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Abstract

Welfare data for monitoring poverty are usually gathered over a wide geographical area, and as such

proximal observations are more likely to be affected by common environmental elements and therefore

share similar characteristics than distant observations. This is known as spatial dependence. However,

poverty analysts have largely ignored this spatial property in welfare data. This work seeks to quantify

relationships between poverty-severity and potential covariates while accounting for spatial dependence

using a geo-classification model. The source of data for this study, is the seventh round of the Ghana

Living Standards Survey (GLSS). We asserted that social and economic characteristics which are

bounded in socially constructed spaces affect poverty-generating process. To investigate the interactive

association, we use a statistical regime which has the benefit of parsimoniously analyzing all location-

specific circumstances simultaneously, thus yielding a broad view of the processes generating poverty in

Ghana. Bayesian estimation was adopted in our model computation. This was due to the hierarchical

and highly parameterized nature of our model. Evident from our preliminary results, spatial effect and

variation is empirical in the GLSS 7 data and cannot be ignored in the bid to understand poverty and

its correlates in the study region. In general, the posterior means and 95% credible intervals show that

fixed effect estimates (household size, income level of householder, ecological zone and location/area of

residence) and spatial effects significantly influence poverty levels and distribution patterns in Ghana.

Keywords: Household Expenditure, Posterior Densities, Poverty-Severity, Kriging, Spatial Variation.
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1. Introduction

More recently, new prospects of measuring poverty have been proposed to enrich the understanding of poverty construct

and to better reflect the evolving concept of poverty [1, 2, 3, 6, 9, 28]. Poverty is identified as a condition in which

an individual or household is unable to sustain socially acceptable standard of living due to a lack of necessary funds

and resources for food, housing, clothing, as well as the absence of basic infrastructures such as roads, transportation,

water, health, proper sanitation, and lack of basic education [12]. Poverty has been conceptualized in a variety of ways

over the years, but the general opinion is that it is multidimensional, encompassing both monetary and non-monetary

aspects, and that it is non-static. Despite these understanding, poverty remains an issue in the majority of developing

countries. The world bank argued that Sub-Sahara Africa has over the years lagged in the fight against poverty [30].

For example, it is reported that the absolute poverty index in Africa increased from 278 million in 1990 to 710 million

in 2020 and the majority of the world’s poor live in Sub-Saharan Africa as of 2020 [30].

Poverty is becoming overly rooted in many sub-Sahara African countries including Ghana which is experiencing

worsening poverty incidence rates. Half of Ghana’s 10 regions have their poverty rates high above the national average

of 24.5%. Accordingly, more Ghanaians are becoming extremely poor as the number of people living in extreme

poverty increased from 2.2 million in 2013 to 2.4 million in 2021 [6].

Moreover, in poverty estimation, there are salient issues that call for consideration. That is, establishing an indicator

of welfare and a minimum acceptable standard of that indicator to separate the poor and the non-poor. This is

called the poverty line. The international poverty line is fixed at $1.90 per day [30]. When estimating poverty,

scholars have a choice between using income or expenditure as the indicator of welfare. Some researchers argue that

the later may better show poverty, since income may be erratic during the year [14]. In order to compare different

household sizes and composition, it is highly recommended to utilize equivalent scale of household expenditure. Poverty

and vulnerability analysis in Ghana has been driven by high poverty rates and low per capita incomes, as well as

increased vulnerability to multiple shocks. Government in Ghana is investing more in poverty monitoring through

welfare monitoring surveys called the Ghana Living Standards Survey in order to inform policy decisions and poverty

reduction strategies. Consequently, these policy proponents rely heavily on results and predictions of small area

poverty estimates. In particular, varying statistical methods have been developed and applied over the past few years

that generate comparable poverty outcomes in terms of poverty incidence as measures of consumption expenditures.

Currently, there are two main ways to modeling poverty and its correlates particularly in Ghana: using consumption

expenditure per adult equivalent and regressing it against potential covariates. The other way is to use household

income [12]. The common drawback to these approaches is that, since data is collected over a large geographical

location, proximal observations are more likely to be influenced by common environmental factors and therefore

have similar characteristics when compared to distant observations. This causes spatial dependence, which means

that global parameters are not enough to describe the site-specific poverty conditions. It is well-known that when

covariates are spatially dependent, coefficient estimates can be biased and variances inflated when the traditional

Generalized Linear Models (GLM) are employed. To the best of our knowledge, the effect of spatial confounding on

household poverty-severity estimation in Ghana has not been investigated.

