Research Article Cubic Vertex-Transitive bi-Cayley Graphs over a Nonabelian Group

Weihua Yang

School of Mathematics and Information Science, Henan Polytechnic University, Henan, China

Received: 30 August 2022Revised: 08 October 2022Accepted: 18 October 2022Published: 31 October 2022

Abstract - The vertex-transitive graph is a graph with high symmetry. A graph Γ is said to be a bi-Cayley graph over a group H if it admits H as a semiregular automorphism group with two orbits of equal size. And Γ is normal with respect to H if R(H) is normal subgroup of $Aut(\Gamma)$. In this paper, we complete the classification of the cubic vertex-transitive normal bi-Cayley graphs over a group of order pq^2 , where p and q be two primes with p>q. Furthermore, these cubic vertex-transitive bi-Cayley graphs are also a Cayley graph.

Keywords - Bi-Cayley graph, Normal, Cayley graph, Vertex-transitive, Isomorphism.

1. Introduction

The vertex-transitive graph is a graph with high symmetry, and the symmetry of a graph is described by some transitivity properties of the graph. Cayley graph is a famous symmetric graph, which has important significance in many fields such as mathematical models, computer networks and communication technology. As a natural generalization of the Cayley graph, the bi-Cayley graph was proposed by Resmini and Jungnickel [1] when they studied the normality of Cayley graphs, and bi-Cayley graph is also important research tool for vertex-transitive graph, edge-transitive graph, semisymmetric graph and even symmetric graph. The symmetry of the bi-Cayley graph has been a hot topic, and the research focus being on classifying bi-Cayley graphs with specific symmetry properties over a given finite group H.

For a graph Γ , we denote by $V(\Gamma)$, $E(\Gamma)$, Aut(Γ) the vertex set, edge set and full automorphism group of Γ , respectively. The graph Γ is said to be *vertex-transitive* or *edge-transitive* if Aut(Γ) acts transitively on $V(\Gamma)$ or $E(\Gamma)$, respectively. Initially, bi-Cayley graph over the cyclic group and abelian group were studied (see[2,3,4,5,6,7,8]). In recent years, the research focus being on classifying bi-Cayley graphs over finite nonabelian groups. For example, in [9], cubic symmetric bi-Cayley graphs on non abelian simple groups were classified and the full automorphism groups of these graphs were determined; trivalent vertex-transitive bi-Cayley graphs over dihedral groups were classified and Cayley property of trivalent vertex-transitive bi-dihedrants was presented in [10]. And for more results about it, we refer the reader to [11,12,13,14,15,16].

The normality of the bi-Cayley graph is an important property in the study of transitivity and full automorphism group of bi-Cayley graphs (see[17,18,19,20]). Much work has also been done on normal bi-Cayley graph. For example, it was shown that every finite group has a normal bi-Cayley graph in [21]. For a bi-Cayley graph Γ over a group H, the normalizer of group H in the full automorphism group of bi-Cayley graph Γ was determined in [22].

In this paper, we will apply the normality of bi-Cayley graph to study the bi-Cayley graph with respect to the vertextransitive property and its full automorphism group. We present a classification of the vertex-transitive property of cubic normal bi-Cayley graphs Γ over a group of order pq², and it is shown that if Γ is vertex-transitive, it is also a Cayley graph.

Theorem 1.1 Let $H = \langle a, b | a^p = b^{q^2} = 1, b^{-1}ab = a^{r^{\frac{p-1}{q}}}, q | p - 1 \rangle$, where p and q be two primes with q<p, and r is a primitive root of modulo p. Let Γ = BiCay (H, R, L, S) be a connected normal cubic bi-Cayley graph over group H, it is vertex-transitive if and only if the (R, L, S) is equivalent to the one of the triples in Table 1. Furthermore, all the graphs in Table 1 are both Cayley graph.

No	(R , L , S)	conditions	Cayley
1	$(\emptyset, \emptyset, \{1, ab^{-s}, b^{s}\})$	$1 \le s \le q - 1$	Yes
2	$(\emptyset, \emptyset, \{1, ab^{2s}, b^s\})$	$1 \le s \le q - 1$	Yes
3	$(\emptyset, \emptyset, \{1, ab^k, b^{2k}\})$	$k = nq + t(t \neq 0), 0 \le n, t \le q - 1$	Yes
4	$(\{ab^{s},(ab^{s})^{-1}\},\{b^{s},b^{-s}\},\{1\})$	$1 \le s \le q - 1$	Yes

Table 1. Cubic vertex-transitive normal bi-Cayley graphs over group *H*.

2. Definition and Preliminaries

All graphs considered in this paper are finite, simple and undirected; some concepts and symbols not mentioned which will be used in the whole paper; see [23,24]. For a vertex *v* of graph Γ , its *neighborhood*, denoted by N(v). Given a finite group *G* and an inverse closed subset $S \subseteq G \not\equiv \{1\}$, the *Cayley graph* X=Cay(G,S) on *G* with respect to *S* is a graph with vertex set *G* and edge set $\{\{g, sg\} | g \in G, s \in S\}$. Define the *bi-Cayley* graph Γ =BiCay(*H*,*R*,*L*,*S*) with vertex set $V(\Gamma) = H_0 \cup H_1$ and edge set $E(\Gamma) = \{\{h_0, g_0\} | gh^{-1} \in R\} \cup \{\{h_1, g_1\} | gh^{-1} \in L\} \cup \{\{h_0, g_1\} | gh^{-1} \in S\}$, where $H_i = \{h_i | h \in H\}$, i=0,1; R, L and *S* is subsets of a group *H* such that $R = R^{-1}, L = L^{-1}$ and $R \cup L$ does not contain the identity element of *H*. The graph Γ is called *s*- *type bi-Cayley* if |R|=|L|=s, when R(H) is normal in Aut(Γ), the bi-Cayley graph Γ will be called a *normal bi-Cayley graph*. For the case when |S|=1, the graph Γ is also called *one-matching bi-Cayley graph*.

Proposition 2.1 [6] Let Γ = BiCay(H, R, L, S) be a connected bi-Cayley graph over a group H. The following obvious facts are basic for graph Γ .

(1) *H* is generated by $R \cup L \cup S$.

(2) Up to graph isomorphism, S can be chosen to contain the identity element of H.

(3) For any automorphism α of H, BiCay(H, R, L, S) \cong BiCay (H, $\mathbb{R}^{\alpha}, L^{\alpha}, S^{\alpha})$.

(4) BiCay $(H, R, LS) \cong$ BiCay (HL, R, S^{-1}) .

