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Abstract - The vertex-transitive graph is a graph with high symmetry. A graph 𝛤is said to be a bi-Cayley graph over a group 

H if it admits H as a semiregular automorphism group with two orbits of equal size. And 𝛤is normal with respect to H if  

R(H) is normal subgroup of𝐴𝑢𝑡(𝛤). In this paper, we complete the classification of the cubic vertex-transitive normal bi-

Cayley graphs over a group of order pq2， where p and q be two primes with p>q. Furthermore, these cubic vertex-

transitive bi-Cayley graphs are also a Cayley graph. 
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1. Introduction  
The vertex-transitive graph is a graph with high symmetry, and the symmetry of a graph is described by some transitivity 

properties of the graph. Cayley graph is a famous symmetric graph, which has important significance in many fields such as 

mathematical models, computer networks and communication technology. As a natural generalization of the Cayley graph, 

the bi-Cayley graph was proposed by Resmini and Jungnickel [1] when they studied the normality of Cayley graphs, and bi-

Cayley graph is also important research tool for vertex-transitive graph, edge-transitive graph, semisymmetric graph and 

even symmetric graph. The symmetry of the bi-Cayley graph has been a hot topic, and the research focus being on classifying 

bi-Cayley graphs with specific symmetry properties over a given finite group H. 

 

For a graph  𝛤 , we denote by  𝑉(𝛤), 𝐸(𝛤), Aut(Γ)  the vertex set, edge set and full automorphism group of 𝛤， 

respectively. The graph 𝛤is said to be vertex-transitive or edge-transitive if Aut(Γ) acts transitively on 𝑉(𝛤) or𝐸(𝛤), 

respectively. Initially, bi-Cayley graph over the cyclic group and abelian group were studied (see[2,3,4,5,6,7,8]). In recent 

years, the research focus being on classifying bi-Cayley graphs over finite nonabelian groups. For example, in [9], cubic 

symmetric bi-Cayley graphs on non abelian simple groups were classified and the full automorphism groups of these graphs 

were determined; trivalent vertex-transitive bi-Cayley graphs over dihedral groups were classified and Cayley property of 

trivalent vertex-transitive bi-dihedrants was presented in [10]. And for more results about it, we refer the reader to 

[11,12,13,14,15,16]. 

 

 The normality of the bi-Cayley graph is an important property in the study of transitivity and full automorphism group 

of bi-Cayley graphs (see[17,18,19,20]). Much work has also been done on normal bi-Cayley graph. For example, it was 

shown that every finite group has a normal bi-Cayley graph in [21]. For a bi-Cayley graph𝛤over a group H, the normalizer 

of group H in the full automorphism group of bi-Cayley graph 𝛤was determined in [22]. 

  

In this paper, we will apply the normality of bi-Cayley graph to study the bi-Cayley graph with respect to the vertex-

transitive property and its full automorphism group. We present a classification of the vertex-transitive property of cubic 

normal bi-Cayley graphs𝛤over a group of order  pq2, and it is shown that if 𝛤is vertex-transitive, it is also a Cayley graph. 

Theorem 1.1 Let 𝑯 = ⟨𝒂, 𝒃|𝒂𝒑 = 𝒃𝒒𝟐
= 𝟏, 𝒃−𝟏𝒂𝒃 = 𝒂𝒓

𝒑−𝟏
𝒒

, 𝒒|𝒑 − 𝟏⟩,  where p and q be two primes with q<p, and r is a 

primitive root of modulo p. Let 𝚪 = BiCay (H, R, L, S) be a connected normal cubic bi-Cayley graph over group H, it is 

vertex-transitive if and only if the (R, L, S) is equivalent to the one of the triples in Table 1. Furthermore, all the graphs in 

Table 1 are both Cayley graph. 
 

Table 1. Cubic vertex-transitive normal bi-Cayley graphs over group H. 

No (R,L,S) conditions Cayley 

1 (∅, ∅, {1, 𝑎𝑏−𝑠, 𝑏𝑠}) 1 ≤ 𝑠 ≤ 𝑞 − 1 Yes 

2 (∅, ∅, {1, 𝑎𝑏2𝑠, 𝑏𝑠}) 1 ≤ 𝑠 ≤ 𝑞 − 1 Yes 

3 (∅, ∅, {1, 𝑎𝑏𝑘, 𝑏2𝑘}) 𝑘 = 𝑛𝑞 + 𝑡(𝑡 ≠ 0),0 ≤ 𝑛, 𝑡 ≤ 𝑞 − 1 Yes 

4 ({𝑎𝑏𝑠, (𝑎𝑏𝑠)−1}, {𝑏𝑠, 𝑏−𝑠}, {1}) 1 ≤ 𝑠 ≤ 𝑞 − 1 Yes 
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2. Definition and Preliminaries 
All graphs considered in this paper are finite, simple and undirected; some concepts and symbols not mentioned which 

will be used in the whole paper; see [23,24]. For a vertex v of graph 𝛤, its neighborhood, denoted by N(v). Given a finite 

group G and an inverse closed subset 𝑆 ⊆ 𝐺¥{1}, the Cayley graph X=Cay(G,S) on G with respect to S is a graph with vertex 

set G and edge set {{𝑔, 𝑠𝑔}|𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆}.Define the bi-Cayley graph 𝛤 =BiCay(H,R,L,S) with vertex set ( )V  =𝐻0 ∪

𝐻1and edge set𝐸(𝛤) = {{ℎ0, 𝑔0}|𝑔ℎ−1 ∈ 𝑅} ∪ {{ℎ1, 𝑔1}|𝑔ℎ−1 ∈ 𝐿} ∪ {{ℎ0, 𝑔1}|𝑔ℎ−1 ∈ 𝑆},where𝐻𝑖 = {ℎ𝑖|ℎ ∈ 𝐻},i=0,1; R, L 

and S is subsets of a group H such that 𝑅 = 𝑅−1, 𝐿 = 𝐿−1and 𝑅 ∪ 𝐿 does not contain the identity element of H. The graph 𝛤is 

called s- type bi-Cayley if |R|=|L|=s, when R(H) is normal in Aut(𝛤), the bi-Cayley graph 𝛤will be called a normal bi-Cayley 

graph. For the case when |S|=1, the graph 𝛤is also called one-matching bi-Cayley graph. 

 

Proposition 2.1 [6] Let 𝛤 = BiCay(H, R, L, S ) be a connected bi-Cayley graph over a group H. The following obvious 

facts are basic for graph 𝛤. 

(1) H is generated by𝑅 ∪ 𝐿 ∪ 𝑆. 
(2) Up to graph isomorphism, S can be chosen to contain the identity element of H. 

(3) For any automorphism𝛼of H, BiCay(H, R, L, S )≅ BiCay (𝐻, 𝑅𝛼 , 𝐿𝛼 , 𝑆𝛼). 

(4) BiCay (H, R, L S)≅ BiCay(H L, R,𝑆−1). 
 

In [22], let 𝜞 = BiCay(H, R, L, S ). It is easy to see that R(H) can be regarded as a group of automorphisms of 𝜞 acting 

on its vertices by the rule 

𝒉𝒊
𝑹(𝒈) = (𝒉𝒈)𝒊, ∀𝒊 = 𝟎, 𝟏; 𝒉, 𝒈 ∈ 𝑯. 