A work by [25] introduced spatial dependence into the model residual structure, however, he decomposed poverty

into a multi-category ordered random variable and described the overall state of a household’s poverty-severity, using
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multivariate ordered regression. The drawback is that, too much categorization of all continuous variables leads to

a loss of information [24] and the scaling of all categorical variables introduces an unknown degree of subjectivity.

Also, when the continuous expenditure variable is overly censored, modeling becomes much more difficult and requires

complex inferential methods to successfully produce parameter estimates. Additionally, non-technical end users of the

model are unable to apply model outcomes in policy design. That is, adding more categories to the underlying latent

scale might simply serve theoretical purposes only, but not for practical interpretation.

The assessment of human well-being is complex in and of itself, and raises many methodological issues. Over the years,

poverty has been measured, analysed, and described by varying techniques with varying degrees of sophistication.

Aboagye (2019) examined the socioeconomic factors that correlate with poverty in Ghana using the sixth and seventh

rounds of the Ghana Living Standard Survey dataset.The study used binomial probit regression to analyse the degree

of correlation of poverty with selected socioeconomic variables. Also, Mahama et al. (2018) investigated the correlates

of poverty in the Northern Region of Ghana. The study used data from 1,702 households from the sixth round of the

Ghana Living Standard Survey (GLSS6). The study used households per capita consumption as the response variable

and employed Ordinary least Squares regression to estimate the correlates of poverty. A large number of methods have

been developed to estimate the poverty indicators generally, such as unit level models [15], empirical best method [23],

temporal and spatiotemporal area level models [22], hierarchical Bayes estimation [22], unit level logit mixed model

[20], M-quantile model [8] and others.

In this work, we assert that these social and economic characteristics which are bounded in socially constructed spaces

affect the poverty-generating process. Because the factors are not evenly distributed across the nation, the extent

of poverty is not evenly distributed; hence, spatial differentiation in poverty can be understood by differences in the

underlying distribution of factors generating the distribution. To investigate the interactive association, we use a

statistical regime which has the benefit of parsimoniously analyzing all location-specific circumstances simultaneously,

thus yielding a broad view of the processes generating poverty in Ghana.

The main objective of this study is to geo-classify and map household poverty using mixed discrete and continuous

response data. Unlike previous studies we employ a censoring mechanism with cut points that discretize the real line

(−∞,+∞) that underlie the continuous expenditure variable to produce the categorical scale with little or no loss

of continuity in the expenditure variable. This way, we estimated the fixed-effects and spatial parameters associated

with the differences in poverty-risk in Ghana using Bayesian inference and developed a prediction map of poverty

distribution in Ghana identifying poverty “hotspots”.

2. Methodology

2.1. Data

Data used in this study is from the seventh round of the Ghana Living Standards Survey (GLSS 7). The GLSS is a

multipurpose household survey that collects a wealth of information to determine Ghanaians’ living conditions. The

survey offers useful information on Ghanaian households’ socioeconomic characteristics. It also offers evidence for

tracking progress against national policies and international commitments, such as the UN Sustainable Development

Goals (SDGs). The GLSS 7 dataset contained the following variables: Details of households (household size, age,
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sex, and educational level of household head), socio-economic conditions of household (consumption expenditure,

and availability of social amenities), and neighbourhood related spatial information (ecological zone, rural/urban

residence, and other environmental factors). The GLSS 7 survey is nationally representative with a sample size of

15,000 households selected from 1,000 enumeration areas. In all 14,009 households responded to the survey, resulting

in a response rate of 93.3% [19].

2.2. The Probit Regression Framework

In this section, we motivate our model by first appealing to the probit regression framework by illustrating latent

variable representation in context. Let Y be a binary response variable and X a vector of regressors which are

assumed to influence the outcome Y . Suppose that there is an unobserved or latent variable Y ∗ on the interval

(−∞,∞) that generates the observed Y . The probit model is specified as:

P (Yi = 1) = Φ

(
n∑

i=1

βXi

)
(1)

=

n∑
i=1

βXi∫
−∞

exp(−µ2

2
)/
√
2πdµ (2)

where Φ represents the standard normal cumulative distribution. The probit model is motivated as a latent variable

model [7] and has representation using latent variables given as:

Y ∗
i = Xiβ + εi (3)

εi ∼ N(0, 1)

Y ∗ is linked to the observed binary variable Y with the measurement equation given as:

Yi =

 1 if, Y ∗
i > α

0 if, Y ∗
i ≤ α

(4)

Where α is the threshold or cut point.

