Original Article

Multiplicative KG-Sombor Indices of Some Networks

V. R. Kulli
Department of Mathematics, Gulbarga University, Gulbarga, India.

Abstract

In this paper, we introduce the multiplicative KG Sombor index, multiplicative modified KG Sombor index of a graph. We compute these multiplicative KG Sombor indices for some chemical structures such as chain silicate, silicate, hexagonal and oxide networks.

Keywords - Multiplicative KG Sombor index, Multiplicative modified KG Sombor index, Chemical structures.
Mathematics Subject Classification-05C05, 05C12, 05C35.

1. Introduction

Let G be a finite, simple, connected graph with vertex set $V(G)$ and edge set $E(G)$. The degree $d_{G}(u)$ of a vertex u is the number of edges incident to u. If $\mathrm{e}=u v$ is an edge of G, then the vertex u and edge e are incident and it is denoted by $u e$. Let $d_{G}(e)$ denote the degree of an edge e in G, which is defined as $d_{G}(e)=d_{G}(u)+d_{G}(v)-2$ with $e=u v$. We refer the book [1], for undefined notations and terminologies.

The first and second Banhatti indices of a graph G were introduced by Kulli in [2], and they are defined as

$$
B_{1}(G)=\sum_{u e}\left[d_{G}(u)+d_{G}(e)\right], \quad B_{2}(G)=\sum_{u e} d_{G}(u) d_{G}(e)
$$

where $u e$ means that the vertex u and edge e are incident in G.
Recently, some Banhatti indices were studied in $[3,4,5,6]$.
The $K G$ Sombor index was introduced by Kulli et al. in [7], defined it as

$$
K G(G)=\sum_{u e} \sqrt{d_{G}(u)^{2}+d_{G}(e)^{2}} .
$$

Recently, some Sombor indices were studied in $[8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26$, 27, 28].

In [29], Kulli introduced the modified $K G$ Sombor index of a graph G and it is defined as

$$
m K G(G)=\sum_{u e} \frac{1}{\sqrt{d_{G}(u)^{2}+d_{G}(e)^{2}}} .
$$

Inspired by work on $K G$ Sombor indices, we introduce the multiplicative $K G$ Sombor index, multiplicative modified $K G$ Sombor index of a graph as follows:

The multiplicative $K G$ Sombor index of a graph G is defined as

$$
\operatorname{KGII}(G)=\prod_{u e} \sqrt{d_{G}(u)^{2}+d_{G}(e)^{2}} .
$$

We can express the multiplicative $K G$ Sombor index as

$$
K G I I(G)=\prod_{u v \in E(G)}\left[\sqrt{d_{G}(u)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}+\sqrt{d_{G}(v)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}\right] .
$$

The multiplicative modified $K G$ Sombor index of a graph G is defined as

$$
m K G I I(G)=\prod_{u e} \frac{1}{\sqrt{d_{G}(u)^{2}+d_{G}(e)^{2}}}
$$

We can express the multiplicative modified $K G$ Sombor index as

$$
m K G I I(G)=\prod_{u v \in E(G)}\left[\frac{1}{\sqrt{d_{G}(u)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}}+\frac{1}{\sqrt{d_{G}(v)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}}\right]
$$

Recently, some multiplicative indices were studied in [30,31].
In this paper, we compute the multiplicative $K G$ Sombor index, multiplicative modified $K G$ Sombor index of certain networks such as chain silicate, silicate, hexagonal and oxide networks.

2. Results for Chain Silicate Networks

Silicates are very important elements of Earth's crust. Sand and several minerals are constituted by silicates. A family of chain silicate network is symbolized by $C S_{n}$ and is obtained by arranging $n \square 2$ tetrahedral linearly, see Figure 1 .