 

For an automorphism 𝜶of H and x, y, g∈H, define two permutations on 𝑽(𝜞) = 𝑯𝟎 ∪ 𝑯𝟏 as following: 

 

𝜹𝜶,𝒙,𝒚: 𝒉𝟎 ↦ (𝒙𝒉𝜶)𝟏, 𝒉𝟏 ↦ (𝒚𝒉𝜶)𝟎,     𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 h ∈ H.             (𝐈)        

 

𝝈𝜶,𝒈: 𝒉𝟎 ↦ (𝒉𝜶)𝟎, 𝒉𝟏 ↦ (𝒈𝒉𝜶)𝟏,       𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 h ∈ H.              (𝐈𝐈)        

and then define 

𝑰 = {𝜹𝜶,𝒙,𝒚|𝑹𝜶 = 𝒙−𝟏𝑳𝒙, 𝑳𝜶 = 𝒚−𝟏𝑹𝒚 𝒂𝒏𝒅 𝑺𝜶 = 𝒚−𝟏𝑺−𝟏𝒙} ⊆ 𝑨𝒖𝒕(𝜞). 

𝑭 = {𝝈𝜶,𝒈|𝑹𝜶 = 𝑹, 𝑳𝜶 = 𝒈−𝟏𝑳𝒈 𝒂𝒏𝒅 𝑺𝜶 = 𝒈−𝟏𝑺} ≤ 𝑨𝒖𝒕(𝜞). 

 
Proposition 2.2 [6] Let 𝜞 = BiCay(H, R, L, S ). be a connected bi-Cayley graph over the group H. If I=∅then 𝑵𝑨𝒖𝒕(𝜞) =

(𝑹(𝑯)) = 𝑹(𝑯) ⋊ 𝑭, and If 𝑰 ≠ ∅,then 𝑵𝑨𝒖𝒕(𝜞) = (𝑹(𝑯)) = 𝑹(𝑯)⟨𝑭, 𝜹𝜶,𝒙,𝒚⟩ for some𝜹𝜶,𝒙,𝒚 ∈ 𝑰. For any 𝜹𝜶,𝒙,𝒚 ∈ 𝑰, x, 

y∈H,𝜶 ∈ 𝑨𝒖𝒕(𝜞), we have the following: 

(1)⟨𝑹(𝑯), 𝜹𝜶,𝒙,𝒚⟩acts transitively on 𝑽(𝜞) and 𝜹𝜶,𝒙,𝒚normalizes R(H); 

(2) If 𝝄(𝜶) = 𝟐and x=y=1, then 𝜞is isomorphic to the Cayley graph Cay(𝑯, 𝑹 ∪ 𝜶𝑺), where𝑯 = 𝑯 ⋊ ⟨𝜶⟩. 
 

Lemma 2.3 Let p and q be two primes with q<p. Let  

𝐻 = ⟨𝑎, 𝑏|𝑎𝑝 = 𝑏𝑞2
= 1, 𝑏−1𝑎𝑏 = 𝑎𝑟ℎ , 𝑞|𝑝 − 1⟩, 

where r is a primitive root of modulo p and h=
𝑝−1

𝑞
. If H=⟨𝑥, 𝑦⟩, then{𝑥, 𝑦}is either{𝑎, 𝑏𝑠},or{𝑎𝑏𝑘, 𝑏𝑢},or{𝑎𝑏𝑙 , 𝑏𝑤},where 

k=nq+t, l=mq, and s, u, w, t, m=1, 2,⋯, q-1, n=0, 1,⋯, q-1. 

 

Proof  By Theorem in [25],  

Aut(H)={𝛼|𝑎𝛼 = 𝑎𝑖 , 𝑏𝛼 = 𝑎𝑙𝑏𝑛𝑞+1}, 
where i=1, 2,⋯, p-1, l=1, 2,⋯, p and n=0, 1,⋯, q-1. Then H can be generated either by elements of order p and 𝑞2, or 

elements of order 𝑞2and 𝑞2, or elements of order 𝑞2and pq. If H=⟨𝑥, 𝑦⟩,then {𝑥, 𝑦 }is the following holds: 

{𝑎𝑖1 , 𝑎𝑗𝑏𝑛𝑞+𝑠}, {𝑎𝑗𝑏𝑛𝑞+𝑠, 𝑎𝑗1𝑏𝑛1𝑞+𝑠1}, {𝑎𝑖2𝑏𝑛2𝑞 , 𝑎𝑗𝑏𝑛𝑞+𝑠}, 
where𝑖1, 𝑖2 = 1,2, ⋯ , 𝑝 − 1; 𝑗, 𝑗1 = 0,1, ⋯ , 𝑝 − 1; 𝑛, 𝑛1 = 0,1, ⋯ , 𝑞 − 1; 𝑠, 𝑠1, 𝑛2 = 1,2, ⋯ , 𝑞 − 1. There exist𝛼1, 𝛼2, 𝛼3 ∈
𝐴𝑢𝑡(𝐻) such that 

⟨𝑎, 𝑏𝑠⟩𝛼1 = ⟨𝑎𝑖1 , 𝑎𝑗𝑏𝑛𝑞+𝑠⟩,                           where   𝛼1: 𝑎 ↦ 𝑎𝑖1 , 𝑏𝑠 ↦ 𝑎𝑗𝑏𝑛𝑞+𝑠, 
⟨𝑎𝑏𝑛𝑞+𝑠, 𝑏𝑠1⟩𝛼2 = ⟨𝑎𝑗𝑏𝑛𝑞+𝑠, 𝑎𝑗1𝑏𝑛1𝑞+𝑠1⟩,         where  𝛼2: 𝑎 ↦ 𝑎𝑗 , 𝑏𝑠1 ↦ 𝑎𝑗1𝑏𝑛1𝑞+𝑠1 , 

⟨𝑎𝑏𝑛2𝑞, 𝑏𝑠⟩𝛼3 = ⟨𝑎𝑖2𝑏𝑛2𝑞, 𝑎𝑗𝑏𝑛𝑞+𝑠⟩,               where  𝛼3: 𝑎 ↦ 𝑎𝑖2 , 𝑏𝑠 ↦ 𝑎𝑗𝑏𝑛𝑞+𝑠.  
 

Hence, up to the automorphism of the group,{𝑥, 𝑦}is either {𝑎, 𝑏𝑠},or{𝑎𝑏𝑘, 𝑏𝑢},or{𝑎𝑏𝑙 , 𝑏𝑤}, where k=nq+t, l=mq, and s, u, 

w, t, m=1, 2,⋯, q-1, n=0, 1,⋯, q-1. 

 

According to structure of group H, there is no elements of order 2 in H. Thus, there is no 1-type bi-Cayley graphs over 

a group H. In the following; we only need to consider the 0-type and 2-type bi-Cayley graphs over a group H. 
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3. 0-Type vertex-transitive bi-Cayley graph 
 In this section, we shall give a characterization of connected cubic 0-type normal bi-Cayley graphs over a group H and 

show that cubic 0-type vertex-transitive normal bi-Cayley graphs over a group H. Let𝛤 = BiCay(H, R, L S) be a connected 

cubic 0-type normal bi-Cayley graph over group H. Firstly, determine R, L and S. Note that𝛤is 0-type bi-Cayley graphs, it is 

clear that R=L={∅}. By connectivity of 𝛤, we can get H=⟨𝑆⟩. From Lemma 2.3, we can get S is one of the following holds: 

(1)  𝑆1 = {1, 𝑎, 𝑏𝑠}; 
(2)  𝑆2 = {1, 𝑎𝑏𝑘, 𝑏𝑢}, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑛𝑞 + 𝑡; 
(3)  𝑆3 = {1, 𝑎𝑏𝑙 , 𝑏𝑤}, 𝑤ℎ𝑒𝑟𝑒 𝑙 = 𝑚𝑞, 

 

where s, u, w, t, m=1, 2,⋯, q-1, n=0, 1, 2,⋯, q-1. 