2.3. Model Specification and Estimation

For the purpose of this study, we let {(Yi, xi); i = 1, · · · , n} be paired observations at locations si = {s1, s2, · · · , sn} ∈

S ⊂ R2 in the study region D, S being a continuous subspace of R2. Define Yi as n spatially-dependent multivariate

binary response variable.

Then, for the geo-classification Model, we introduce latent variables Y ∗
i = (Y ∗

1 , · · · , Y ∗
n ), which are realizations of a

Gaussian spatial process, and assigning values to yi according to a regression function:
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Y ∗
i = Φ(X ′

iβ) + (ηi)s (5)

ηi = εi + µi (6)

εi ∼ N(0, σ2In)

µi ∼ N [0,Σ]

Where X ′
i are n × p dimensional covariates, β is a p × 1 matrix of fixed effect coefficients and µi a n × 1 spatially-

dependent residual that capture all unobserved errors arising from the influence of common features for observations

within certain proximal distances. Our aim is to model the likelihood of a household (yj) at location si being in a

particular poverty-severity category.

Though the values of y∗ cannot be directly observed, the rule that assigns y∗ to yi is that if y
∗ exceeds the threshold

value of zero, then, for instance, a household falls in the non-poor category of poverty. The conditional likelihood of

the observed data given the unobserved latent variable and the underlying model’s parameters is

Yi =

 1 if, Y ∗
i > 0

0 if, Y ∗
i ≤ 0

(7)

We assume that the marginal variance of the Yi are known up to a multiplicative constant σ2 and that the matrix

Σ(λ) captures the spatial dependencies between sites in the data. By assuming that the diagonal elements of Σ(λ) are

fixed and known constants, we allow for the possibility of heteroskedasticity. We will apply σ2 as the variance of Y ∗
i

and Σ(λ) as a spatial correlation matrix in our model.

2.4. Spatial Correlation Matrix Parameterization

Spatial correlation may be defined as the existence of a functional relationship between what happens at one point

in space and what happens elsewhere [11]. Mathematically, spatial correlation implies that an observation associated

with a location in space labelled si depends on other observations at locations sj ̸= si, that is

Cov{(yis), (yjs)} = E{(yis)(yjs)} − E(yis)× E(yjs) ̸= 0, fori ̸= j (8)

It is critical to ensure that Σ(λ) is a valid correlation matrix when modeling spatial dependency in a Bayesian setup.

The correlation of a Gaussian spatial process at sites i and j is modeled as a map of the distance between the two

locations corresponding to the assumption of second-order stationarity and isotropy. In this study, we employ the

Matérn, a class of parametric spatial correlation function:

Σ(λ) =
1

2w−1Γ (w)

(
2
√
wdij
λ

)w

Bw

(
2
√
wdij
λ

)
(9)

The covariance matrix σ2Σ(λ) = Cov{(yi)s, (yj)s}, is parametrized by the Matérn correlation function. The decay pa-

rameter λ, measures the strength of spatial dependence over the Euclidean distance dij = ∥si−sj∥ =

(
2∑

i=1

(si − sj)
2

) 1
2

between sites i and j, using the longitude and latitude of data points present in GLSS 7 dataset.
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2.5. Model Estimation

Estimation of latent variable spatial models, such as equation 5, requires the researcher to be quite more careful

because of the geographical structure of the data. Each observation in spatial data is assumed to be related to

neighbourhood observations, contrary to maximum likelihood (ML) estimation theory, which only permits the multi-

plication of independent terms to compute the likelihood function. Additionally, these models being hierarchical are

highly parameterized. So the traditional maximum likelihood (ML) process may not be able to estimate all parameters

simultaneously.

A Bayesian Markov Chain Monte Carlo (MCMC) method is utilized for estimating equation 5.