In [22], let Γ = BiCay(H, R, L, S). It is easy to see that R(H) can be regarded as a group of automorphisms of Γ acting on its vertices by the rule

$$h_i^{R(g)} = (hg)_i, \forall i = 0, 1; h, g \in H.$$

For an automorphism α of *H* and *x*, *y*, $g \in H$, define two permutations on $V(\Gamma) = H_0 \cup H_1$ as following:

 $\delta_{\alpha,x,y}$: $h_0 \mapsto (xh^{\alpha})_1, h_1 \mapsto (yh^{\alpha})_0$, for each $h \in H$. (I)

 $\sigma_{\alpha,q}: h_0 \mapsto (h^{\alpha})_0, h_1 \mapsto (gh^{\alpha})_1, \quad \text{for each } h \in H.$ (II)

and then define

 $I = \{\delta_{\alpha,x,y} | R^{\alpha} = x^{-1}Lx, L^{\alpha} = y^{-1}Ry \text{ and } S^{\alpha} = y^{-1}S^{-1}x\} \subseteq Aut(\Gamma).$ $F = \{\sigma_{\alpha,g} | R^{\alpha} = R, L^{\alpha} = g^{-1}Lg \text{ and } S^{\alpha} = g^{-1}S\} \leq Aut(\Gamma).$

Proposition 2.2 [6] Let Γ = BiCay(H, R, L, S). be a connected bi-Cayley graph over the group H. If I=Øthen $N_{Aut(\Gamma)} = (R(H)) = R(H) \rtimes F$, and If $I \neq \emptyset$, then $N_{Aut(\Gamma)} = (R(H)) = R(H) \langle F, \delta_{\alpha,x,y} \rangle$ for some $\delta_{\alpha,x,y} \in I$. For any $\delta_{\alpha,x,y} \in I$, x, $y \in H, \alpha \in Aut(\Gamma)$, we have the following:

(1) $\langle \mathbf{R}(\mathbf{H}), \boldsymbol{\delta}_{\alpha,x,y} \rangle$ acts transitively on $\mathbf{V}(\boldsymbol{\Gamma})$ and $\boldsymbol{\delta}_{\alpha,x,y}$ normalizes $\mathbf{R}(\mathbf{H})$;

(2) If $o(\alpha) = 2$ and x = y = 1, then Γ is isomorphic to the Cayley graph $Cay(\overline{H}, R \cup \alpha S)$, where $\overline{H} = H \rtimes \langle \alpha \rangle$.

Lemma 2.3 Let p and q be two primes with q<p. Let

 $H = \langle a, b | a^p = b^{q^2} = 1, b^{-1}ab = a^{r^h}, q | p - 1 \rangle,$ where r is a primitive root of modulo p and $h = \frac{p-1}{q}$. If $H = \langle x, y \rangle$, then $\{x, y\}$ is either $\{a, b^s\}$, or $\{ab^k, b^u\}$, or $\{ab^l, b^w\}$, where k = nq+t, l = mq, and s, u, w, t, $m = 1, 2, \dots, q-1$, $n = 0, 1, \dots, q-1$.

Proof By Theorem in [25],

$$\operatorname{Aut}(H) = \{ \alpha \mid a^{\alpha} = a^{i}, b^{\alpha} = a^{l} b^{nq+1} \}$$

where $i=1, 2, \dots, p-1, l=1, 2, \dots, p$ and $n=0, 1, \dots, q-1$. Then *H* can be generated either by elements of order *p* and *q*², or elements of order q^2 and pq. If $H=\langle x, y \rangle$, then $\{x, y\}$ is the following holds: $\{a^{i_1}, a^{j_1}b^{nq+s}\}, \{a^{j_1}b^{nq+s}, a^{j_1}b^{n_1q+s_1}\}, \{a^{i_2}b^{n_2q}, a^{j_1}b^{n_1q+s_1}\}, \{a^{j_1}b^{n_1q+s_1}\}, \{a^{j_2}b^{n_2q}, a^{j_1}b^{n_1q+s_1}\}, \{a^{j_2}b^{n_2q}, a^{j_1}b^{n_1q+s_1}\}, a^{j_2}b^{n_2q+s_1}\}, a^{j_1}b^{n_1q+s_1}\}, a^{j_2}b^{n_2q+s_1}\}, a^{j_2}b^{n_2q+s_1}\}, a^{j_2}b^{n_2q+s_1}b^{n_2q+s_1}\}, a^{j_2}b^{n_2q+s_1}b^{n_2$

where $i_1, i_2 = 1, 2, \dots, p-1; j, j_1 = 0, 1, \dots, p-1; n, n_1 = 0, 1, \dots, q-1; s, s_1, n_2 = 1, 2, \dots, q-1$. There exist $\alpha_1, \alpha_2, \alpha_3 \in Aut(H)$ such that

$$\begin{array}{l} \langle a, b^s \rangle^{\alpha_1} = \langle a^{l_1}, a^j b^{nq+s} \rangle, & \text{where } \alpha_1 : a \mapsto a^{l_1}, b^s \mapsto a^j b^{nq+s}, \\ \langle ab^{nq+s}, b^{s_1} \rangle^{\alpha_2} = \langle a^j b^{nq+s}, a^{j_1} b^{n_1q+s_1} \rangle, & \text{where } \alpha_2 : a \mapsto a^j, b^{s_1} \mapsto a^{j_1} b^{n_1q+s_1}, \\ \langle ab^{n_2q}, b^s \rangle^{\alpha_3} = \langle a^{l_2} b^{n_2q}, a^j b^{nq+s} \rangle, & \text{where } \alpha_3 : a \mapsto a^{l_2}, b^s \mapsto a^j b^{nq+s}. \end{array}$$

Hence, up to the automorphism of the group, $\{x, y\}$ is either $\{a, b^s\}$, or $\{ab^k, b^u\}$, or $\{ab^l, b^w\}$, where k=nq+t, l=mq, and s, u, w, t, $m=1, 2, \cdots, q-1$, $n=0, 1, \cdots, q-1$.

According to structure of group H, there is no elements of order 2 in H. Thus, there is no 1-type bi-Cayley graphs over a group H. In the following; we only need to consider the 0-type and 2-type bi-Cayley graphs over a group H.

3. 0-Type vertex-transitive bi-Cayley graph

In this section, we shall give a characterization of connected cubic 0-type normal bi-Cayley graphs over a group H and show that cubic 0-type vertex-transitive normal bi-Cayley graphs over a group H. Let Γ = BiCay(H, R, LS) be a connected cubic 0-type normal bi-Cayley graph over group H. Firstly, determine R, L and S. Note that Γ is 0-type bi-Cayley graphs, it is clear that $R=L=\{\emptyset\}$. By connectivity of Γ , we can get $H=\langle S \rangle$. From Lemma 2.3, we can get S is one of the following holds:

(1)
$$S_1 = \{1, a, b^3\};$$

(2) $S_2 = \{1, ab^k, b^u\}, where k = nq + t;$
(3) $S_3 = \{1, ab^l, b^w\}, where l = mq,$

where s, u, w, t, $m=1, 2, \dots, q-1, n=0, 1, 2, \dots, q-1$.