 

Lemma 3.1 Let𝛤1 = 𝐵𝑖𝐶𝑎𝑦(𝐻, ∅, ∅, 𝑆1), 𝛤2 = 𝐵𝑖𝐶𝑎𝑦(𝐻, ∅, ∅, 𝑆2) be connected cubic 0-type bi-Cayley graphs over group 

H, if s=u=k, then𝛤1 ≅ 𝛤2. 

 

Proof: Set 𝑉(𝛤𝑛) = {(𝑎𝑖𝑏𝑗)0𝑛, (𝑎𝑖𝑏𝑗)1𝑛|𝑖 = 0, ⋯ , 𝑝 − 1, 𝑗 = 0, ⋯ , 𝑞2 − 1},where n=1, 2. Take a mapping𝜌from𝑉(𝛤1) 

to𝑉(𝛤2) as follows: 

𝜌: (𝑎𝑖𝑏𝑗)01 ↦ (𝑎−𝑖𝑏𝑗)12, (𝑎𝑖𝑏𝑗)11 ↦ (𝑎−𝑖𝑟ℎ𝑢
𝑏𝑗−𝑢)02.  

Firstly, we will show that𝜌 is a bijection. For any(𝑎𝑖𝑏𝑗)12, (𝑎𝑖𝑏𝑗)02 ∈ 𝑉(𝛤2), there exist(𝑎−𝑖𝑏𝑗)01, (𝑎−𝑖𝑟−ℎ𝑢
𝑏𝑗+𝑢)11 ∈

𝑉(𝛤1) such that(𝑎−𝑖𝑏𝑗)01
𝜌

= (𝑎𝑖𝑏𝑗)12and(𝑎−𝑖𝑟−ℎ𝑢
𝑏𝑗+𝑢)11

𝜌
= (𝑎𝑖𝑏𝑗)02. Thus𝜌is a surjection. For any(𝑎𝑖𝑏𝑗)01, (𝑎𝑖′𝑏𝑗′)01 ∈

𝑉(𝛤1) and(𝑎𝑖𝑏𝑗)11, (𝑎𝑖′𝑏𝑗′)11 ∈ 𝑉(𝛤1), then 

𝜌((𝑎𝑖𝑏𝑗)01) = 𝜌((𝑎𝑖′𝑏𝑗′)01) ⇔ ((𝑎−𝑖𝑏𝑗)12) = (𝑎−𝑖′𝑏𝑗′)12 ⇔ (𝑎𝑖𝑏𝑗)01 = (𝑎𝑖′𝑏𝑗′)01. 

𝜌((𝑎𝑖𝑏𝑗)11) = 𝜌((𝑎𝑖′𝑏𝑗′)11) ⇔ ((𝑎−𝑖𝑟ℎ𝑢
𝑏𝑗−𝑢)02) = (𝑎−𝑖′𝑟ℎ𝑢

𝑏𝑗′−𝑢)02 ⇔ (𝑎𝑖𝑏𝑗)11 = (𝑎𝑖′𝑏𝑗′)11. 
Therefore, 𝜌 is a bijection. 

Next, we show that𝜌preserves 𝐸(𝛤) if s=u=k. Note that 

𝑁((𝑎𝑖𝑏𝑗)01)𝜌 = {(𝑎𝑖𝑏𝑗)11, (𝑎𝑖+1𝑏𝑗)11, (𝑎𝑖𝑟−ℎ𝑢
𝑏𝑢+𝑗)11}𝜌 

                    = {(𝑎−𝑖𝑟ℎ𝑢
𝑏𝑗−𝑢)02, (𝑎−(𝑖+1)𝑟ℎ𝑢

𝑏𝑗−𝑢)02, (𝑎−𝑖𝑏𝑗)02} = 𝑁((𝑎−𝑖𝑏𝑗)12). 

𝑁((𝑎𝑖𝑏𝑗)11)𝜌 = {(𝑎𝑖𝑏𝑗)01, (𝑎𝑖−1𝑏𝑗)01, (𝑎𝑖𝑟ℎ𝑢
𝑏𝑗−𝑢)01}𝜌 

                    = {(𝑎−𝑖𝑏𝑗)12, (𝑎1−𝑖𝑏𝑗)12, (𝑎−𝑖𝑟ℎ𝑢
𝑏𝑗−𝑢)12} = 𝑁((𝑎−𝑖𝑟ℎ𝑢

𝑏𝑗−𝑢)02). 
Therefore,𝜌 is an isomorphism from 𝑉(𝛤1) to𝑉(𝛤2), then 𝛤1 ≅ 𝛤2. 

 

Lemma 3.2 Let 𝛤 = BiCay(𝐻, ∅, ∅, 𝑆1) be a connected cubic 0-type normal bi-Cayley graph over group H, then𝛤is not 

vertex-transitive, and 𝐴𝑢𝑡(𝛤) = 𝑅(𝐻) ⋊ 𝑍2. 
 

Proof: By Proposition 2.2, first, we show that 𝐼 = ∅. 
Suppose that 𝐼 ≠ ∅. Since H is transitive on {(𝑎𝑖𝑏𝑗)1|𝑖 = 0, ⋯ , 𝑝 − 1, 𝑗 = 0, ⋯ , 𝑞2 − 1}, without loss of generality, 

we can assume that 10

𝛿𝛼,𝑥,𝑦 = 11, and it is easy to know that x=1. Moreover, 𝑁(10)𝛿𝛼,1,𝑦 = {11, 𝑎1, 𝑏1
𝑠}𝛿𝛼,1,𝑦 =

{10, (𝑎−1)0, (𝑏−𝑠)0} = 𝑁(11), the following three cases are discussed. 

(i) If 11

𝛿𝛼,1,𝑦
= 10, it forces that y=1. By the definition of I, we have 𝑆1

𝛼 = {1, 𝑎, 𝑏𝑠}𝛼 = {1, 𝑎−1, 𝑏−𝑠} =

𝑦−1𝑆1
−1𝑥, and for any 𝛼 ∈Aut(H), there is1𝛼 = 1. And we know that there is no 𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that {𝑎, 𝑏𝑠}𝛼 =

{𝑎−1, 𝑏−𝑠}, a contradiction. 

(ii) If 11

𝛿𝛼,1,𝑦 = (𝑎−1)0, it forces that 𝑦 = 𝑎−1. Since𝛼, 𝑥, 𝑦 ∈ 𝐼, it follows that 𝑆1
𝛼 = {1, 𝑎, 𝑏𝑠}𝛼 = {𝑎, 1, 𝑎𝑏−𝑠} =

𝑦−1𝑆1
−1𝑥. For any 𝛼 ∈Aut(H), we have1𝛼 = 1. But there is no 𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that {𝑎, 𝑏𝑠}𝛼 = {𝑎, 𝑎𝑏−𝑠}, a 

contradiction. 