Let θ = (β, λ, σ2,Σ) denote the parameters of the model. Then in accordance with the Bayesian methodology [18],

the joint posterior density is denoted by

p(θ, Y ∗
i |Yi) =

p(Yi|Y ∗
i , θ)× p(Y ∗

i |θ)× p(θ)∫
p(Yi|Y ∗

i , θ)× p(Y ∗
i |θ)d(θ)

(10)

Where
∫
p(Yi|Y ∗

i , θ)×p(Y ∗
i |θ)d(θ) denotes the integral likelihood, ensuring that equation 10 integrates to 1, p(Yi|Y ∗

i , θ)

is an indicator variable such that each y∗i remains within a given interval of the observed binary category, the function

p(Y ∗
i |θ) is the density of the latent variable Y ∗

i , and p(θ) is the prior of the parameters. Posterior estimation was done

by setting up the Gibbs sampler [18], which required a derivation of the full conditionals for all parameters. Samples

of β, λ, σ2, and Σ were drawn from their respective full conditional distributions for inference. But first, following the

Bayesian criteria, prior distributions for all parameters are assigned.

Prior for β:

p(β) ∼ N(go, Go) where go and Go respectively are the mean and variance.

Prior for σ2:

p(σ2) ∼ IG(a1

2 , b1
2 ), where

a1

2 and b1
2 are shape and scale parameters respectively.

Prior for λ:

We assigned the uniform density prior on the interval (− 1
w , 1

w ), that is U(− 1
w , 1

w )

Prior for Σ:

p(Σ) ∼ IG(a2

2 , b2
2 ), where

a2

2 and b2
2 are shape and scale parameters respectively.

The full conditional posterior distribution for each parameter is as follows:

The full conditional posterior distribution of β:

p(β|y, y∗, λ, σ2,Σ) = p(y∗|β, λ, σ2,Σ)× p(β) (11)

p(β|y, y∗, λ, σ2,Σ) = exp{−1

2
(y∗ −Xβ)′Σ−1(y∗ −Xβ)} × {(β − go)

′G−1
o (β − go)}

The full conditional posterior distribution of σ2 is given by

p(σ2|y∗, y, β) = p(y∗|β, λ, σ2,Σ)× p(σ2) (12)

p(σ2|y∗, y, β) = exp{−1

2
(y∗ −Xβ)′Σ−1(y∗ −Xβ)} × σ2−(a1+1)

exp(− b1
σ2

)

6
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Thus the full conditional distribution of y∗ is given by:

p(y∗|y, y∗i , β, λ, σ2,Σ) = I{y
∗ < 0 or y∗ > 0} × exp{−1

2
(y∗ −Xβ)′σ−1(y∗ −Xβ)} (13)

The full conditional distribution for the spatial decay parameter λ is given by

p(λ|y∗, y, β, σ2) = p(y∗|β, λ, σ2,Σ)× p(λ) (14)

p(Σ|β, σ2) = exp{−1

2
(y∗ −Xβ)′Σ−1(y∗ −Xβ)} × 1

w2 − w1

Similarly, the full conditional distribution for Σ is given by

p(Σ|β, σ2) = p(y∗|β, λ, σ2,Σ)× p(Σ) (15)

p(σ2|y∗, y, β) = exp{−1

2
(y∗ −Xβ)′Σ−1(y∗ −Xβ)} × σ2−(a2+1)

exp(− b2
σ2

)

2.6. Predictions and Mapping

Given the Bayesian predictive distribution p(y|y∗, β, λ, σ2,Σ(θ)) in section 2.5, let Y0 = (Yi0, · · · , Yin)
′ and Yi0 =

Y (si0), where si0 is an unsampled location, be an arbitrary predictor of the binary response variable. To predict

poverty situation and provide full description of poverty severity at unobserved locations, we adopted the optimal

Bayes predictor [13] of Yi (i.e., the predictor that minimizes the Bayesian expected loss (BEL)) given as

Ŷi0 =

 1 if p{Yi0 = 1|y} > l0
l0+l1

0 Otherwise i = 1, · · · , n
(16)

Where l0 and l1 are losses for mispredicting Yi as a 0 and 1, respectively. To estimate p{Yi0 = 1|y} in the predictor,

we used indicator kriging, basing on the assumption that the posterior mean and covariance function are well-known.