Lemma 3.1 Let $\Gamma_1 = BiCay(H, \emptyset, \emptyset, S_1), \Gamma_2 = BiCay(H, \emptyset, \emptyset, S_2)$ be connected cubic 0-type bi-Cayley graphs over group *H*, if s=u=k, then $\Gamma_1 \cong \Gamma_2$.

Proof: Set $V(\Gamma_n) = \{(a^i b^j)_{0n}, (a^i b^j)_{1n} | i = 0, \dots, p-1, j = 0, \dots, q^2 - 1\}$, where n=1, 2. Take a mapping ρ from $V(\Gamma_1)$ to $V(\Gamma_2)$ as follows:

$$\rho: (a^i b^j)_{01} \mapsto (a^{-i} b^j)_{12}, (a^i b^j)_{11} \mapsto (a^{-ir^{hu}} b^{j-u})_{02}.$$

Firstly, we will show that ρ is a bijection. For any $(a^i b^j)_{12}$, $(a^i b^j)_{02} \in V(\Gamma_2)$, there exist $(a^{-i} b^j)_{01}$, $(a^{-ir^{-hu}} b^{j+u})_{11} \in V(\Gamma_1)$ such that $(a^{-i} b^j)_{01}^{\rho} = (a^i b^j)_{12}$ and $(a^{-ir^{-hu}} b^{j+u})_{11}^{\rho} = (a^i b^j)_{02}$. Thus ρ is a surjection. For any $(a^i b^j)_{01}$, $(a^i b^j)_{01} \in V(\Gamma_1)$ such that $(a^{-i} b^j)_{01}^{\rho} = (a^i b^j)_{12}$ and $(a^{-ir^{-hu}} b^{j+u})_{11}^{\rho} = (a^i b^j)_{02}$. $V(\Gamma_1)$ and $(a^i b^j)_{11}, (a^{i'} b^{j'})_{11} \in V(\Gamma_1)$, then

$$\rho((a^{i}b^{j})_{01}) = \rho((a^{i'}b^{j'})_{01}) \Leftrightarrow ((a^{-i}b^{j})_{12}) = (a^{-i'}b^{j'})_{12} \Leftrightarrow (a^{i}b^{j})_{01} = (a^{i'}b^{j'})_{01}.$$

$$\rho((a^{i}b^{j})_{11}) = \rho((a^{i'}b^{j'})_{11}) \Leftrightarrow ((a^{-ir^{hu}}b^{j-u})_{02}) = (a^{-i'r^{hu}}b^{j'-u})_{02} \Leftrightarrow (a^{i}b^{j})_{11} = (a^{i'}b^{j'})_{11}.$$

Therefore, ρ is a bijection.

Next, we show that ρ preserves $E(\Gamma)$ if s=u=k. Note that

$$\begin{split} N((a^{i}b^{j})_{01})^{\rho} &= \{(a^{i}b^{j})_{11}, (a^{i+1}b^{j})_{11}, (a^{ir^{-hu}}b^{u+j})_{11}\}^{\rho} \\ &= \{(a^{-ir^{hu}}b^{j-u})_{02}, (a^{-(i+1)r^{hu}}b^{j-u})_{02}, (a^{-i}b^{j})_{02}\} = N((a^{-i}b^{j})_{12}). \\ N((a^{i}b^{j})_{11})^{\rho} &= \{(a^{i}b^{j})_{01}, (a^{i-1}b^{j})_{01}, (a^{ir^{hu}}b^{j-u})_{01}\}^{\rho} \\ &= \{(a^{-i}b^{j})_{12}, (a^{1-i}b^{j})_{12}, (a^{-ir^{hu}}b^{j-u})_{12}\} = N((a^{-ir^{hu}}b^{j-u})_{02}). \end{split}$$

Therefore, ρ is an isomorphism from $V(\Gamma_1)$ to $V(\Gamma_2)$, then $\Gamma_1 \cong \Gamma_2$.

Lemma 3.2 Let $\Gamma = \text{BiCay}(H, \emptyset, \emptyset, S_1)$ be a connected cubic 0-type normal bi-Cayley graph over group H, then Γ is not *vertex-transitive, and* $Aut(\Gamma) = R(H) \rtimes Z_2$.

Proof: By Proposition 2.2, first, we show that $I = \emptyset$.

Suppose that $I \neq \emptyset$. Since H is transitive on $\{(a^i b^j)_1 | i = 0, \dots, p-1, j = 0, \dots, q^2 - 1\}$, without loss of generality, we can assume that $1_0^{\delta_{\alpha,x,y}} = 1_1$, and it is easy to know that x=1. Moreover, $N(1_0)^{\delta_{\alpha,1,y}} = \{1_1, a_1, b_1^s\}^{\delta_{\alpha,1,y}} = \{1_0, (a^{-1})_0, (b^{-s})_0\} = N(1_1)$, the following three cases are discussed.

(i) If $1_1^{\delta_{\alpha,1,y}} = 1_0$, it forces that y=1. By the definition of I, we have $S_1^{\alpha} = \{1, a, b^s\}^{\alpha} = \{1, a^{-1}, b^{-s}\} = \{1, a^{-1}, b^{-s}\}$ $y^{-1}S_1^{-1}x$, and for any $\alpha \in Aut(H)$, there is $1^{\alpha} = 1$. And we know that there is no $\alpha \in Aut(H)$ such that $\{a, b^s\}^{\alpha} = 1$ $\{a^{-1}, b^{-s}\}$, a contradiction.

(ii) If $1_1^{\delta_{\alpha,1,y}} = (a^{-1})_0$, it forces that $y = a^{-1}$. Since $\alpha, x, y \in I$, it follows that $S_1^{\alpha} = \{1, a, b^s\}^{\alpha} = \{a, 1, ab^{-s}\} = y^{-1}S_1^{-1}x$. For any $\alpha \in Aut(H)$, we have $1^{\alpha} = 1$. But there is no $\alpha \in Aut(H)$ such that $\{a, b^s\}^{\alpha} = \{a, ab^{-s}\}$, a contradiction.

(iii) If $1_1^{\delta_{\alpha,1,y}} = (b^{-s})_0$, it forces that $y = b^{-s}$. Then, we have $S_1^{\alpha} = \{1, a, b^s\}^{\alpha} = \{b^s, b^s a^{-1}, 1\} = y^{-1}S_1^{-1}x$. But there is $no\alpha \in Aut(H)$ such that $\{a, b^s\}^{\alpha} = \{b^s a^{-1}, b^s\}$, a contradiction.

Based on the above, $I = \emptyset$. Next, we show that $Aut(\Gamma) = R(H) \rtimes \langle \sigma_{\alpha,a} \rangle$, where $\sigma_{\backslash \alpha,a}: h_0 \mapsto (h^{\alpha})_0, h_1 \mapsto (ah^{\alpha})_1$ for each

 $h \in H$, where $\alpha : a \mapsto a^{-1}, b^s \mapsto a^{-1}b^s$.