(iii) If 11

𝛿𝛼,1,𝑦 = (𝑏−𝑠)0, it forces that𝑦 = 𝑏−𝑠. Then, we have𝑆1
𝛼 = {1, 𝑎, 𝑏𝑠}𝛼 = {𝑏𝑠, 𝑏𝑠𝑎−1, 1} = 𝑦−1𝑆1

−1𝑥. But 

there is no𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that{𝑎, 𝑏𝑠}𝛼 = {𝑏𝑠𝑎−1, 𝑏𝑠}, a contradiction. 

Based on the above,𝐼 = ∅. Next, we show that 𝐴𝑢𝑡(𝛤) = 𝑅(𝐻) ⋊ ⟨𝜎𝛼,𝑎⟩,where 𝜎\𝛼,𝑎: ℎ0 ↦ (ℎ𝛼)0, ℎ1 ↦ (𝑎ℎ𝛼)1for 

each 

h∈ 𝐻, where𝛼: 𝑎 ↦ 𝑎−1, 𝑏𝑠 ↦ 𝑎−1𝑏𝑠. 
By equation (II) and the definition of F, for any 𝜎𝛼,𝑔 ∈ 𝐹, we have 𝑆1

𝛼 = {1, 𝑎, 𝑏𝑠}𝛼 = 𝑔−1𝑆1 = {𝑔−1, 𝑔−1𝑎, 𝑔−1𝑏𝑠}. 

Note that𝛼 ∈Aut(H); then there is the identity element 1 in {𝑔−1, 𝑔−1𝑎, 𝑔−1𝑏𝑠}. 

(i) If g=1, then we can obtain 𝑆1
\𝛼

= {1, 𝑎, 𝑏𝑠}𝛼 = 𝑆1, where𝛼 is an identity mapping and 𝛼 ∈Aut(H);  

(ii) If g=a, then we can obtain 𝑆1
𝛼 = {1, 𝑎, 𝑏𝑠}\𝛼 = {𝑎−1, 1, 𝑎−1𝑏𝑠} = 𝑎−1𝑆1, where𝛼: 𝑎 ↦ 𝑎−1, 𝑏𝑠 ↦ 𝑎−1𝑏𝑠and 

𝛼 ∈Aut(H); 

(iii) If g=𝑏𝑠, then there exists no 𝛼 ∈ Aut(H) such that 𝑆1
\𝛼

= {1, 𝑎, 𝑏𝑠}\𝛼 = {𝑏−𝑠𝑎, 1, 𝑏−𝑠} = 𝑏−𝑠𝑆1. 
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Since𝛤 is normal bi-Cayley graph, we can obtain 𝐴𝑢𝑡(𝛤) = 𝑅(𝐻) ⋊ ⟨𝜎𝛼,𝑎⟩ = 𝑅(𝐻) ⋊ 𝑍2. Moreover, by the 

definition of F, it is easy to see that 𝛤 is not vertex-transitive. 

 

Lemma 3.3 Let𝛤 = BiCay(𝐻, ∅, ∅, 𝑆2) be a connected cubic 0-type normal bi-Cayley graph over group H, where k≠u. If 

k=-u, k=2u or u=2k, then 𝛤is a vertex-transitive graph. Especially, 𝛤is a Cayley graph and  
𝐴𝑢𝑡(𝛤)

𝑅(𝐻)
= 𝑍2. 

Proof: If k=-u, then 𝛤 = 𝐵𝑖𝐶𝑎𝑦(𝐻, ∅, ∅, {1, 𝑎𝑏−𝑢, 𝑏𝑢}).Set  

𝛾: 𝑎 ↦ 𝑎−1, 𝑏 ↦ 𝑎
−𝑟−ℎ𝑢(

𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1

𝑏 

in Aut(H). Note that  

𝑎𝛾2
= (𝑎−1)𝛾 = 𝑎,   𝑏𝛾2

= (𝑎
−𝑟−ℎ𝑢(

𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1

𝑏)𝛾 = 𝑎
𝑟−ℎ𝑢(

𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1

𝑎
−𝑟−ℎ𝑢(

𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1

𝑏 = 𝑏. 
Clearly,𝑜(𝛾) = 2. We take x=y=1, the n𝑜(𝛿𝛾,1,1) = 2. Next, we show that 𝛿𝛾,1,1 ∈ 𝐼.  

𝑆2
𝛾

= {1, 𝑎𝑏−𝑢, 𝑏𝑢}𝛾 = {1, 𝑎
−1−𝑟−ℎ𝑢(

𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1(

𝑟ℎ𝑢−1

𝑟−ℎ−1
)
𝑏−𝑢, 𝑎

−𝑟−ℎ𝑢(
𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1(

𝑟−ℎ𝑢−1

𝑟−ℎ−1
)
𝑏𝑢} 

    = {1, 𝑏−𝑢, 𝑎−𝑟−ℎ𝑢
𝑏𝑢} = 𝑆2

−1.  

Hence 𝛿𝛾,1,1 ∈ 𝐼. By Proposition 2.2,⟨𝑅(𝐻), 𝛿𝛾,1,1⟩ acts transitively on𝑉(𝛤) and 𝛤is isomorphic to a Cayley graph. 

If k=2u, then 𝛤 = 𝐵𝑖𝐶𝑎𝑦(𝐻, ∅, ∅, {1, 𝑎𝑏2𝑢, 𝑏𝑢}). Take 

𝜋: 𝑎 ↦ 𝑎−𝑟−ℎ𝑢
, 𝑏 ↦ 𝑎

(
𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1

𝑏 

in Aut(H). 

Next, we show that 𝛿𝜋,1,(𝑎𝑏2𝑢)−1 ∈ 𝐼. Let𝑥 = 1, 𝑦 = (𝑎𝑏2𝑢)−1, then 

𝑆2
𝜋 = {1, 𝑎𝑏2𝑢, 𝑏𝑢}𝜋 = {1, 𝑎−𝑟−ℎ𝑢

𝑎
(
𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1(

𝑟−2ℎ𝑢−1

𝑟−ℎ−1
)
𝑏2𝑢, 𝑎

(
𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1(

𝑟−ℎ𝑢−1

𝑟−ℎ−1
)
𝑏𝑢} 

    = {1, 𝑎𝑏2𝑢, 𝑎𝑏𝑢} = (𝑎𝑏2𝑢)𝑆2
−1. 

Therefore, 𝛿𝜋,1,(𝑎𝑏2𝑢)−1 ∈ 𝐼. Consequently, 𝛤 is vertex-transitive graph. 

Next, we show that 𝛿𝜋,1,(𝑎𝑏2𝑢)−1
2 ∈ 𝑅(𝐻). For any ℎ0 = (𝑎𝑖𝑏𝑗)0 ∈ 𝐻0, we have 

(𝑎𝑖𝑏𝑗)0

𝛿
𝜋,1,(𝑎𝑏2𝑢)−1
2

= ((𝑎𝑏2𝑢)−1(𝑎𝑖𝑏𝑗)𝜋2
)0 

                      = ((𝑎𝑏2𝑢)−1(𝑎−𝑖𝑟−ℎ𝑢
𝑎

(
𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1(

𝑟−ℎ𝑗−1

𝑟−ℎ−1
)
𝑏𝑗)𝜋)0 

                      = (𝑎𝑖−𝑟2ℎ𝑢−ℎ𝑗
𝑏𝑗−2𝑢)0. 

