text Box
Avinash B et al. / IJMTT, 68(1), 130-142, 2022



8 WEIGHTED SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS . . .

Θ(0; f)+ Θ(a; f) = 2 which is impossible for an entire function. Thus P (ω) reduces to a non-zero monomial,

namely P (ω) 6≡ aiωi for some i ∈ {0, 1, . . . ,m} and so (0.1) reduces to

(0.2) a21f
n+i

p∑
j=0

ajf(z + cj)g
n+i

p∑
j=0

ajg(z + cj) ≡ p2.

From (0.2) it follows that N(r, 0; f) = O(log r) and N(r, 0; g) = O(log r). Now by Lemma 8 we obtain that

f = h1e
α1 and g = h2e

β1 , where h1, h2 are two non-zero polynomials. By virtue of the polynomials p(z),

from (0.2) we arrive at a contradiction.

Case 2. Let p(z) = b ∈ C \ {0}. Then from (0.1) we ahve

(0.3) fnP (f)

p∑
j=0

ajf(z + cj) = gnP (g)

p∑
j=0

ajg(z + cj) ≡ b2.

Now from the assumption that f and g are two non-constant entire functions, we deduce by (0.3) that

fnP (f) 6= 0 and gnP (g) 6= 0. By Picard’s Theorem, we clain that P (ω) = aiω
i for i ∈ {0, 1, . . . ,m},

otherwise the Picard’s exceptional values are atleast three, which is a contradiction. Then (0.3) reduces to

(0.4) a2i f
n+i

p∑
j=0

ajf(z + cj)g
n+i

p∑
j=0

ajg(z + cj) ≡ b2.

Hence by Lemma 8 we obtain that

(0.5) f = eα(z), g = eβ(z),

where α(z), β(z) are twow non-constant polynomials. Now from (0.4) and (0.5) we obtain

(n+ i)(α(z) + β(z)) +

p∑
j=0

ajα(z + cj) +

p∑
j=0

ajβ(z + cj) ≡ d1.

where d1 ∈ C, i.e.,

(0.6) (n+ i)(α′(z) + β′(z)) +

p∑
j=0

ajα
′(z + cj) +

p∑
j=0

ajβ
′(z + cj) ≡ 0.

Let γ(z) = α′(z) + β′(z). Then from (0.6) we have

(0.7) (n+ i)γ(z) +

p∑
j=0

ajγ(z + cj) ≡ 0.

We assert that γ(z) ≡ 0. It is not suppose γ 6≡ 0. Note that if γ(z) ≡ d2 ∈ C, from (0.7) we must have

d2 = 0. Suppose that deg(γ) ≥ 1. Let γ(z) =

m∑
j=1

biz
i, where bm 6= 0. Therefore the co-efficient of zm in

(n + i)γ(z) +

p∑
j=0

ajγ(z + cj) is (n + p + i)bm 6= 0. Thus we arrive at a contradiction from (0.7). Hence

γ(z) ≡ 0, i.e., α+ β ≡ d ∈ C. Also from (0.4) we have a2i e
(n+i+p)d = b2. This completes the proof. �
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WEIGHTED SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS . . . 9

Lemma 10. Let f and g be two transcendental entire functions of finite order, c ∈ C \ {0} and p(z) be a

non-zero polynomial such that deg(p) ≤ n − 1, where n ∈ N. Let P (ω) be defined as in Theorem 10 with

atleast two of ai, i = 0, 1, . . . ,m are non-zero. Then

fnP (f)

p∑
j=0

ajf(z + cj)g
nP (g)

p∑
j=0

ajg(z + cj) 6≡ p2.

Proof. Proof of the Lemma follows from Lemma 9. �

Lemma 11. Let f , g be two transcendental entire functions of finite order, c ∈ C \ {0} and n ∈ N with

n > 1. If fnP (f)

p∑
j=0

ajf(z + cj) ≡ gnP (g)

p∑
j=0

ajg(z + cj) where P (ω) is defined as in Theorem 10 then

(I) when p(ω) = amω
m + am−1ω

m−1 + . . .+ a1ω + a0, one of the following two cases holds:

(I1) f ≡ tg for a constant t such that td = 1, where d = GCD(n + m, . . . , n + m − i, . . . , n), am−i 6= 0 for

some i = 1, 2, . . . ,m,

(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ω1P (ω1)

p∑
j=0

ajω1(z + cj)− ω2P (ω2)

p∑
j=0

ajω2(z + cj).