By equation (II) and the definition of F, for any $\sigma_{\alpha,g} \in F$, we have $S_1^{\alpha} = \{1, a, b^s\}^{\alpha} = g^{-1}S_1 = \{g^{-1}, g^{-1}a, g^{-1}b^s\}$. Note that $\alpha \in Aut(H)$; then there is the identity element 1 in $\{g^{-1}, g^{-1}a, g^{-1}b^s\}$.

(i) If g=1, then we can obtain $S_1^{\setminus \alpha} = \{1, a, b^s\}^{\alpha} = S_1$, where α is an identity mapping and $\alpha \in Aut(H)$; (ii) If g=a, then we can obtain $S_1^{\alpha} = \{1, a, b^s\}^{\setminus \alpha} = \{a^{-1}, 1, a^{-1}b^s\} = a^{-1}S_1$, where $\alpha : a \mapsto a^{-1}, b^s \mapsto a^{-1}b^s$ and $\alpha \in \operatorname{Aut}(H);$

(iii) If $g=b^s$, then there exists no $\alpha \in Aut(H)$ such that $S_1^{\setminus \alpha} = \{1, a, b^s\}^{\setminus \alpha} = \{b^{-s}a, 1, b^{-s}\} = b^{-s}S_1$.

Since Γ is normal bi-Cayley graph, we can obtain $Aut(\Gamma) = R(H) \rtimes \langle \sigma_{\alpha,\alpha} \rangle = R(H) \rtimes Z_2$. Moreover, by the definition of F, it is easy to see that Γ is not vertex-transitive.

Lemma 3.3 Let Γ = BiCay($H, \emptyset, \emptyset, S_2$) be a connected cubic 0-type normal bi-Cayley graph over group H, where $k \neq u$. If $k=-u, k=2u \text{ or } u=2k, \text{ then } \Gamma \text{ is a vertex-transitive graph. Especially, } \Gamma \text{ is a Cayley graph and } \frac{Aut(\Gamma)}{R(H)} = Z_2.$ **Proof:** If k=-u, then $\Gamma = BiCay(H, \emptyset, \emptyset, \{1, ab^{-u}, b^u\})$.Set

$$\gamma: a \mapsto a^{-1}, b \mapsto a^{-r^{-hu}(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}}b$$

in Aut(*H*). Note that

$$a^{\gamma^{2}} = (a^{-1})^{\gamma} = a, \quad b^{\gamma^{2}} = (a^{-r^{-hu}(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}}b)^{\gamma} = a^{r^{-hu}(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}}a^{-r^{-hu}(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}}b = b.$$

Clearly, $o(\gamma) = 2$. We take $x = y = 1$, the $no(\delta_{\gamma,1,1}) = 2$. Next, we show that $\delta_{\gamma,1,1} \in I$.
 $S_{2}^{\gamma} = \{1, ab^{-u}, b^{u}\}^{\gamma} = \{1, a^{-1-r^{-hu}(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}(\frac{r^{-hu}-1}{r^{-h}-1})}b^{-u}, a^{-r^{-hu}(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}(\frac{r^{-hu}-1}{r^{-h}-1})}b^{u}\}$
 $= \{1, b^{-u}, a^{-r^{-hu}}b^{u}\} = S_{2}^{-1}.$

Hence $\delta_{\gamma,1,1} \in I$. By Proposition 2.2, $\langle R(H), \delta_{\gamma,1,1} \rangle$ acts transitively on $V(\Gamma)$ and Γ is isomorphic to a Cayley graph. If k=2u, then $\Gamma = BiCay(H, \emptyset, \emptyset, \{1, ab^{2u}, b^u\})$. Take

$$\pi: a \mapsto a^{-r^{-hu}}, b \mapsto a^{(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}}b$$

in Aut(H).

Next, we show that $\delta_{\pi,1,(ab^{2u})^{-1}} \in I$. Let $x = 1, y = (ab^{2u})^{-1}$, then

$$S_{2}^{\pi} = \{1, ab^{2u}, b^{u}\}^{\pi} = \{1, a^{-r^{-hu}}a^{(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}(\frac{r^{-2hu}-1}{r^{-h}-1})}b^{2u}, a^{(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}(\frac{r^{-hu}-1}{r^{-h}-1})}b^{u}\}$$

= $\{1, ab^{2u}, ab^{u}\} = (ab^{2u})S_{2}^{-1}.$

Therefore, $\delta_{\pi,1,(ab^{2u})^{-1}} \in I$. Consequently, Γ is vertex-transitive graph.

Next, we show that $\delta^2_{\pi,1,(ab^{2u})^{-1}} \in R(H)$. For any $h_0 = (a^i b^j)_0 \in H_0$, we have

$$(a^{i}b^{j})_{0}^{o_{\pi,1,(ab^{2u})^{-1}}} = ((ab^{2u})^{-1}(a^{i}b^{j})^{\pi^{2}})_{0}$$

= $((ab^{2u})^{-1}(a^{-ir^{-hu}}a^{(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}(\frac{r^{-hj}-1}{r^{-h}-1})}b^{j})^{\pi})_{0}$
= $(a^{i-r^{2hu-hj}}b^{j-2u})_{0}.$

Similarly, for any $h_1 = (a^i b^j)_1 \in H_1$, we have

$$(a^{i}b^{j})_{1}^{\delta^{2}_{\pi,1,(ab^{2u})^{-1}}} = (((ab^{2u})^{-1})^{\pi}(a^{i}b^{j})^{\pi^{2}})_{1}$$

= $(((ab^{2u})^{-1})^{\pi}a^{ir^{-2hu}-r^{-hj+1}}b^{j})_{1}$
= $(a^{(\frac{r^{-hu}-1}{r^{-h-1}})^{-1}(\frac{r^{2hu}-1}{r^{-h-1}})}b^{-2u}a^{r^{-hu}}a^{ir^{-2hu}-r^{-hj+1}}b^{j})_{1}$
= $(a^{i-r^{2hu-hj}}b^{j-2u})_{1}.$

Hence, we can get that $\delta_{\pi,1,(ab^{2u})^{-1}}^2 = R(a^{-r^{2hu}}b^{-2u}) \in R(H)$. Therefore, we have $\langle R(H), \delta_{\pi,1,(ab^{2u})^{-1}} \rangle / R(H) \cong Z_2$ and $|\langle R(H), \delta_{\pi,1,(ab^{2u})^{-1}} \rangle| = 2pq^2$. Hence, $|\langle R(H), \delta_{\pi,1,(ab^{2u})^{-1}} \rangle|$ acts regularly on $V(\Gamma)$. Then Γ is isomorphic to a Cayley graph.