Indicator Kriging predicts values of the binary random variable at unsampled locations based only on nearby obser-

vation [29]. Indicator kriging is based on the kriging method of spatial prediction. Indicator Kriging uses a function

γ(dij) =
1
2V ar{(yi)s − (yj)s}. Where γ(.) is an isotropic semivariogram and dij = ∥si − sj∥ are the distance between

locations. Employing this function, prediction of Y (si0), is based on p{Yi0 = 1|y}. An estimate of p{Yi0 = 1|y}, is its

best linear unbiased estimator [10, 13] given by

p̂{Yi0 = 1|y} =

(
γ +

(1− 1′Γ−1γ)

1− 1′Γ−11
1

)′

Γ−1Y (17)

Where Γij = γ(∥si − sj∥), γi = ∥s0 − si∥, 1 is a n × 1 vector of 1 and ij = 1, · · · , n. The binary map is estimated

using equations 17 with 16.

2.7. Deviance Information Criterion (DIC)

Deviance Information Criterion (DIC) proposed by [27] has largely been used in Bayesian estimations and modeling. It

is made up of two parts: the model’s fit measure and the model’s complexity. The posterior expectation of the deviance

for the data Y and parameter vector β is used to determine how well the model fits the data. This goodness-of-fit and

7

admin
Text Box
                                                                                                                                   Mark Adjei et al. / IJMTT, 68(1), 143-157, 2022

admin
Text Box

admin
Text Box
                                                                                          149                                             



model selection measure is define as

DIC = Dbar + pD = Dhat+ 2pD, pD = Dbar −Dhat (18)

The first term in equation 18 measures the model fit via the posterior mean deviance and the second term measures

model complexity known as the effective number of parameters. Smaller values of the DIC, following [27], mean a

better model fit supported by the data.

3. Results and Discussion

3.1. Spatial Distribution and Patterns in GLSS 7 Dataset

Various spatial techniques and tools, were used to describe the spatial characteristics and test of spatial dependency

of poverty distribution in the GLSS 7 data, as well as the poverty generation process in Ghana. Figure 2 shows

sample site locations of the GLSS 7 together with the observed poverty risk. As depicted by Figure 2, the observations

indicate clustered patterns.

Table 1: Spatial Distance

Statistic Value

Minimum 0.0051
1st Quartile 4.6603
Median 7.8933
Mean 8.6023
3rd Quartile 12.3275
Maximum 22.1015

The output in Table 1 reports that, there is an average distance of about 8.6km to nearest neighbours, a minimum

distance to nearest neighbour of about 0.01km and a maximum distance of 22km between data points in GLSS 7.

Results from the distance analysis helped in an appropriate consideration of lag increaments, tolerance and number

of lags for the semivariogram model by [21] given in Figure 1.

Figure 1: Empirical Semivariogram

8
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Figure 2: Sample Site Locations and Observed Poverty Status

The main objective of the variogram analysis is to best estimate the autocorrelation structure of the underlying spatial

Gaussian process in the data. The semi-variogram provides a quantitative measure of the rate at which similarity

between sample points decreases with separation distance [17]. Figure 1 was fitted using the Matérn covariance

function. The semi-variogram shows an increasing trend from the start point, indicating lag-dependent variation,

where closer observations have smaller semi-variances. This indicates the presence of extra variation in the binary

response unaccounted for by covariates alone, underscoring the need to use spatial methods when dealing with poverty

classification and prediction.

3.2. Parameter Estimation

The coefficient estimates (posterior means) for model parameters β, λ, σ2 and Σ are shown in Tables 2 and 3. Markov

Chain Monte Carlo (MCMC) estimation was applied for models based on the same dataset and covariates. Table 2

reports results for two models, the aspatial binary probit model (Model 1) discussed in section 2.2 and the results of

our geo-classification model (Model 2) discussed in section 2.3.

In addition to the posterior means, 95% Bayesian credible intervals (BCIs) for these estimates were constructed

using the set of samples drawn from the MCMC estimation. The MCMC simulations were carefully tuned to obtain

satisfactory convergence. Simulation results for the aspatial binary probit model were obtained based on one run of

the MCMC algorithm for 10000 iterations after a burn-in of 2000. The geo-classification model results were based on

two chains of 5000 iterations, after a burn-in of 2500 each because a single chain did not achieve adequate convergence.