(II) when P (ω) = ωm − 1, then f ≡ tg for some constant t such that tm = 1;

(III) when p(ω) = (ω − 1)m, (m ≥ 2) one of the following two cases holds:

(III1) f ≡ g,

(III2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ωn1 (ω1 − 1)m
p∑
j=0

ajω1(z + cj)− ωn2 (ω2 − 1)m
p∑
j=0

ajω2(z + cj);

(IV) when P (ω) ≡ c0 then f ≡ tg for some constant t such that tn+1 = 1.

Proof. Suppose

(0.8) fnP (f)

p∑
j=0

ajf(z + cj) ≡ gnP (g)

p∑
j=0

ajf(z + cj).

Since g is transcendental entire function, hence g(z),

p∑
j=0

ajg(z + cj) 6≡ 0. We consider following two cases.

Case 1. P (ω) ≡ c0. Let h = f
g . If h is a constant, by putting f = hg in (0.8) we get

amg
m(hm+n+p − 1) + am−1g

m−1(hm+n − 1) + . . .+ a0(hn+1 − 1) ≡ 0,

which implies that hd = 1, where d = GCD(n + m + p, . . . , n + m + p − i, . . . , n + 1), am−i 6= 0 for some

i ∈ {0, 1, . . . ,m}. Thus f ≡ tg for a constant t such that td = 1, where d = GCD(n + m + p, . . . , n + m +
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p− i, . . . , n+ 1), am−i 6= 0 for some i ∈ {0, 1, . . . ,m}. If h is not a constant, we know by (0.8) that f and g

satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ωn1P (ω1)

p∑
j=0

ajω1(z + cj)− ωn2P (ω2)

p∑
j=0

ajω2(z + cj).

We now discuss the following subcases.

Subcase 1. P (ω) = ω − 1. Then from (0.8) we have

(0.9) fn(fm − 1)

p∑
j=0

ajf(z + cj) ≡ gn(gm − 1)

p∑
j=0

ajg(z + cj).

Let h = f
g . clearly from (0.9) we get

(0.10) gm[hm+n

p∑
j=0

ajh(z + cj)− 1] ≡ hn
p∑
j=0

ajh(z + cj)− 1.

First we suppose that h is non-constant. We assert that hm+n

p∑
j=0

ajh(z + cj) is a non-constant. If not let

hm+n

p∑
j=0

ajh(z + cj) ≡ c1 ∈ C \ {0}. Then we have

hn+m ≡ c1
p∑
j=0

ajh(z + cj)

.

Now by Lemmas 1 and refL3 we get

(n+m)T (r, h) ≤ T (r,

p∑
j=0

ajh(z + cj)) + S(r, h),

which contradicts with n > m+ p+ 4. Thus from (0.10) we have

(0.11) gm ≡

hn
p∑
j=0

ajh(z + cj)− 1

hm+n

p∑
j=0

ajh(z + cj)− 1

.

Let z0 be a zero of hm+n

p∑
j=0

ajh(z + cj)− 1. Since g is an entire function, it follows that z0 is also a zero of

hn
p∑
j=0

ajh(z + cj)− 1. Consequently z0 is a zero of hm − 1 and so

N(r, 0;hm+n

p∑
j=0

ajh(z + cj)) ≤ N(r, 0;hm) ≤ mT (r, h) +O(1).
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So in view of Lemmas 1, 4, 5 and second fundamental theorem we get

(n+m+ p)T (r, h) = T (r, hm+n

p∑
j=0

ajh(z + cj)) + S(r, h)

≤ N(r, 0;hm+n

p∑
j=0

ajh(z + cj)) +N(r, 1;hm+n

p∑
j=0

ajh(z + cj)) + S(r, h)

≤ N(r, 0;h) +mT (r, h) + pT (r, h) + S(r, h)

≤ (m+ p+ 1)T (r, h) + S(r, h),

which contradicts with n > 1. Hence h is a constant. Since g is transcendental entire funtion, from (0.10)

we have

hn+m
p∑
j=0

ajh(z + cj)− 1 ≡ 0⇐⇒ hn
p∑
j=0

ajh(z + cj)− 1 ≡ 0

and so hm = 1. Thus f = tg for a constant t such that tm = 1.