If u=2k, then $\Gamma = BiCay(H, \emptyset, \emptyset, \{1, ab^k, b^{2k}\})$.Let

$$\epsilon: a \mapsto a^{-r^{-hk}}, \qquad b \mapsto b$$

be an automorphic mapping of *H*. Next, we show that $\delta_{\epsilon,1,b^{-2k}} \in I$. We take $x=1, y=b^{-2k}$, then

$$S_2^{\epsilon} = \{1, ab^k, b^{2k}\}^{\epsilon} = \{1, a^{-r^{-hk}}b^k, b^{2k}\} = (b^{2k})S_2^{-k}$$

Therefore, $\delta_{\epsilon,1,b^{-2k}} \in I$. Then Γ is vertex-transitive graph.

Next, we show that $\delta^2_{\epsilon,1,(b^{-2k})} \in R(H)$. For any $h_0 = (a^i b^j)_0 \in H_0$, we have

$$(a^{i}b^{j})_{0}^{\delta^{2}_{\epsilon,1,b}-2k} = (b^{-2k}(a^{i}b^{j})^{\epsilon^{2}})_{0}$$
$$= (b^{-2k}(a^{-ir^{-hk}}b^{j})^{\epsilon})_{0}$$
$$= (a^{i}b^{j-2k})_{0}.$$

Similarly, for any $h_1 = (a^i b^j)_1 \in H_1$, we have $(a^i b^j)_1^{\delta^2_{\epsilon,1,b}^{-2k}} = (a^i b^{j-2k})_1$. Hence, we have that $\delta^2_{\epsilon,1,b^{-2k}} = R(b^{-2k}) \in R(H)$. Hence, $\langle R(H), \delta_{\epsilon,1,b^{-2k}} \rangle / R(H) \cong Z_2$ and $|\langle R(H), \delta_{\epsilon,1,b^{-2k}} \rangle| = C_1^{-2k}$. $2pq^2$. Then

 $\langle R(H), \delta_{\epsilon,1,b^{-2k}} \rangle$ acts regularly on $V(\Gamma), \Gamma$ is isomorphic to a Cayley graph.

By Proposition 2.2, $Aut(\Gamma) = N_{Aut(\Gamma)}(R(H)) = R(H)\langle F, \delta_{\gamma,1,1} \rangle$. Next, we show that $F = \{1\}$. Since k = -u, k = 2u, u=2k, we have $S_2^{\alpha_1} = \{1, ab^{-u}, b^u\}^{\alpha_1} = g_1^{-1}\{1, ab^{-u}, b^u\} = g_1^{-1}S_2$, $S_2^{\alpha_2} = \{1, ab^{2u}, b^u\}^{\alpha_2} = g_2^{-1}\{1, ab^{2u}, b^u\} = g_2^{-1}S_2$, $S_2^{\alpha_3} = g_2^{-1}S_2$, S_2 $\{1, ab^k, b^{2k}\}^{\alpha_3} = g_3^{-1}\{1, ab^k, b^{2k}\} = g_3^{-1}S_2$, respectively. And we obtain that only $g_1, g_2, g_3 = 1, \alpha_1, \alpha_2, \alpha_3 \in Aut(H)$ is identity mapping is satisfied. That is $F = \{1\}$. Then $\frac{Aut(\Gamma)}{R(H)} = Z_2$.

Lemma 3.4 Let $\Gamma = BiCay(H, \emptyset, \emptyset, S_2)$ be a connected cubic 0-type normal bi-Cayley graph over group H, where $k \neq 1$ $-u, k \neq 2u$ and $k \neq u/2$, then Γ is not vertex-transitive graph, and $Aut(\Gamma) = R(H)$.

Proof If k=u, then $BiCay(H, \emptyset, \emptyset, S_2) \cong BiCay(H, \emptyset, \emptyset, S_1)$ by Lemma 3.1.

If $k \neq -u$, 2u, u/2. By Proposition 2.2, first, we show that $I = \emptyset$.

Suppose that $I \neq \emptyset$. Since *H* is transitive on $\{(a^i b^j)_1 | i = 0, \dots, p-1, j = 0, \dots, q^2 - 1\}$, without loss of generality, we can assume that $1_0^{\delta_{\alpha,x,y}} = 1_1$, and it is easy to know that x=1. Moreover, $N(1_0)^{\delta_{\alpha,1,y}} = \{1_1, (ab^k)_1, b_1^u\}^{\delta_{\alpha,1,y}} = (1_1, (ab^k)_1, b_1^u)^{\delta_{\alpha,1,y}} = (1_1, (ab^$ $\{1_0, (ab^k)_0^{-1}, b_0^{-u}\} = N(1_1)$, the

following three cases are discussed.

(i) If $1_1^{\delta_{\alpha,1,y}} = 1_0$, it forces that y=1. By the definition of I, we have $S_2^{\alpha} = \{1, ab^k, b^u\}^{\alpha} = \{1, (ab^k)^{-1}, b^{-u}\} = y^{-1}S_2^{-1}x$, and for any $\alpha \in Aut(H)$, there is $1^{\alpha} = 1$. And we know that there is $no\alpha \in Aut(H)$ such that $\{ab^k, b^u\}^{\alpha} = \{(ab^k)^{-1}, b^{-u}\}$, a contradiction.

(ii) If $1_1^{\delta_{\alpha,1,y}} = (ab^k)_0^{-1}$, it forces that $y = (ab^k)^{-1}$. Since $\alpha, x, y \in I$, it follows that $S_2^{\alpha} = \{1, ab^k, b^u\}^{\alpha} = \{1, ab^k, b^u\}^{\alpha}$ $\{ab^{k}, 1, ab^{k-u}\} =$

 $y^{-1}S_2^{-1}x$. For any $\alpha \in Aut(H)$, we have $1^{\alpha} = 1$. But there is no $\alpha \in Aut(H)$ such that $\{ab^k, b^u\}^{\alpha} = \{ab^k, ab^{k-u}\}$, contradiction.

(iii) If $1_1^{\delta_{\alpha,1,y}} = (b^{-u})_0$, it forces that $y = b^{-u}$. Then, we have $S_2^{\alpha} = \{1, ab^k, b^u\}^{\alpha} = \{b^u, b^{u-k}a^{-1}, 1\} = y^{-1}S_2^{-1}x$. But there is no $\alpha \in Aut(H)$ such that $\{ab^k, b^u\}^{\alpha} = \{b^{u-k}a^{-1}, b^u\}$, a contradiction.

Based on the above, $I = \emptyset$. Next, we show that $Aut(\Gamma) = R(H) \rtimes \langle \sigma_{\varepsilon,1} \rangle$, where $\sigma_{\varepsilon,1} : h_0 \mapsto (h^{\varepsilon})_0, h_1 \mapsto (h^{\varepsilon})_1$, and ε is an identity mapping.