Fig. 1 Chain silicate network
Let G be the graph of a chain silicate network $C S_{n}$ with $3 n+1$ vertices and $6 n$ edges. In G, by calculation, there are three types of edges based on the degree of end vertices of each edge as follows:

$$
\begin{array}{ll}
E_{1}=\left\{u v \square E(G) \mid d_{G}(u)=d_{G}(v)=3\right\}, & \left|E_{1}\right|=n+4 . \\
E_{2}=\left\{u v \square E(G) \mid d_{G}(u)=3, d_{G}(v)=6\right\}, & \left|E_{2}\right|=4 n-2 . \\
E_{3}=\left\{u v \square E(G) \mid d_{G}(u)=d_{G}(v)=6\right\}, & \left|E_{3}\right|=n-2 .
\end{array}
$$

In the following theorem, we compute the multiplicative $K G$ Sombor index of a chain silicate network.
Theorem 1. The multiplicative $K G$ Sombor index of a chain silicate network is

$$
K G I I\left(C S_{n}\right)=(10)^{n+4} \times(\sqrt{58}+\sqrt{85})^{4 n-2} \times(4 \sqrt{34})^{n-2}
$$

Proof: By the definition of multiplicative $K G$ Sombor index and cardinalities of the edge partitions of $\mathrm{C} S_{n}$, we have

$$
\begin{aligned}
& \operatorname{KGII}\left(C S_{n}\right)=\prod_{u v \in E\left(C S_{n}\right)}\left[\sqrt{d_{G}(u)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}+\sqrt{d_{G}(v)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}\right] \\
& \quad=\left[\sqrt{3^{2}+(3+3-2)^{2}}+\sqrt{3^{2}+(3+3-2)^{2}}\right]^{n+4} \times\left[\sqrt{3^{2}+(3+6-2)^{2}}+\sqrt{6^{2}+(3+6-2)^{2}}\right]^{4 n-2} \\
& \quad \times\left[\sqrt{3^{2}+(3+6-2)^{2}}+\sqrt{6^{2}+(3+6-2)^{2}}\right]^{4 n-2}
\end{aligned}
$$

gives the desired result after simplification.
In Theorem 2, we compute the multiplicative modified $K G$ Sombor index of a chain silicate network.
Theorem 2. The multiplicative $K G$ Sombor index of a chain silicate network is

$$
m K G I I\left(C S_{n}\right)=\left(\frac{2}{5}\right)^{n+4} \times\left(\frac{1}{\sqrt{58}}+\frac{1}{\sqrt{85}}\right)^{4 n-2} \times\left(\frac{1}{\sqrt{34}}\right)^{n-2}
$$

Proof: By the definition of multiplicative $K G$ Sombor index and cardinalities of the edge partitions of CS_{n}, we have

$$
m K G I I\left(C S_{n}\right)=\prod_{u v \in E\left(C S_{n}\right)}\left[\frac{1}{\sqrt{d_{G}(u)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}}+\frac{1}{\sqrt{d_{G}(v)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}}\right]
$$

$$
\begin{aligned}
& \quad=\left[\frac{1}{\sqrt{3^{2}+(3+3-2)^{2}}}+\frac{1}{\sqrt{3^{2}+(3+3-2)^{2}}}\right]^{n+4} \times\left[\frac{1}{\sqrt{3^{2}+(3+6-2)^{2}}}+\frac{1}{\sqrt{6^{2}+(3+6-2)^{2}}}\right]^{4 n-2} \\
& \times\left[\frac{1}{\sqrt{6^{2}+(6+6-2)^{2}}}+\frac{1}{\sqrt{6^{2}+(6+6-2)^{2}}}\right]^{4 n-2}
\end{aligned}
$$

After simplification, we establish the desired result.

3. Results for Silicate Networks

Silicates are obtained by fusing metal oxide or metal carbonates with sand. A silicate network is denoted by $S L_{n}$, where n is the number of hexagons between the center and boundary of $S L_{n}$. A 2-dimensional silicate network of dimension two is shown in Fig. 2.