Similarly, for any ℎ1 = (𝑎𝑖𝑏𝑗)1 ∈ 𝐻1, we have 

(𝑎𝑖𝑏𝑗)1

𝛿
𝜋,1,(𝑎𝑏2𝑢)−1
2

= (((𝑎𝑏2𝑢)−1)𝜋(𝑎𝑖𝑏𝑗)𝜋2
)1 

                     = (((𝑎𝑏2𝑢)−1)𝜋𝑎𝑖𝑟−2ℎ𝑢−𝑟−ℎ𝑗+1𝑏𝑗)1 

                     = (𝑎
(
𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1(

𝑟2ℎ𝑢−1

𝑟−ℎ−1
)
𝑏−2𝑢𝑎𝑟−ℎ𝑢

𝑎𝑖𝑟−2ℎ𝑢−𝑟−ℎ𝑗+1𝑏𝑗)1 

                     = (𝑎𝑖−𝑟2ℎ𝑢−ℎ𝑗
𝑏𝑗−2𝑢)1. 

 

Hence, we can get that𝛿𝜋,1,(𝑎𝑏2𝑢)−1
2 = 𝑅(𝑎−𝑟2ℎ𝑢

𝑏−2𝑢) ∈ 𝑅(𝐻). Therefore, we have ⟨𝑅(𝐻), 𝛿𝜋,1,(𝑎𝑏2𝑢)−1⟩/𝑅(𝐻) ≅ 𝑍2and 

|⟨𝑅(𝐻), 𝛿𝜋,1,(𝑎𝑏2𝑢)−1⟩| = 2𝑝𝑞2. Hence, |⟨𝑅(𝐻), 𝛿𝜋,1,(𝑎𝑏2𝑢)−1⟩|acts regularly on𝑉(𝛤).Then 𝛤is isomorphic to a Cayley 

graph. 

If u=2k, then𝛤 = 𝐵𝑖𝐶𝑎𝑦(𝐻, ∅, ∅, {1, 𝑎𝑏𝑘, 𝑏2𝑘}).Let 

𝜖: 𝑎 ↦ 𝑎−𝑟−ℎ𝑘
, 𝑏 ↦ 𝑏 

be an automorphic mapping of H. Next, we show that 𝛿𝜖,1,𝑏−2𝑘 ∈ 𝐼. We take x=1,𝑦 = 𝑏−2𝑘, then 

𝑆2
𝜖 = {1, 𝑎𝑏𝑘 , 𝑏2𝑘}𝜖 = {1, 𝑎−𝑟−ℎ𝑘

𝑏𝑘, 𝑏2𝑘} = (𝑏2𝑘)𝑆2
−1. 

Therefore,𝛿𝜖,1,𝑏−2𝑘 ∈ 𝐼. Then 𝛤is vertex-transitive graph. 

Next, we show that𝛿
𝜖,1,(𝑏−2𝑘)
2 ∈ 𝑅(𝐻). For any ℎ0 = (𝑎𝑖𝑏𝑗)0 ∈ 𝐻0, we have 

(𝑎𝑖𝑏𝑗)0

𝛿
𝜖,1,𝑏−2𝑘
2

= (𝑏−2𝑘(𝑎𝑖𝑏𝑗)𝜖2
)0 

                = (𝑏−2𝑘(𝑎−𝑖𝑟−ℎ𝑘
𝑏𝑗)𝜖)0 

                = (𝑎𝑖𝑏𝑗−2𝑘)0. 

Similarly, for any ℎ1 = (𝑎𝑖𝑏𝑗)1 ∈ 𝐻1, we have (𝑎𝑖𝑏𝑗)1

𝛿
𝜖,1,𝑏−2𝑘
2

= (𝑎𝑖𝑏𝑗−2𝑘)1. 

Hence, we have that 𝛿
𝜖,1,𝑏−2𝑘
2 = 𝑅(𝑏−2𝑘) ∈ 𝑅(𝐻). Hence,⟨𝑅(𝐻), 𝛿𝜖,1,𝑏−2𝑘⟩/𝑅(𝐻) ≅ 𝑍2and |⟨𝑅(𝐻), 𝛿𝜖,1,𝑏−2𝑘⟩| =

2𝑝𝑞2. Then 

⟨𝑅(𝐻), 𝛿𝜖,1,𝑏−2𝑘⟩acts regularly on 𝑉(𝛤), 𝛤 is isomorphic to a Cayley graph. 
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By Proposition 2.2,𝐴𝑢𝑡(𝛤) = 𝑁𝐴𝑢𝑡(𝛤)(𝑅(𝐻)) = 𝑅(𝐻)⟨𝐹, 𝛿𝛾,1,1⟩. Next, we show that 𝐹 = {1}.Since k=-u, k=2u, 

u=2k, we have 𝑆2
𝛼1 = {1, 𝑎𝑏−𝑢, 𝑏𝑢}𝛼1 = 𝑔1

−1{1, 𝑎𝑏−𝑢, 𝑏𝑢} = 𝑔1
−1𝑆2, 2 22 1 2 1

2 2 2 2{1, , } {1, , } ,u u u uS ab b g ab b g S
  − −= = = 𝑆2

𝛼3 =

{1, 𝑎𝑏𝑘, 𝑏2𝑘}𝛼3 = 𝑔3
−1{1, 𝑎𝑏𝑘, 𝑏2𝑘} = 𝑔3

−1𝑆2, respectively. And we obtain that only 𝑔1, 𝑔2, 𝑔3 = 1, 𝛼1, 𝛼2, 𝛼3 ∈ 𝐴𝑢𝑡(𝐻) is 

identity mapping is satisfied. That is 𝐹 = {1}.Then
𝐴𝑢𝑡(𝛤)

𝑅(𝐻)
= 𝑍2. 

 

Lemma 3.4 Let 𝛤 = 𝐵𝑖𝐶𝑎𝑦(𝐻, ∅, ∅, 𝑺𝟐) be a connected cubic 0-type normal bi-Cayley graph over group H, where 𝑘 ≠
−𝑢, 𝑘 ≠ 2𝑢and 𝑘 ≠ 𝑢/2, then 𝛤is not vertex-transitive graph, and𝐴𝑢𝑡(𝛤) = 𝑅(𝐻). 

Proof  If k=u, then𝐵𝑖𝐶𝑎𝑦(𝐻, ∅, ∅, 𝑆2) ≅ 𝐵𝑖𝐶𝑎𝑦(𝐻, ∅, ∅, 𝑆1) by Lemma 3.1. 

If 𝑘 ≠ −𝑢, 2𝑢, 𝑢/2. By Proposition 2.2, first, we show that 𝐼 = ∅. 
Suppose that 𝐼 ≠ ∅. Since H is transitive on {(𝑎𝑖𝑏𝑗)1|𝑖 = 0, ⋯ , 𝑝 − 1, 𝑗 = 0, ⋯ , 𝑞2 − 1}, without loss of generality, 

we can assume that10

𝛿𝛼,𝑥,𝑦 = 11, and it is easy to know that x=1. Moreover, 𝑁(10)𝛿𝛼,1,𝑦 = {11, (𝑎𝑏𝑘)1, 𝑏1
𝑢}𝛿𝛼,1,𝑦 =

{10, (𝑎𝑏𝑘)0
−1, 𝑏0

−𝑢} = 𝑁(11), the 

following three cases are discussed. 