By equation (II) and definition of F, for any $\sigma_{\alpha,g} \in F$, we have $S_2^{\alpha} = \{1, ab^k, b^u\}^{\alpha} = g^{-1}S_2 =$ $\{g^{-1}, g^{-1}ab^k, g^{-1}b^u\}$. Note that

 $\alpha \in Aut(H)$, then there is the identity element 1 in $\{g^{-1}, g^{-1}ab^k, g^{-1}b^u\}$. (i) If g=1, then we can obtain $S_2^{\alpha} = \{1, ab^k, b^u\}^{\setminus \alpha} = S_2$, where α is an identity mapping and $\alpha \in Aut(H)$; (ii) If $g = ab^k$, there is no $\alpha \in Aut(H)$ such that $S_2^{\alpha} = \{1, ab^k, b^u\}^{\alpha} = \{(ab^k)^{-1}, 1, a^{-r^{hk}}b^{u-k}\} = (ab^k)^{-1}S_2$; (iii) If $g = b^u$, there is no $\alpha \in Aut(H)$ such that $S_2^{\setminus \alpha} = \{1, ab^k, b^u\}^{\setminus \alpha} = \{b^{-u}, a^{r^{hu}}b^{k-u}, 1\} = b^{-u}S_2$. Since Γ is normal bi-Cayley graph, we can obtain $Aut(\Gamma) = R(H)$. Consequently, Γ is not vertex-transitive.

Lemma 3.5 Let Γ = BiCay(H, ϕ , ϕ , S_3) be a connected cubic 0-type normal bi-Cayley graph over group H, then Γ is not vertex-transitive, and $Aut(\Gamma) = R(H)$.

Proof By Proposition 2.2, first, we show that $I = \emptyset$.

Suppose that $I \neq \emptyset$. Since *H* is transitive on $\{(a^i b^j)_1 | i = 0, \dots, p-1, j = 0, \dots, q^2 - 1\}$, without loss of generality, we can assume that $1_0^{\delta_{\alpha,x,y}} = 1_1$, and it is easy to know that x=1. Moreover, $N(1_0)^{\delta_{\alpha,1,y}} = \{1_1, ab_1^l, b_1^w\}^{\delta_{\alpha,1,y}} = 0$ $\{1_0, (ab^l)_0^{-1}, b_0^{-w}\} = N(1_1)$, the following three cases are discussed.

(i) If $1_1^{\delta_{\alpha,1,y}} = 1_0$, it forces that y = 1. By the definition of I, we have $S_3^{\alpha} = \{1, ab^l, b^w\}^{\alpha} =$ $\{1, (ab^l)^{-1}, b^{-w}\} = y^{-1}S_3^{-1}x$, and for any $\alpha \in Aut(H)$, there is $1^{\alpha} = 1$. And we know that there is $n\alpha \in Aut(H)$ such that $\{ab^l, b^w\}^{\alpha} = \{(ab^l)^{-1}, b^{-w}\}$, a contradiction.

(ii) If $1_1^{\delta_{\alpha,1,y}} = (ab^l)_0^{-1}$, it forces that $y = (ab^l)^{-1}$. Since $\alpha, x, y \in I$, it follows that $S_3^{\alpha} = \{1, ab^l, b^w\}^{\alpha} = \{1, ab^l, b^w\}^{\alpha}$ $\{ab^{l}, 1, ab^{l-w}\} = y^{-1}S_{3}^{-1}x.$

For any $\alpha \in Aut(H)$, there is $1^{\alpha} = 1$. But there is no $\alpha \in Aut(H)$ such that $\{ab^{l}, b^{-w}\}^{\alpha} = \{ab^{l}, ab^{l-w}\}$, a contradiction. (iii) If $1_1^{\delta_{\alpha,1,y}} = (b^{-w})_0$, it forces that $y = b^{-w}$. Then, we have $S_3^{\alpha} = \{1, ab^l, b^w\}^{\alpha} = \{b^w, b^{w-l}a^{-1}, 1\} = y^{-1}S_3^{-1}x$. But there is no

 $\alpha \in Aut(H)$ such that $\{ab^l, b^w\}^{\alpha} = \{b^w, b^{w-l}a^{-1}\}$, a contradiction.

Based on the above, $I = \emptyset$. Next, we show that $Aut(\Gamma) = R(H) \rtimes \langle \sigma_{\varepsilon,1} \rangle$, where $\sigma_{\varepsilon,1} \colon h_0 \mapsto (h^{\varepsilon})_0, h_1 \mapsto (h^{\varepsilon})_1$, and ε is an identity mapping.

By equation (II) and definition of F, for any $\sigma_{\alpha,g}$, we have $S_3^{\alpha} = \{1, ab^l, b^w\}^{\alpha} = g^{-1}S_3 = \{g^{-1}, g^{-1}ab^l, g^{-1}b^w\}$. Note that $\alpha \in Aut(H)$, then there is the identity element 1 in{ $g^{-1}, g^{-1}ab^l, g^{-1}b^w$ }.

(i) If g=1, then we can obtain $S_3^{\setminus \alpha} = \{1, ab^l, b^w\}^{\setminus \alpha} = S_3$, where α is an identity mapping;

(ii) If $g = ab^l$, there is no $\alpha \in Aut(H)$ such that $S_3^{\setminus \alpha} = \{1, ab^l, b^w\}^{\alpha} = \{(ab^l)^{-1}, 1, a^{-r^{hl}}b^{w-l}\} = (ab^l)^{-1}S_3$; (iii) If $g = b^w$, then there is no $\alpha \in Aut(H)$ such that $S_3^{\alpha} = \{1, ab^l, b^w\}^{\alpha} = \{b^{-w}, a^{r^{hw}}b^{l-w}, 1\} = b^{-w}S_3$. Since Γ is normal bi-Cayley graph, we can obtain $Aut(\Gamma) = R(H)$. Consequently, Γ is not vertex-transitive.

4. 2-Type vertex-transitive bi-Cayley graph

In this section, we shall give a characterization of connected cubic 2-type normal bi-Cayley graphs over a group H and show that cubic 2-type vertex-transitive normal bi-Cayley graphs over a group H. Let $\Gamma = BiCay(H, R, L, S)$ be a connected cubic 2-type normal bi-Cayley graph over group H. Firstly, determine R, L and S. Note that Γ is 2-type bi-Cayley graphs, then $S = \{1\}$. By connectivity of Γ we can get $H = \langle R \cup L \rangle$. From Lemma 2.3, we can get R, L, S is one of the following holds:

(1) $R_1 = \{a, a^{-1}\}, L_1 = \{b^s, b^{-s}\}, S = \{1\};$ (2) $R_2 = \{ab^l, (ab^l)^{-1}\}, L_2 = \{b^w, b^{-w}\}, S = \{1\}, where l = mq;$ (3) $R_3 = \{ab^k, (ab^k)^{-1}\}, L_3 = \{b^u, b^{-u}\}, S = \{1\}, where k = nq + t;$ where $s, u, w, t, m = 1, 2, \dots, q - 1, n = 0, 1, 2, \dots, q - 1$.