Fig. 2 Silicate network of dimension two
Let G be the graph of a silicate network $S L_{n}$. The graph G has $15 n^{2}+3 n$ vertices and $36 n^{2}$ edges. In G, by calculation, there are three types of edges based on the degree of end vertices of each edge as follows:

$$
\begin{array}{ll}
E_{1}=\left\{u v \square E(G) \mid d_{G}(u)=d_{G}(v)=3\right\}, & \left|E_{1}\right|=6 n . \\
E_{2}=\left\{u v \square E(G) \mid d_{G}(u)=3, d_{G}(v)=6\right\}, & \left|E_{2}\right|=18 n^{2}+6 n . \\
E_{3}=\left\{u v \square E(G) \mid d_{G}(u)=d_{G}(v)=6\right\}, & \left|E_{3}\right|=18 n^{2}-12 n .
\end{array}
$$

In the following theorem, we compute the multiplicative $K G$ Sombor index of a silicate network.
Theorem 3. The multiplicative $K G$ Sombor index of a silicate network is

$$
\operatorname{KGII}\left(S L_{n}\right)=(10)^{6 n} \times(\sqrt{58}+\sqrt{85})^{18 n^{2}+6 n} \times(4 \sqrt{34})^{18 n^{2}-12 n}
$$

Proof: By the definition of multiplicative $K G$ Sombor index and cardinalities of the edge partitions of $S L_{n}$, we have

$$
\begin{aligned}
& K G I I\left(S L_{n}\right)=\prod_{u v \in E\left(S L_{n}\right)}\left[\sqrt{d_{G}(u)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}+\sqrt{d_{G}(v)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}\right] \\
& \quad=\left[\sqrt{3^{2}+(3+3-2)^{2}}+\sqrt{3^{2}+(3+3-2)^{2}}\right]^{6 n} \times\left[\sqrt{3^{2}+(3+6-2)^{2}}+\sqrt{6^{2}+(3+6-2)^{2}}\right]^{18 n^{2}+6 n} \\
& \quad \times\left[\sqrt{3^{2}+(3+6-2)^{2}}+\sqrt{6^{2}+(3+6-2)^{2}}\right]^{18 n^{2}-12 n}
\end{aligned}
$$

gives the desired result after simplification.
In the next theorem, we compute the multiplicative modified $K G$ Sombor index of a silicate network.

Theorem 4. The multiplicative $K G$ Sombor index of a silicate network is

$$
m K G I I\left(S L_{n}\right)=\left(\frac{2}{5}\right)^{6 n} \times\left(\frac{1}{\sqrt{58}}+\frac{1}{\sqrt{85}}\right)^{18 n^{2}+6 n} \times\left(\frac{1}{\sqrt{34}}\right)^{18 n^{2}-12 n}
$$

Proof: By the definition of multiplicative $K G$ Sombor index and cardinalities of the edge partitions of $S L_{n}$, we have

$$
\begin{aligned}
& m K G I I\left(S L_{n}\right)=\prod_{u v \in E\left(S L_{n}\right)}\left[\frac{1}{\sqrt{d_{G}(u)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}}+\frac{1}{\sqrt{d_{G}(v)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}}\right] \\
& \quad=\left[\frac{1}{\sqrt{3^{2}+(3+3-2)^{2}}}+\frac{1}{\sqrt{3^{2}+(3+3-2)^{2}}}\right]^{6 n} \times\left[\frac{1}{\sqrt{3^{2}+(3+6-2)^{2}}}+\frac{1}{\sqrt{6^{2}+(3+6-2)^{2}}}\right]^{18 n^{2}+6 n} \\
& \quad \times\left[\frac{1}{\sqrt{6^{2}+(6+6-2)^{2}}}+\frac{1}{\sqrt{6^{2}+(6+6-2)^{2}}}\right]^{18 n^{2}-12 n}
\end{aligned}
$$

After simplification, we obtain the desired result.

4. Results for Hexagonal Networks

It is known that there exist three regular plane tilings with composition of some kind of regular polygons such as triangular, hexagonal and square. Triangular tiling is used in the construction of hexagonal networks. This network is symbolized by $H X_{n}$, where n is the number of vertices in each side of hexagon. A 6-dimensional hexagonal network is shown in Figure 3.