(i) If 11

𝛿𝛼,1,𝑦
= 10, it forces that y=1. By the definition of I, we have 𝑆2

𝛼 = {1, 𝑎𝑏𝑘, 𝑏𝑢}𝛼 = {1, (𝑎𝑏𝑘)−1, 𝑏−𝑢} =

𝑦−1𝑆2
−1𝑥, and for any 𝛼 ∈ 𝐴𝑢𝑡(𝐻), there is1𝛼 = 1. And we know that there is no𝛼 ∈ 𝐴𝑢𝑡(𝐻) such 

that{𝑎𝑏𝑘 , 𝑏𝑢}𝛼 = {(𝑎𝑏𝑘)−1, 𝑏−𝑢},a contradiction. 

(ii) If 11

𝛿𝛼,1,𝑦 = (𝑎𝑏𝑘)0
−1, it forces that𝑦 = (𝑎𝑏𝑘)−1. Since𝛼, 𝑥, 𝑦 ∈ 𝐼, it follows that 𝑆2

𝛼 = {1, 𝑎𝑏𝑘, 𝑏𝑢}𝛼 =

{𝑎𝑏𝑘, 1, 𝑎𝑏𝑘−𝑢} = 

𝑦−1𝑆2
−1𝑥. For any 𝛼 ∈ 𝐴𝑢𝑡(𝐻), we have1𝛼 = 1. But there is no 𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that {𝑎𝑏𝑘, 𝑏𝑢}𝛼 = {𝑎𝑏𝑘, 𝑎𝑏𝑘−𝑢},a 

contradiction. 

(iii) If 11

𝛿𝛼,1,𝑦 = (𝑏−𝑢)0, it forces that𝑦 = 𝑏−𝑢. Then, we have 𝑆2
𝛼 = {1, 𝑎𝑏𝑘, 𝑏𝑢}𝛼 = {𝑏𝑢, 𝑏𝑢−𝑘𝑎−1, 1} = 𝑦−1𝑆2

−1𝑥. 

But there is no 𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that {𝑎𝑏𝑘, 𝑏𝑢}𝛼 = {𝑏𝑢−𝑘𝑎−1, 𝑏𝑢}, 𝑎 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛. 
Based on the above, 𝐼 = ∅. Next, we show that 𝐴𝑢𝑡(𝛤) = 𝑅(𝐻) ⋊ ⟨𝜎𝜀,1⟩,where𝜎𝜀,1: ℎ0 ↦ (ℎ𝜀)0, ℎ1 ↦ (ℎ𝜀)1, and 𝜀 is 

an identity mapping. 

By equation (II) and definition of F, for any 𝜎𝛼,𝑔 ∈ 𝐹, we have 𝑆2
𝛼 = {1, 𝑎𝑏𝑘, 𝑏𝑢}𝛼 = 𝑔−1𝑆2 =

{𝑔−1, 𝑔−1𝑎𝑏𝑘, 𝑔−1𝑏𝑢}. Note that 

𝛼 ∈ 𝐴𝑢𝑡(𝐻), then there is the identity element 1 in {𝑔−1, 𝑔−1𝑎𝑏𝑘, 𝑔−1𝑏𝑢}. 
(i) If g=1, then we can obtain 𝑆2

𝛼 = {1, 𝑎𝑏𝑘, 𝑏𝑢}\𝛼 = 𝑆2, where𝛼 is an identity mapping and 𝛼 ∈ 𝐴𝑢𝑡(𝐻); 

(ii)If𝑔 = 𝑎𝑏𝑘, there is no𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that 𝑆2
𝛼 = {1, 𝑎𝑏𝑘, 𝑏𝑢}\𝛼 = {(𝑎𝑏𝑘)−1, 1, 𝑎−𝑟ℎ𝑘

𝑏𝑢−𝑘} = (𝑎𝑏𝑘)−1𝑆2; 

(iii)If𝑔 = 𝑏𝑢, there is no𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that 𝑆2
\𝛼

= {1, 𝑎𝑏𝑘, 𝑏𝑢}\𝛼 = {𝑏−𝑢, 𝑎𝑟ℎ𝑢
𝑏𝑘−𝑢, 1} = 𝑏−𝑢𝑆2. 

Since𝛤 is normal bi-Cayley graph, we can obtain 𝐴𝑢𝑡(𝛤) = 𝑅(𝐻). Consequently, 𝛤is not vertex-transitive. 

  

Lemma 3.5 Let𝛤 = 𝐵𝑖𝐶𝑎𝑦(𝐻, ∅, ∅, 𝑆3) be a connected cubic 0-type normal bi-Cayley graph over group H, then𝛤is not 

vertex-transitive, and 𝐴𝑢𝑡(𝛤) = 𝑅(𝐻). 
Proof  By Proposition 2.2, first, we show that𝐼 = ∅. 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡 𝐼 ≠ ∅. Since H is transitive on {(𝑎𝑖𝑏𝑗)1|𝑖 = 0, ⋯ , 𝑝 − 1, 𝑗 = 0, ⋯ , 𝑞2 − 1}, without loss of generality, 

we can assume that 10

𝛿𝛼,𝑥,𝑦 = 11, and it is easy to know that x=1. Moreover, 𝑁(10)𝛿𝛼,1,𝑦 = {11, 𝑎𝑏1
𝑙 , 𝑏1

𝑤}𝛿𝛼,1,𝑦 =

{10, (𝑎𝑏𝑙)0
−1, 𝑏0

−𝑤} = 𝑁(11), the following three cases are discussed. 

(i) If 11

𝛿𝛼,1,𝑦 = 10, 𝑖𝑡 𝑓𝑜𝑟𝑐𝑒𝑠 𝑡ℎ𝑎𝑡 𝑦 = 1. 𝐵𝑦 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼, we have 𝑆3
𝛼 = {1, 𝑎𝑏𝑙 , 𝑏𝑤}𝛼 =

{1, (𝑎𝑏𝑙)−1, 𝑏−𝑤} = 𝑦−1𝑆3
−1𝑥, and for any 𝛼 ∈ 𝐴𝑢𝑡(𝐻), 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 1𝛼 = 1. And we know that there is no𝛼 ∈ 𝐴𝑢𝑡(𝐻) such 

that {𝑎𝑏𝑙 , 𝑏𝑤}𝛼 = {(𝑎𝑏𝑙)−1, 𝑏−𝑤},a contradiction. 

(ii) If11

𝛿𝛼,1,𝑦 = (𝑎𝑏𝑙)0
−1, 𝑖𝑡 𝑓𝑜𝑟𝑐𝑒𝑠 𝑡ℎ𝑎𝑡 𝑦 = (𝑎𝑏𝑙)−1. Since𝛼, 𝑥, 𝑦 ∈ 𝐼, it follows that 𝑆3

𝛼 = {1, 𝑎𝑏𝑙 , 𝑏𝑤}𝛼 =

{𝑎𝑏𝑙 , 1, 𝑎𝑏𝑙−𝑤} = 𝑦−1𝑆3
−1𝑥. 

For any𝛼 ∈ 𝐴𝑢𝑡(𝐻), there is1𝛼 = 1. But there is no𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that {𝑎𝑏𝑙 , 𝑏−𝑤}𝛼 = {𝑎𝑏𝑙 , 𝑎𝑏𝑙−𝑤}, a contradiction. 