9
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Table 2: Posterior Means and 95% Bayesian Credible Intervals (BCIs) for Models

Variable Model 1 Model 2
β Coefficient [ 95% BCIs ] Coefficient [ 95% BCIs ]

Intercept β0 1.3615 [1.0955, 1.6301] 0.91334 [0.8253, 0.9868]
Household Size β1 -0.1541 [-0.1643,-0.1431] -0.03321 [-0.0372, -0.0305]
Age β2 -0.0028 [-0.0048, -0.0005] -0.0051 [-0.00106, -0.00002]
Income β3 0.0000081 [0.0000071, 0.0000091] 0.000001 [0.000001,0.000002]
Sex {Ref:Male}
Female β4 -0.0403 [-0.1271, 0.0472] -0.0083 [-0.0225, 0.0144]
EZ {Ref:Coastal}
Forest β5 0.1416 [0.0312, 0.2520] 0.0296 [-0.0236, 0.0673]
Savannah β6 -0.2723 [-0.430, -0.115] -0.0449 [-0.1089, 0.0555]
Accra β7 0.0030 [-0.2261, 0.7519] -0.0156 [-0.0192, 0.0594]
AR {Ref:Rural}
Urban β8 0.8982 [0.8305, 0.9664] 0.19197 [0.1706, 0.2193]
Edu {Ref:None}
Basic β9 0.0039 [-0.2049, 0.2095] 0.0104 [-0.0668, 0.0573]
Secondary/High β10 0.0061 [-0.2128, 0.2110] 0.0089 [-0.0572, 0.0560]
Vocational/Tech β11 -0.0296 [-0.2930, 0.2323] 0.0285 [-0.0505, 0.0913]
Tertiary β12 0.0219 [-0.2484, 0.2021] 0.0087 [-0.0623, 0.0586]
ES {Ref:Employed}
Unemployed β13 0.0595 [-0.0661, 0.1863] 0.0087 [-0.0202, 0.0431]
Not in labour force β14 -0.0201 [-0.0769, 0.0367] 0.0019 [-0.0123, 0.0922]
MS {Ref:Married}
Consensual Union β24 0.0641 [-0.0617, 0.1908] 0.0024 [-0.0297, 0.0398]
Separated β25 0.1150 [-0.0885, 0.3219] 0.0211 [-0.0243, 0.0671]
Divorced β26 0.0193 [-0.0549, 0.0935] -0.0041 [-0.0262, 0.0193]
Widowed β27 0.0325 [-0.1096, 0.1759] 0.0327 [-0.0187, 0.0779]
Never Married β28 0.0323 [-0.0417, 0.1062] -0.0018 [-0.0207, 0.0217]
DIC 10394.0 - 8086.03 -

EZ= Ecological Zone, AR= Area of Residence, Edu=Educational Level, ES= Employment Status, MS= Marital Sta-

tus. Model 1 is equation 3 and Model 2 is equation 5.

The results of Table 2 show that some of the fixed effect estimates from our models have 95% credible intervals that

are significant. It is also observed that, the 95% credible intervals for other fixed effects are not statistically significant

at 5% significance level, however the direction and magnitude of these effects on household poverty status should not

be disregarded.

For instance, the household size has the 95% credible intervals in both model 1 and model 2 are statistically significant.

This implies that household size significantly impact households poverty state in the region of study. What this means

is that poverty levels tend to rise from non-poor to poor with increase in household size, thus decreasing the posterior

likelihood of falling in the non-poor category, but increasing the likelihood of households sliding into the poor rank. A

study in Ghana by [16] using logistic regression to estimate the probability of being in poverty based on the fourth and

fifth rounds of GLSS data, reported that larger households negatively affected poverty levels in the country. Other

research on poverty, for example, [1], [4] and [26], are congruent to this current work regarding the negative effect of

large household sizes on poverty. Of great importance is the accute fall in the magnitudinal estimate of the variable

in the spatial model. The physical interpretation of it is that, accounting for environmental and space compoundings

in modeling the processes of poverty generation, improved posterior likelihood.

Households income level is seen to significantly influence poverty in both models at 5% significance probability.

Increased levels of household income, result in a higher likelihood of the household residing in the non-poor category
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of poverty status as per the classification ascribed by this work. This result parallel poverty analysts such as [19], [30]

and [3].