Fig. 3 Hexagonal network of dimension six
Let G be the graph of a hexagonal network $H X_{n}$. The graph G has $3 n^{2}-3 n+1$ vertices and $9 n^{2}-15 n+6$ edges. In G, by calculation, there are five types of edges based on the degree of end vertices of each edge as follows:

$$
\begin{array}{ll}
E_{1}=\left\{u v \square E(G) \mid d_{G}(u)=3, d_{G}(v)=4\right\}, & \left|E_{1}\right|=12 . \\
E_{2}=\left\{u v \square E(G) \mid d_{G}(u)=3, d_{G}(v)=6\right\}, & \left|E_{2}\right|=6 . \\
E_{3}=\left\{u v \square E(G) \mid d_{G}(u)=d_{G}(v)=4\right\}, & \left|E_{3}\right|=6 n-18 . \\
E_{4}=\left\{u v \square E(G) \mid d_{G}(u)=4, d_{G}(v)=6\right\}, & \left|E_{4}\right|=12 n-24 . \\
E_{5}=\left\{u v \square E(G) \mid d_{G}(u)=d_{G}(v)=6\right\}, & \left|E_{5}\right|=9 n^{2}-33 n+30 .
\end{array}
$$

In the following theorem, we compute the multiplicative $K G$ Sombor index of a hexagonal network.

Theorem 5. The multiplicative $K G$ Sombor index of a hexagonal network is

$$
\operatorname{KGII}\left(H X_{n}\right)=(\sqrt{34}+\sqrt{41})^{12} \times(\sqrt{58}+\sqrt{85})^{6} \times(4 \sqrt{13})^{6 n-18} \times(4 \sqrt{5}+10)^{12 n-24} \times(4 \sqrt{34})^{9 n^{2}-33 n+30}
$$

Proof: By the definition of multiplicative $K G$ Sombor index and cardinalities of the edge partitions of $H X_{n}$, we have

$$
\begin{aligned}
& K G I I\left(H X_{n}\right)=\prod_{u v \in E\left(H X_{n}\right)}\left[\sqrt{d_{G}(u)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}+\sqrt{d_{G}(v)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}\right] \\
& \quad=\left[\sqrt{3^{2}+(3+4-2)^{2}}+\sqrt{4^{2}+(3+4-2)^{2}}\right]^{12} \times\left[\sqrt{3^{2}+(3+6-2)^{2}}+\sqrt{6^{2}+(3+6-2)^{2}}\right]^{6} \\
& \quad \times\left[\sqrt{4^{2}+(4+4-2)^{2}}+\sqrt{4^{2}+(4+4-2)^{2}}\right]^{6 n-18} \times\left[\sqrt{4^{2}+(4+6-2)^{2}}+\sqrt{6^{2}+(4+6-2)^{2}}\right]^{12 n-24} \\
& \quad \times\left[\sqrt{6^{2}+(6+6-2)^{2}}+\sqrt{6^{2}+(6+6-2)^{2}}\right]^{9 n^{2}-33 n+30}
\end{aligned}
$$

gives the desired result after simplification.
In the next theorem, we compute the multiplicative modified $K G$ Sombor index of a hexagonal network.
Theorem 6. The multiplicative $K G$ Sombor index of a hexagonal network is
The multiplicative $K G$ Sombor index of a hexagonal network is

$$
m K G I I\left(H X_{n}\right)=\left(\frac{1}{\sqrt{34}}+\frac{1}{\sqrt{41}}\right)^{12} \times\left(\frac{1}{\sqrt{58}}+\frac{1}{\sqrt{85}}\right)^{6} \times\left(\frac{1}{\sqrt{13}}\right)^{6 n-18} \times\left(\frac{1}{4 \sqrt{5}}+\frac{1}{10}\right)^{12 n-24} \times\left(\frac{1}{\sqrt{34}}\right)^{9 n^{2}-33 n+30}
$$