Lemma 4.1 Let $\Gamma_1 = BiCay(H, \{ab^k, (ab^k)^{-1}\}, \{b^u, b^{-u}\}, \{1\})$ and $\Gamma_2 = BiCay(H, \{(ab^{-k})^{-1}, ab^{-k}\}, \{b^u, b^{-u}\}, \{1\})$ be

two connected cubic 2-type bi-Cayley graphs over a group H, then $\Gamma_1 \cong \Gamma_2$. **Proof:** Take $\alpha \in Aut(H)$ such that $\alpha: a \mapsto a^{-r^{-hk}}, b \mapsto b$. It is clear that $\{1\}^{\backslash \alpha} = \{1\}$. Furthermore, we have $\begin{cases} ah^k & (ah^k)^{-1}\}^{\alpha} = \{a^{-r^{-hk}}h^k & a^{(-r^{-hk})}h^{-k}\} = \{ah^{-k} & (ah^{-k})^{-1}\} \end{cases}$

$$\{ab^{\kappa}, (ab^{\kappa})^{-1}\}^{\mu} = \{a^{-\nu} \ b^{\kappa}, a^{(-\nu-\nu)}b^{-\kappa}\} = \{ab^{-\kappa}, (ab^{-\kappa})^{-1}\}, \\ \{b^{u}, b^{-u}\}^{\alpha} = \{b^{u}, b^{-u}\}.$$

it follows that $\Gamma \simeq \Gamma$

By Proposition 2.1(3), it follows that $\Gamma_1 \cong \Gamma_2$.

Lemma 4.2 Let $\Gamma_i = BiCay(H, R_i, L_i, S)$, where i=1,2, be a connected cubic 2-type normal bi-Cayley graph over group H, then Γ is not vertex-transitive, and $Aut(\Gamma) = R(H) \rtimes Z_2$.

Proof: By Proposition 2.2, first, we show that $I = \emptyset$.

Suppose that $\delta_{\alpha,x,y} \in I$. By the definition of I, we have $S^{\alpha} = \{1\}^{\alpha} = y^{-1}S^{-1}x = \{1\}$, this forces that y=x. Since $R_i^{\alpha} = x^{-1}L_i x = L^x = L^{\sigma(x)}$, it follows that $R_i^{\alpha\sigma(x^{-1})} = L_i$, where $\sigma(x)$ is inner automorphism induced by x. Note that the order of the element in R_i is different from the order of the element in L_i . Then there is no $\delta_{\alpha,x,y}$ in I such that $R_i^{\alpha} = x^{-1}L_i x = L^x =$

 $L^{\sigma(x)}$, a contradiction.

Based on the above, $I = \emptyset$. Next, we will determine F. For any $\sigma_{\setminus \alpha, g} \in F$, we have $S^{\alpha} = \{1\} = g^{-1}S$, this forces that g=1.

Note that $R_1^{\alpha} = \{a, a^{-1}\}^{\alpha} = \{a, a^{-1}\} = R_1, L_1^{\alpha} = \{b^s, b^{-s}\}^{\alpha} = \{b^s, b^{-s}\} = L_1$. This forces that α is as follows: α : $a \mapsto a^{-1}, b^s \mapsto b^s$.

Note that $R_2^{\alpha} = \{ab^l, (ab^l)^{-1}\}^{\alpha} = \{ab^l, (ab^l)^{-1}\} = R_2, L_2^{\alpha} = \{b^w, b^{-w}\}^{\alpha} = \{b^w, b^{-w}\} = L_2$, it is easy to see that α is identity mapping.

Since Γ_i is normal bi-Cayley graph, we can obtain $Aut(\Gamma_1) = R(H) \rtimes \langle \sigma_{\alpha,1} \rangle = R(H) \rtimes Z_2$ and $Aut(\Gamma_2) = R(H)$. Moreover, Γ_i is not vertex-transitive, where i = 1, 2.

Lemma 4.3 Let $\Gamma = BiCay(H, R_3, L_3, S)$ be a connected cubic 2-type normal bi-Cayley graph over group H. If k=u, then Γ is vertex-transitive. Especially, Γ is a Cayley graph, and Aut(Γ) = $\langle R(H), \delta_{\phi,1,1} \rangle$.

Proof: If k=u, then $\Gamma = BiCay(H, \{ab^u, (ab^u)^{-1}\}, \{b^u, b^{-u}\}, \{1\})$. Take

$$\phi: a \mapsto a^{-1}, b \mapsto a^{(\frac{r-hu}{r-h-1})^{-1}}b$$

in Aut(H). Note that

 $a^{\phi^2} = (a^{-1})^{\gamma} = a, b^{\phi^2} = (a^{(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}}b)^{\phi} = a^{-(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}}a^{(\frac{r^{-hu}-1}{r^{-h}-1})^{-1}}b = b.$ Clearly, $o(\phi) = 2$. We take x = y = 1, then $o(\delta_{\phi,1,1}) = 2$. Next, we show that $\delta_{\phi,1,1} \in I$.

$$\begin{aligned} R_2^{\phi} &= \{ab^u, (ab^u)^{-1}\}^{\phi} = \{b^u, b^{-u}\} = L_2, \\ L_2^{\phi} &= \{b^u, b^{-u}\}^{\phi} = \{ab^u, (ab^u)^{-1}\} = R_2, \\ S^{\phi} &= \{1\} = S^{-1}. \end{aligned}$$

Hence, $\delta_{\phi,1,1} \in I$. By Proposition 2.2, $\langle R(H), \delta_{\phi,1,1} \rangle$ acts transitively on $V(\Gamma)$, and Γ is isomorphic to a Cayley graph. By Proposition 2.2, $Aut(\Gamma) = N_{Aut(\Gamma)}R(H) = R(H)\langle F, \delta_{\phi,1,1} \rangle$. Next, we show that $F = \{1\}$. Since $S = \{1\} = g^{-1}S$, this force that g=1. Note that $R_2^{\alpha} = \{ab^u, (ab^u)^{-1}\}^{\alpha} = \{ab^u, (ab^u)^{-1}\} = R_2, L_2^{\setminus \alpha} = \{b^u, b^{-u}\}^{\setminus \alpha} = \{b^u, b^{-u}\} = L_2$. It is easy to see that there is no nonidentity element in Aut(*H*) satisfying the above equation. That is F={1}. Then Aut(Γ) = $\langle R(H), \delta_{\phi,1,1} \rangle$.

Lemma 4.4 Let $\Gamma = BiCay(H, R_3, L_3, S)$ be a connected cubic 2-type normal bi-Cayley graph over group H. If $k \neq u$, then Γ is not vertex-transitive, and Aut(Γ) = R(H).