(iii) If 11

𝛿𝛼,1,𝑦 = (𝑏−𝑤)0, it forces that𝑦 = 𝑏−𝑤 . Then, we have 𝑆3
𝛼 = {1, 𝑎𝑏𝑙 , 𝑏𝑤}𝛼 = {𝑏𝑤, 𝑏𝑤−𝑙𝑎−1, 1} = 𝑦−1𝑆3

−1𝑥. 

But there is no 

𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that{𝑎𝑏𝑙 , 𝑏𝑤}𝛼 = {𝑏𝑤, 𝑏𝑤−𝑙𝑎−1},a contradiction. 

Based on the above,𝐼 = ∅.Next, we show that 𝐴𝑢𝑡(𝛤) = 𝑅(𝐻) ⋊ ⟨𝜎𝜀,1⟩,where 𝜎𝜀,1: ℎ0 ↦ (ℎ𝜀)0, ℎ1 ↦ (ℎ𝜀)1, and 𝜀 is 

an identity mapping. 

By equation (II) and definition of F, for any𝜎𝛼,𝑔, we have 𝑆3
𝛼 = {1, 𝑎𝑏𝑙 , 𝑏𝑤}𝛼 = 𝑔−1𝑆3 = {𝑔−1, 𝑔−1𝑎𝑏𝑙 , 𝑔−1𝑏𝑤}. Note 

that 𝛼 ∈ 𝐴𝑢𝑡(𝐻), then there is the identity element 1 in{𝑔−1, 𝑔−1𝑎𝑏𝑙 , 𝑔−1𝑏𝑤}. 
 

(i) If g=1, then we can obtain 𝑆3
\𝛼

= {1, 𝑎𝑏𝑙 , 𝑏𝑤}\𝛼 = 𝑆3, where 𝛼 is an identity mapping; 
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(ii) If𝑔 = 𝑎𝑏𝑙 , there is no𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that 𝑆3
\𝛼

= {1, 𝑎𝑏𝑙 , 𝑏𝑤}𝛼 = {(𝑎𝑏𝑙)−1, 1, 𝑎−𝑟ℎ𝑙
𝑏𝑤−𝑙} = (𝑎𝑏𝑙)−1𝑆3; 

(iii) If𝑔 = 𝑏𝑤, then there is no𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that 𝑆3
𝛼 = {1, 𝑎𝑏𝑙 , 𝑏𝑤}𝛼 = {𝑏−𝑤 , 𝑎𝑟ℎ𝑤

𝑏𝑙−𝑤 , 1} = 𝑏−𝑤𝑆3. 
Since𝛤 is normal bi-Cayley graph, we can obtain 𝐴𝑢𝑡(𝛤) = 𝑅(𝐻). Consequently, 𝛤 is not vertex-transitive. 

 

4. 2-Type vertex-transitive bi-Cayley graph 
In this section, we shall give a characterization of connected cubic 2-type normal bi-Cayley graphs over a group H and 

show that cubic 2-type vertex-transitive normal bi-Cayley graphs over a group H. Let 𝜞 = 𝑩𝒊𝑪𝒂𝒚(𝑯, 𝑹, 𝑳, 𝑺)  be a 

connected cubic 2-type normal bi-Cayley graph over group H. Firstly, determine R, L and S. Note that 𝜞 is 2-type bi-Cayley 

graphs, then 𝑺 = {𝟏}. By connectivity of 𝜞 we can get 𝑯 = ⟨𝑹 ∪ 𝑳⟩. From Lemma 2.3, we can get R, L, S is one of the 

following holds: 

(1) 𝑅1 = {𝑎, 𝑎−1}, 𝐿1 = {𝑏𝑠, 𝑏−𝑠}, 𝑆 = {1}; 
(2) 𝑅2 = {𝑎𝑏𝑙 , (𝑎𝑏𝑙)−1}, 𝐿2 = {𝑏𝑤, 𝑏−𝑤}, 𝑆 = {1}, 𝑤ℎ𝑒𝑟𝑒 𝑙 = 𝑚𝑞; 
(3) 𝑅3 = {𝑎𝑏𝑘, (𝑎𝑏𝑘)−1}, 𝐿3 = {𝑏𝑢, 𝑏−𝑢}, 𝑆 = {1}, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑛𝑞 + 𝑡; 

𝑤ℎ𝑒𝑟𝑒 𝑠, 𝑢, 𝑤, 𝑡, 𝑚 = 1,2, ⋯ , 𝑞 − 1, 𝑛 = 0,1,2, ⋯ , 𝑞 − 1. 
 

Lemma 4.1 Let 𝛤1 = 𝐵𝑖𝐶𝑎𝑦(𝐻, {𝑎𝑏𝑘, (𝑎𝑏𝑘)−1}, {𝑏𝑢, 𝑏−𝑢}, {1})and  𝛤2 = 𝐵𝑖𝐶𝑎𝑦(𝐻, {(𝑎𝑏−𝑘)−1, 𝑎𝑏−𝑘}, {𝑏𝑢, 𝑏−𝑢}, {1})be 

two connected cubic 2-type bi-Cayley graphs over a group H, then 𝛤1 ≅ 𝛤2. 

Proof: Take 𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that 𝛼: 𝑎 ↦ 𝑎−𝑟−ℎ𝑘
, 𝑏 ↦ 𝑏. It is clear that {1}\𝛼 = {1}. Furthermore, we have 

{𝑎𝑏𝑘, (𝑎𝑏𝑘)−1}𝛼 = {𝑎−𝑟−ℎ𝑘
𝑏𝑘, 𝑎(−𝑟ℎ𝑘)(−𝑟−ℎ𝑘)𝑏−𝑘} = {𝑎𝑏−𝑘, (𝑎𝑏−𝑘)−1}, 

{𝑏𝑢, 𝑏−𝑢}𝛼       = {𝑏𝑢, 𝑏−𝑢}. 
By Proposition 2.1(3), it follows that 𝛤1 ≅ 𝛤2. 
 

Lemma 4.2 Let𝛤𝑖 = 𝐵𝑖𝐶𝑎𝑦(𝐻, 𝑅𝑖 , 𝐿𝑖 , 𝑆), where i=1,2, be a connected cubic 2-type normal bi-Cayley graph over group H, 

then 𝛤is not vertex-transitive, and 𝐴𝑢𝑡(𝛤) = 𝑅(𝐻) ⋊ 𝑍2. 
 

Proof: By Proposition 2.2, first, we show that 𝐼 = ∅. 
Suppose that 𝛿𝛼,𝑥,𝑦 ∈ 𝐼. By the definition of I, we have 𝑆𝛼 = {1}𝛼 = 𝑦−1𝑆−1𝑥 = {1}, this forces that y=x. 

Since 𝑅𝑖
𝛼 = 𝑥−1𝐿𝑖𝑥 = 𝐿𝑥 = 𝐿𝜎(𝑥), it follows that 𝑅𝑖

𝛼𝜎(𝑥−1)
= 𝐿𝑖 , where𝜎(𝑥) is inner automorphism induced by x. Note 

that the order of the element in 𝑅𝑖is different from the order of the element in 𝐿𝑖 . Then there is no 𝛿𝛼,𝑥,𝑦 in I such that 

𝑅𝑖
𝛼 = 𝑥−1𝐿𝑖𝑥 = 𝐿𝑥 = 

𝐿𝜎(𝑥), a contradiction. 