Proof: By the definition of multiplicative $K G$ Sombor index and cardinalities of the edge partitions of $H X_{n}$, we have

$$
\begin{aligned}
& m K G I I\left(H X_{n}\right)=\prod_{u v \in E\left(H X_{n}\right)}\left[\frac{1}{\sqrt{d_{G}(u)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}}+\frac{1}{\sqrt{d_{G}(v)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}}\right] \\
& =\left[\frac{1}{\sqrt{3^{2}+(3+4-2)^{2}}}+\frac{1}{\sqrt{4^{2}+(3+4-2)^{2}}}\right]^{12} \times\left[\frac{1}{\sqrt{3^{2}+(3+6-2)^{2}}}+\frac{1}{\sqrt{6^{2}+(3+6-2)^{2}}}\right]^{6} \\
& \\
& \times\left[\frac{1}{\sqrt{4^{2}+(4+4-2)^{2}}}+\frac{1}{\sqrt{4^{2}+(4+4-2)^{2}}}\right]^{6 n-18} \times\left[\frac{1}{\sqrt{4^{2}+(4+6-2)^{2}}}+\frac{1}{\sqrt{6^{2}+(4+6-2)^{2}}}\right]^{12 n-24} \\
& \\
& \times\left[\frac{1}{\sqrt{6^{2}+(6+6-2)^{2}}}+\frac{1}{\sqrt{6^{2}+(6+6-2)^{2}}}\right]^{9 n^{2}-33 n+30}
\end{aligned}
$$

After simplification, we get the desired result.

5. Results for Oxide Networks

Oxide networks are of vital importance in the study of silicate networks. An oxide network of dimension n is denoted by $O X_{n}$. A 5-dimensional oxide network is presented in Figure 4.

Fig. 4 Oxide network of dimension 5

Let G be the graph of an oxide network $O X_{n}$. By calculation, we obtain that G has $9 n^{2}+3 n$ vertices and $18 n^{2}$ edges. In G, by calculation, there are two types of edges based on the degree of end vertices of each edge as follows:

$$
\begin{array}{ll}
E_{1}=\left\{u v \square E(G) \mid d_{G}(u)=2, d_{G}(v)=4\right\}, & \left|E_{1}\right|=12 n . \\
E_{2}=\left\{u v \square E(G) \mid d_{G}(u)=d_{G}(v)=4\right\}, & \left|E_{2}\right|=18 n^{2}-12 n .
\end{array}
$$

In the following theorem, we compute the multiplicative $K G$ Sombor index of an oxide network.
Theorem 7. The multiplicative $K G$ Sombor index of an oxide network is

$$
\operatorname{KGII}\left(O X_{n}\right)=(2 \sqrt{5}+4 \sqrt{2})^{12 n} \times(4 \sqrt{13})^{18 n^{2}-12 n}
$$

Proof: By the definition of multiplicative $K G$ Sombor index and cardinalities of the edge partitions of $O X_{n}$, we have

$$
\begin{aligned}
& \operatorname{KGII}\left(O X_{n}\right)=\prod_{u v \in E\left(O X_{n}\right)}\left[\sqrt{d_{G}(u)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}+\sqrt{d_{G}(v)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}\right] \\
& \quad=\left[\sqrt{2^{2}+(2+4-2)^{2}}+\sqrt{4^{2}+(2+4-2)^{2}}\right]^{12 n} \times\left[\sqrt{4^{2}+(4+4-2)^{2}}+\sqrt{4^{2}+(4+4-2)^{2}}\right]^{18 n^{2}-12 n}
\end{aligned}
$$

gives the desired result after simplification.
In Theorem 8, we compute the multiplicative modified $K G$ Sombor index of an oxide network.
Theorem 8. The multiplicative $K G$ Sombor index of an oxide network is

$$
m K G I I\left(O X_{n}\right)=\left(\frac{1}{2 \sqrt{5}}+\frac{1}{4 \sqrt{2}}\right)^{12 n} \times\left(\frac{1}{\sqrt{13}}\right)^{18 n^{2}-12 n}
$$