Proof: Suppose that $\delta_{\alpha,x,y} \in I$. Since *H* is transitive on $\{(a^i b^j)_1 | i = 0, \dots, p-1, j = 0, \dots, q^2 - 1\}$, without loss of generality, we assume that $1_0^{\delta_{\alpha,x,y}} = 1_1$, and it is easy to know that x=1. By the definition of I, we have $S^{\alpha} = \{1\}^{\alpha} = \{1\} = y^{-1}S^{-1}x$, this forces that y=1. Since $k \neq u$, there is no $\alpha \in Aut(H)$ such that $R_2^{\alpha} = \{ab^k, (ab^k)^{-1}\}^{\alpha} = \{b^u, b^{-u}\} = L_2, L_2^{\alpha} = \{b^u, b^{-u}\}^{\alpha} = \{ab^k, (ab^k)^{-1}\}^{\alpha} = R_2$, a contradiction.

Suppose that $\delta_{\alpha,g} \in F$. By equation (II), if $S^{\alpha} = \{1\} = g^{-1}S$, this forces that g=1.

Note that $R_2^{\alpha} = \{ab^k, (ab^k)^{-1}\}^{\alpha} = \{ab^k, (ab^k)^{-1}\} = R_2, L_2^{\alpha} = \{b^u, b^{-u}\}^{\alpha} = \{b^u, b^{-u}\} = L_2$, it is easy to see that only identity mapping in Aut(*H*) satisfies the above equation. If Γ is normal bi-Cayley graph, we can obtain $Aut(\Gamma) = R(H)$. Consequently, Γ is not vertex-transitive.

In the end, by Lemma 3.1, 3.2, 3.3, 3.4, 3.5, 4.1, 4.2, 4.3 and 4.4, we complete the proof of Theorem 1.1.

5. Acknowledgments

This work is partially supported by Mathematical Tianyuan Foundation of China (12126317), National Natural Science Foundation of China (No. 11501172).

References

- [1] M. J. D. Resmini, D. Jungnickel, "Strongly Regular Semi-Cayley Graphs," *Journal of Algebraic Combinatorics.*, vol. 1, no. 2, pp. 171-195, 1992.
- [2] D. Marušič, T. Pisanski, "Symmetries of hexagonal molecular graphs on the torus," *Croatica Chemica Acta.*, vol. 73, no. 4, pp. 969-981, 2000
- [3] T. Pisanski, "A classification of cubic bicirculants," Discrete Mathematics., vol. 307, no. (3-5), pp. 567-578, 2007.
- [4] I. Kovács, B. Kuzman, A. Malnič and S. Wilson, "Characterzation of edge-transitive 4-valent bicirculant," *Journal of Graph Theory.*, vol. 69, pp. 441-463, 2012.
- [5] I. Kovács. A. Malnič, D. Marušič and Š. Miklavič, "One-matching bi-Cayley graphs over abelian groups," *European Journal of Combinatorics.*, vol. 30, no. 2, pp. 602-616, 2009.
- [6] J. X. Zhou, Y. Q. Feng, "Cubic bi-Cayley graphs over abelian groups," *European Journal of Combinatorics.*, vol. 36, pp. 679-693, 2014.
- [7] A. Araluze, I. Kovács, et al, "Partial sum quadruples and bi-Abelian digraphs," *Journal of Combinatorial*, Theory Series A., vol. 119, no. 8, pp. 1811-183, 2012.
- [8] H. Koike, I. Koávcs, "Arc-transitive cubic abelian Bi-Cayley graphs and BCI- graphs," *Filomat.*, vol. 30, no. 2, pp. 321-331, 2016.
- J. M. Pan, Y. N. Zhang, "An explicit characterization of cubic symmetric bi-Cayley graphs on nonabelian simple groups," *Discrete Mathematics.*, vol. 345, no. 9, pp. 112954, 2022.
- [10] M. M. Zhang, J. X. Zhou, "Trivalent vertex-transitive bi-dihedrants," Discrete Mathematics., vol. 340, no. 8, pp. 1757-1772, 2017.
- [11] W. Xue, "Cubic Edge-Transitive bi-Cayley Graphs on Generalized Dihedral Group," *Bulletin of the Malaysian Mathematical Sciences Society.*, vol. 45, no. 1, pp. 1-11, 2021.
- [12] M. Conder. J. X. Zhou, Y.Q. Feng and M.M. Zhang, "Edge-transitive bi-Cayley graphs," *Journal of Combinatorial Theory*, Series B., vol. 145, pp. 264-306, 2020.
- [13] M. Arezoomand, A. Behmaram. M. Ghasemi and P. Raeighasht, "Isomorphisms of bi-Cayley graphs on Dihedral groups," *Discrete Mathematics, Algorithms and Applications.*, vol. 12, no. 4, pp. 9, 2020.
- [14] Y. L. Qin, J. X. Zhou, "Cubic edge-transitive bi-Cayley graphs over inner-abelian *p*-groups," *Communications in Algebra.*, vol. 47, no. 5, pp. 1973-1984, 2019.
- [15] J. X. Zhou, Y. Q. Feng, "Cubic Non-Cayley vertex-transitive bi-Cayley graphs over a regular p-group." The Electronic Journal of Combinatorics., vol. 23, no. 3, pp. P3.34, 2016.
- [16] W. Jin, W. J. Liu, "A classification of nonabelian simple 3-BCI-groups," *European Journal Combinatorics.*, vol. 31, no. 12, pp. 1257-126, 2010.
- [17] K. Kutnar, D. Marušič and C. Zhang, "On cubic non-Cayley vertex-transitive graphs," *Journal Graph Theory.*, vol. 69, pp. 77-95, 2012.
- [18] J. A. Davis, L. Martínez and M. J. Sodupe, "Bi-Cayley normal uniform multiplicative designs," *Discrete Mathematics.*, vol. 339, no. 9, pp. 2224-2230, 2016.
- [19] M. Arezoomand, B. Taeri, "Normality of 2-Cayley digraphs," *Discrete Mathematics.*, vol. 338, no. 3, pp. 41-47, 2014.
- [20] A. Hujdurović, K. Kutnar and D. Marušič, "On normality of *n*-Cayley graphs," *Applied Mathematics and Computation.*, vol. 332, pp. 469-476, 2018.
- [21] J. X. Zhou, "Every finite group has a normal bi-Cayley graph," Ars Mathematica Contemporanea., vol. 14, no. 1, pp. 177-186, 2018.
- [22] J. X. Zhou, Y. Q. Feng, "The automorphism of bi-Cayley graphs," *Journal of Combinatorial Theory*, Series B., vol. 116, pp. 504-532, 2016.

- [23] M. Y. Xu, *Finite Groups preliminary*, 1nd ed., L. Yang, Ed. BeiJing: Science press, 1999.
- [24] N. L. Biggs, Algebraic Graph Theory, 2nd ed., NewYork: Cambridge University press, 1993.
- [25] L. C. Zhang, G. Y. Chen and S. M. Chen, "The automorphism groups of certain groups of orderpq²," Journal of Southwest China Normal University (Natural Science)., vol. 28, no. 1, pp. 15-17, 2003.