Based on the above, 𝐼 = ∅. Next, we will determine F. For any 𝜎\𝛼,𝑔 ∈ 𝐹, we have 𝑆𝛼 = {1} = 𝑔−1𝑆, this forces that 

g=1. 

Note that 𝑅1
𝛼 = {𝑎, 𝑎−1}𝛼 = {𝑎, 𝑎−1} = 𝑅1, 𝐿1

𝛼 = {𝑏𝑠, 𝑏−𝑠}\𝛼 = {𝑏𝑠, 𝑏−𝑠} = 𝐿1. This forces that 𝛼 is as 

follows:𝛼: 𝑎 ↦ 𝑎−1, 𝑏𝑠 ↦ 𝑏𝑠. 
 

Note that 𝑅2
𝛼 = {𝑎𝑏𝑙 , (𝑎𝑏𝑙)−1}𝛼 = {𝑎𝑏𝑙 , (𝑎𝑏𝑙)−1} = 𝑅2, 𝐿2

𝛼 = {𝑏𝑤, 𝑏−𝑤}𝛼 = {𝑏𝑤, 𝑏−𝑤} = 𝐿2, it is easy to see that𝛼is 

identity mapping. 

 

Since 𝛤𝑖 is normal bi-Cayley graph, we can obtain 𝐴𝑢𝑡(𝛤1) = 𝑅(𝐻) ⋊ ⟨𝜎𝛼,1⟩ = 𝑅(𝐻) ⋊ 𝑍2and 𝐴𝑢𝑡(𝛤2) = 𝑅(𝐻). 
Moreover, 𝛤𝑖 is not vertex-transitive, where𝑖 = 1,2. 
 

Lemma 4.3 Let 𝛤 = 𝐵𝑖𝐶𝑎𝑦(𝐻, 𝑅3, 𝐿3, 𝑆) be a connected cubic 2-type normal bi-Cayley graph over group H. If k=u, then 

𝛤 is vertex-transitive. Especially, 𝛤 is a Cayley graph, and 𝐴𝑢𝑡(𝛤) = ⟨𝑅(𝐻), 𝛿𝜙,1,1⟩. 

 

Proof: If k=u, then 𝛤 = 𝐵𝑖𝐶𝑎𝑦(𝐻, {𝑎𝑏𝑢, (𝑎𝑏𝑢)−1}, {𝑏𝑢, 𝑏−𝑢}, {1}). Take 

𝜙: 𝑎 ↦ 𝑎−1, 𝑏 ↦ 𝑎
(
𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1

𝑏 

in Aut(H). Note that 

𝑎𝜙2
= (𝑎−1)𝛾 = 𝑎, 𝑏𝜙2

= (𝑎
(
𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1

𝑏)𝜙 = 𝑎
−(

𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1

𝑎
(
𝑟−ℎ𝑢−1

𝑟−ℎ−1
)−1

𝑏 = 𝑏. 
Clearly,𝑜(𝜙) = 2. We take x=y=1, then 𝑜(𝛿𝜙,1,1) = 2. Next, we show that 𝛿𝜙,1,1 ∈ 𝐼. 

𝑅2
𝜙

= {𝑎𝑏𝑢, (𝑎𝑏𝑢)−1}𝜙 = {𝑏𝑢, 𝑏−𝑢} = 𝐿2, 

𝐿2
𝜙

= {𝑏𝑢, 𝑏−𝑢}𝜙 = {𝑎𝑏𝑢, (𝑎𝑏𝑢)−1} = 𝑅2, 

𝑆𝜙 = {1} = 𝑆−1. 

Hence, 𝛿𝜙,1,1 ∈ 𝐼. By Proposition 2.2,⟨𝑅(𝐻), 𝛿𝜙,1,1⟩ acts transitively on 𝑉(𝛤), and 𝛤 is isomorphic to a Cayley graph. 

By Proposition 2.2, 𝐴𝑢𝑡(𝛤) = 𝑁𝐴𝑢𝑡(𝛤)𝑅(𝐻)) = 𝑅(𝐻)⟨𝐹, 𝛿𝜙,1,1⟩. Next, we show that F={1}. Since 𝑆 = {1} = 𝑔−1𝑆, this 
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force that g=1. Note that 𝑅2
𝛼 = {𝑎𝑏𝑢, (𝑎𝑏𝑢)−1}\𝛼 = {𝑎𝑏𝑢, (𝑎𝑏𝑢)−1} = 𝑅2, 𝐿2

\𝛼
= {𝑏𝑢, 𝑏−𝑢}\𝛼 = {𝑏𝑢, 𝑏−𝑢} = 𝐿2. It is easy 

to see that there is no nonidentity element in Aut(H) satisfying the above equation. That is F={1}. Then 𝐴𝑢𝑡(𝛤) =
⟨𝑅(𝐻), 𝛿𝜙,1,1⟩. 

 

Lemma 4.4 Let 𝛤 = 𝐵𝑖𝐶𝑎𝑦(𝐻, 𝑅3, 𝐿3, 𝑆) be a connected cubic 2-type normal bi-Cayley graph over group H. If 𝑘 ≠ 𝑢, 
then 𝛤is not vertex-transitive, and𝐴𝑢𝑡(𝛤) = 𝑅(𝐻). 
 

Proof: Suppose that 𝛿𝛼,𝑥,𝑦 ∈ 𝐼. Since H is transitive on{(𝑎𝑖𝑏𝑗)1|𝑖 = 0, ⋯ , 𝑝 − 1, 𝑗 = 0, ⋯ , 𝑞2 − 1}, without loss of 

generality, we assume that 10

𝛿𝛼,𝑥,𝑦 = 11, and it is easy to know that x=1. By the definition of I, we have 𝑆𝛼 = {1}𝛼 =

{1} = 𝑦−1𝑆−1𝑥, this forces that y=1. Since𝑘 ≠ 𝑢, there is no𝛼 ∈ 𝐴𝑢𝑡(𝐻) such that 𝑅2
𝛼 = {𝑎𝑏𝑘, (𝑎𝑏𝑘)−1}𝛼 = {𝑏𝑢, 𝑏−𝑢} =

𝐿2, 𝐿2
𝛼 = {𝑏𝑢, 𝑏−𝑢}𝛼 = {𝑎𝑏𝑘, (𝑎𝑏𝑘)−1} = 𝑅2, a contradiction. 

Suppose that 𝛿𝛼,𝑔 ∈ 𝐹. By equation (II), if 𝑆𝛼 = {1} = 𝑔−1𝑆, this forces that g=1.  

Note that 𝑅2
𝛼 = {𝑎𝑏𝑘, (𝑎𝑏𝑘)−1}𝛼 = {𝑎𝑏𝑘, (𝑎𝑏𝑘)−1} = 𝑅2, 𝐿2

𝛼 = {𝑏𝑢, 𝑏−𝑢}𝛼 = {𝑏𝑢, 𝑏−𝑢} = 𝐿2, it is easy to see that only 

identity mapping in Aut(H) satisfies the above equation. If 𝛤is normal bi-Cayley graph, we can obtain 𝐴𝑢𝑡(𝛤) = 𝑅(𝐻). 
Consequently, 𝛤 is not vertex-transitive. 

 

In the end, by Lemma 3.1, 3.2, 3.3, 3.4, 3.5, 4.1, 4.2, 4.3 and 4.4, we complete the proof of Theorem 1.1. 
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