Proof: By the definition of multiplicative $K G$ Sombor index and cardinalities of the edge partitions of $O X_{n}$, we have

$$
\begin{gathered}
\operatorname{mKGII}\left(O X_{n}\right)=\prod_{u v \in E\left(O X_{n}\right)}\left[\frac{1}{\sqrt{d_{G}(u)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}}+\frac{1}{\sqrt{d_{G}(v)^{2}+\left(d_{G}(u)+d_{G}(v)-2\right)^{2}}}\right] \\
=\left[\frac{1}{\sqrt{2^{2}+(2+4-2)^{2}}}+\frac{1}{\sqrt{4^{2}+(2+4-2)^{2}}}\right]^{12 n} \times\left[\frac{1}{\sqrt{4^{2}+(4+4-2)^{2}}}+\frac{1}{\sqrt{4^{2}+(4+4-2)^{2}}}\right]^{18 n^{2}-12 n}
\end{gathered}
$$

After simplification, we establish the desired result.

6. Conclusion

In this paper, we have introduced the multiplicative $K G$ Sombor index, multiplicative modified $K G$ Sombor index of a graph. Furthermore, we have determined these multiplicative $K G$ Sombor indices for chain silicate, silicate, hexagonal and oxide networks.

Acknowledgement

This research is supported by IGTRC No. BNT/IGTRC/2022:2217:117 International Graph Theory Research Center, Banhatti 587311, India.