Whilst the forest and savannah ecological zone variables were statistically significant in model 1, the contribution of

the Accra ecological zone variable was not significant. The posterior effect of ecological zone shows that living in the

savannah ecological zone, as opposed to the coastal ecological zone (being the reference category), decreased the risk of

being in the non-poor category, but increased the risk of being in the poor category. A similar and notable conclusion

was reached in a study by [16]. They identified households in the savannah ecological zone of Ghana to be almost four

times poorer than those living in the coastal and forest zones. [19] and [5] in separate studies in Ghana and Ethiopia

respectively, also identified agro-ecological divisions as a key determinant of poverty.

Table 3: Results of Spatial Parameters

Parameter Estimate 95% BCIs

Σ 0.1849 [0.1237, 0.2869]
σ2 0.0453 [0.0449, 0.0786]
λ 66.40 [64.8747, 69.5436]

The parameter λ is used to determine the effective range of spatial correlation. The covariance function used in

our estimation is the Matérn covariance model described in section 2.4. Based on our estimation, the posterior mean

of the practical range of spatial dependency is approximately 66km, suggesting a strong spatial correlation in the

data. What this means is that, Sample locations separated by distances equal to or closer than 66km are spatially

autocorrelated, whereas locations farther apart than the practical range are not.

It is imperative to note that the posterior means for the geo-classification model are consistently smaller than the

estimates from the non-spatial model. This indicates a stronger spatial structure that explained variation through its

correlation function, rather than depending solely on the covariates. Moreover, the consistently narrower 95% posterior

intervals for the spatial model further indicates better accuracy in the fixed effects estimation. It is important to bear

in mind that the inherent nature of the geo-classification models is that they feature variation over spatial observations

in the impacts arising from changes in the explanatory variables at each location. The fitted spatial model results

show that environmental factors have statistical relevance. This implies that there is a link between poverty and the

environment, and that environmental variables have an influence on the poor and poverty reduction initiatives.

3.3. Predictions and Mapping under the Geo-Classification Model

A key objective of this study is to map household poverty risk by predicting the outcome at new locations across all the

regions of Ghana. In the case of our binary mapping, for an unsampled location si0, we computed p{Yi0 = non−poor|y}.

These probabilities were used to produce the binary map shown in Figure 3.

From Figure 3, we observed some levels of heterogeneity in poverty distribution accross the study area, but again,

relatively homogeneous and clustering over same locations of the map.

The high- risk poverty ”hotspots” included the areas around the northern region, volta region, parts of western and

central regions and some clustering are also observed along the borders of upper west and upper east regions to Burkina

Faso. We also see that poverty is sparsely distributed in some areas of the country, which points to the fact that poverty

is a spatially lagged variable. The core of this work is to understand the spatial similarities present in the poverty

generation process which was mostly implied in other poverty studies in Ghana. Households at spacific locations tend

11

admin
Text Box
                                                                       Mark Adjei et al. / IJMTT, 68(1), 143-157, 2022

admin
Text Box
                                                                                                       153



to experience specific poverty trend, providing an empirical spatial patterns and character for the country.

Figure 3 shows the strong effect of spatial correlation, an indication that there is indeed a link between poverty and

spatial characteristics in Ghana. Thus, to minimize or eliminate extreme poverty, stakeholder efforts should be directed

towards areas with high posterior ranks. For example, extreme poverty incidence in the Upper West and some areas

in the Northern, Volta, Western, Central and Brong-Ahafo regions, may be of concern to stakeholders.

Figure 3: Prediction Map of the Geo-Classification Model
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4. Conclusion

The main objective of this work was to model poverty-severity while accounting for spatial dependence using our

geo-classification model and map household poverty using mixed discrete and continuous response data. According to

the modeling technique used in this study, poverty categorization was performed in the most natural process, where

households were classified into two distinct poverty regions; poor and non-poor.

The estimation technique employed in this work handled the complexity of our model by decomposing it into sub-

layers and estimating each parameter. The geo-classification model that clipped the population into two categories

(poor and non-poor) compared results from the commonly used binomial probit model. Evident from our preliminary

results, spatial effect and variation is empirical in the GLSS 7 data and cannot be ignored in the bid to understand

poverty and its correlates in the study region.

In general, the posterior means and 95% credible intervals show that fixed effect estimates (household size, income

level of householder, ecological zone and location/area of residence) and spatial effects significantly influence poverty

levels and distribution patterns in Ghana.

To achieve a meaningful reduction in poverty levels in Ghana, stakeholders must work hard to mitigate the influence

of covariates which were found to have significant effect on poverty severity in this study
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