Subcase 2. Let P (ω) = (ω − 1)m. Then from (0.8) we have

(0.12) fn(f − 1)m
p∑
j=0

ajf(z + cj) = gn(g − 1)m
p∑
j=0

ajg(z + cj).

Let h = f
g . If m = 1, then the result follows from Subcase 1. For m ≥ 2: first we suppose that h is

non-constant. Then from (0.12) we can say that f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ωn1 (ω1 − 1)m
p∑
j=0

ajω1(z + cj)− ωn2 (ω2 − 1)m
p∑
j=0

ajω2(z + cj);

Next, we suppose that h is a constant, then from (0.12) we get

(0.13) fn
p∑
j=0

ajf(z + cj)

m∑
i=0

mCm−if
m−i ≡ gn

p∑
j=0

ajg(z + cj)

m∑
i=0

mCm−ig
m−i.

Now substituting f = gh in (0.13) we get

m∑
i=0

(−1)imCm−ig
m−i(hm+n+p−i = 1) ≡ 0.

which implies that h = 1. Hence f ≡ g.

Case 2. P (ω) ≡ c0. Let h = f
g . Then from (0.8) we have

(0.14) hn(z) ≡ 1
p∑
j=0

ajh(z + cj)

.

Thus from Lemmas 1 and 3 we have

nT (r, h) = T (r,

p∑
j=0

ajh(z + cj)) +O(1) = pT (r, h) + S(r, h),

which is a contradiction since n ≥ 2. Hence h must be a constant, which implies that hn+p = 1, thus f = tg

and tn+p = 1. This completes the proof. �
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IV. Proof of Main Results

Proof of Theorem 11.

Proof. Let F =

fnP (f)

p∑
j=0

ajf(z + cj)

p and G =

gnP (g)

p∑
j=0

ajg(z + cj)

p . Then F and G share (1, 2) except

the zeris of p(z). Now applying Lemma we see that one of the following three cases holds.

Case 1. Suppose

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) + S(r, F ) + S(r,G).

Now by applying Lemmas 1 and we have

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) + S(r, F ) + S(r,G)

≤ N2(r, 0; fnP (f)

p∑
j=0

ajf(z + cj)) +N2(r, 0; gnP (g)

p∑
j=0

ajg(z + cj)) + S(r, f) + S(r, g)

≤ N2(r, 0; fnP (f)) +N2(r, 0; gnP (g)) +N2(r, 0;

p∑
j=0

ajf(z + cj)) +N2(r, 0;

p∑
j=0

ajg(z + cj)) + S(r, f) + S(r, g)

≤ 2N(r, 0; f) +N(r, 0;P (f)) +N(r, 0;

p∑
j=0

ajf(z + cj)) + 2N(r, 0; g) +N(r, 0;P (g))

+N(r, 0;

p∑
j=0

ajg(z + cj)) + S(r, f) + S(r, g)

≤ (2 +m∗ + p)T (r, f) +N(r, 0; f) + (2 +m∗ + p)T (r, g) +N(r, 0; g) + S(r, f) + S(r, g)

≤ (2 +m∗ + p)T (r, f) + (2 +m∗ + p)T (r, g) + S(r, f) + S(r, g)

≤ (4 + 2m∗ + 2p)T (r) + S(r).

From Lemmas 1 and Lemma 4 wwe have

(0.15) (n+m∗ + p)T (r, f) ≤ (4 + 2m∗ + 2p)T (r) + S(r).

Similarly, we have

(0.16) (n+m∗ + p)T (r, g) ≤ (4 + 2m∗ + 2p)T (r) + S(r).

Combining the inequalities (0.15) and (0.16), we get

(n+m∗ + p)T (r) ≤ (4 + 2m∗ + 2p)T (r) + S(r),

which contradicts with n > m∗ + p+ 4.

Case 2. F ≡ G. Then we have

fnP (f)

p∑
j=0

ajf(z + cj) ≡ gnP (g)

p∑
j=0

ajg(z + cj).

and so the result follows from Lemma 11. �
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Case 3. FG ≡ 1. Then we have

fnP (f)

p∑
j=0

ajf(z + cj)g
nP (g)

p∑
j=0

ajg(z + cj) ≡ p2.

and so result from Lemma 9. This completes the proof.
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