References

[1] V.R.Kulli, "College Graph Theory," Vishwa International Publications, Gulbarga, India, 2012.
[2] V.R.Kulli, "On K Banhatti Indices of Graphs," Journal of Computer and Mathematical Sciences, vol. 7, no. 4, pp. 213-218, 2016.
[3] V.R.Kulli, "On K Hyper-Banhatti Indices and Coindices of Graphs," International Research Journal of Pure Algebra, vol. 6, no. 5, pp. 300-304, 2016.
[4] V.R.Kulli, B. Chaluvaraju, H.S. Boregowda, "The Product Connectivity Banhatti Index of a Graph," Mathematical discussions, Graph Theory, vol. 39, pp. 505-517, 2019.
[5] V.R.Kulli, "Banhatti-Nirmala Index of Certain Chemical Networks," International Journal of Mathematics Trends and Technology, vol. 68, no. 4, pp. 12-17, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I4P503.
[6] V.R.Kulli, N.Harish, B.Chaluvaraju and I.Gutman, "Mathematical Properties of Kg Index," Bulletin of International Mathematical Virtual Institute, vol. 12, no. 2, pp. 379-386, 2022.
[7] V.R.Kulli, "On Second Banhatti-Sombor Indices," International Journal of Mathematical Archive, vol. 12, no. 5, pp. 11-16, 2021.
[8] V.R.Kulli, "Neighborhood Sombor Index of Some Nanostructures," International Journal of Mathematics Trends and Technology, vol. 67, no. 5, pp. 101-108, 2021. Crossref, https://doi.org//10.14445/22315373/IJMTT-V67I5P512.
[9] V.R.Kulli, "Sombor Indices of Two Families of Dendrimer Nanostars," Annals of Pure and Applied Mathematics, vol. 24, no. 1, pp. 21-26, 2021.
[10] V.R.Kulli, "Different Versions of Sombor Index of Some Chemical Structures," International Journal of Engineering Sciences and Research Technology, vol. 10, no. 7, pp. 23-32, 2021.
[11] V.R.Kulli, "New Irregularity Sombor Indices and New Adriatic (A, B)-Ka Indices of Certain Chemical Drugs," International Journal of Mathematics Trends and Technology, vol. 67, no. 9, pp. 105-113, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I9P512.
[12] I.Milovanovic, E.Milovanovic and M.Matejic, "On Some Mathematical Properties of Sombor Indices," Bulletin Of International Mathematical Virtual Institute, vol. 11, no. 2, pp. 341-353, 2021.
[13] H.R.Manjunatha, V.R.Kulli and N.D.Soner, "The HDR Sombor Index," International Journal of Mathematics Trends and Technology, vol. 68, no. 4, pp. 1-6, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I4P501.
[14] R.Aguilar-Sanchez, J.A.Mendez-Bermudez, J.M.Sigaarreta, "Normalized Sombor Indices as Complexity Measures of Random Graphs, Arxiv, Doi: Arxiv: 2106.03190, 2021.
[15] Z.Lin, T.Zhou, V.R.Kulli and L.Miao, "On the First Banhatti-Sombor Index," Journal of International Mathematical Virtual Institute, vol. 11, pp. 53-68, 2021.
[16] I.Gutman, V.R.Kulli and I.Redzepovic, "Sombor Index of Kragujevac Trees," Scientific Publications of the State University of Novi Pazar Series A Applied Mathematics Informatics and mechanics, vol. 13, no. 2, pp. 61-70, 2021.
[17] V.R.Kulli and I.Gutman, "Revan Sombor Index," Journal of Mathematics and Informatics, vol. 22, pp. 23-27, 2022.
[18] V.R.Kulli, "Revan Sombor Indices and Their Exponentials of Certain Nanotubes," International Journal of Engineering Sciences and Research Technology, vol. 11, no. 5, pp. 22-31, 2022.
[19] V.R.Kulli, "Sratus Sombor Indices," International Journal of Mathematics and Computer Research, vol. 10, no. 6, pp. 2726-2730, 2022.
[20] K.C. Das, A.S. Cevik, I.N. Cangul and Y. Shang, "On Sombor Index," Symmetry, vol. 13, pp. 140, 2021.
[21] Y.Huang and H.Liu, "Bounds of Modified Sombor Index, Spectral Radius and Energy, Aims Mathematics, vol. 6, no. 6, pp. 11263-11274, 2021.
[22] S.Alikhani and N.Ghanbari, "Sombor Index of Polymers," MATCH Communications in Mathematical and in Computer Chemistry, Vol. 86, 2021.
[23] R.Cruz, I.Gutman and J.Rada, "Sombor Index of Chemical Graphs," Applied Mathematics and Computation, vol. 399, pp. 126018, 2021.
[24] H.Deng, Z.Tang and R.Wu, "Molecular Trees with Extremal Values of Sombor Indices," International Journal of Quantum Chemistry, Doi: 10.1002/Qua. 26622.
[25] B.Horoldagva and C.Xu, "On Sombor Index of Graphs," MATCH Communications in Mathematical and in Computer Chemistry, Vol. 86, 2021.
[26] V.R.Kulli and I.Gutman, "Computation of Sombor Indices of Certain Networks," SSRG International Journal of Applied Chemistry, vol. 8, no. 1, pp. 1-5, 2021. Crossref, https://doi.org/10.14445/23939133/IJAC-V8I1P101.
[27] I.Redzepović, "Chemical Applicability of Sombor Indices," Journal of the Serbian Chemical Society, 2021. https://doi.org/10.2298/Jsc20:1215006r.
[28] T.Reti, T. Došlić and A. Ali, "On the Sombor Index of Graphs," Contributions of Mathematics, 3 pp. 11-18, 2021.
[29] V.R.Kulli, "KG Sombor Indices of Certain Chemical Drugs," International Journal of Engineering Sciences and Research Technology, vol. 10, no. 6, pp. 27-35, 2022.
[30] T.V.Asha, V.R.Kulli and B.Chaluvaraju, "Multiplicative Versions of Banhatti Indices," South East Asian Journal of Mathematics and Mathematical Sciences, vol. 18, no. 1, pp. 309-324, 2022.
[31] V.R.Kulli, "Multiplicative Sombor Indices of Certain Nanotubes," International Journal of Mathematical Archive, vol. 12, no. 3, pp. 1-5, 2021.

