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Abstract - The vertex-transitive graph is a graph with high symmetry. A graph I'is said to be a bi-Cayley graph over a group
H if it admits H as a semiregular automorphism group with two orbits of equal size. And I'is normal with respect to H if
R(H) is normal subgroup ofAut(I"). In this paper, we complete the classification of the cubic vertex-transitive normal bi-
Cayley graphs over a group of order pq?, where p and q be two primes with p>q. Furthermore, these cubic vertex-
transitive bi-Cayley graphs are also a Cayley graph.
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1. Introduction

The vertex-transitive graph is a graph with high symmetry, and the symmetry of a graph is described by some transitivity
properties of the graph. Cayley graph is a famous symmetric graph, which has important significance in many fields such as
mathematical models, computer networks and communication technology. As a natural generalization of the Cayley graph,
the bi-Cayley graph was proposed by Resmini and Jungnickel [1] when they studied the normality of Cayley graphs, and bi-
Cayley graph is also important research tool for vertex-transitive graph, edge-transitive graph, semisymmetric graph and
even symmetric graph. The symmetry of the bi-Cayley graph has been a hot topic, and the research focus being on classifying
bi-Cayley graphs with specific symmetry properties over a given finite group H.

For a graph I', we denote by V(I'), E(I"), Aut(I') the vertex set, edge set and full automorphism group of I,
respectively. The graph I'is said to be vertex-transitive or edge-transitive if Aut(I") acts transitively on V(I') orE(I'),
respectively. Initially, bi-Cayley graph over the cyclic group and abelian group were studied (see[2,3,4,5,6,7,8]). In recent
years, the research focus being on classifying bi-Cayley graphs over finite nonabelian groups. For example, in [9], cubic
symmetric bi-Cayley graphs on non abelian simple groups were classified and the full automorphism groups of these graphs
were determined; trivalent vertex-transitive bi-Cayley graphs over dihedral groups were classified and Cayley property of
trivalent vertex-transitive bi-dihedrants was presented in [10]. And for more results about it, we refer the reader to
[11,12,13,14,15,16].

The normality of the bi-Cayley graph is an important property in the study of transitivity and full automorphism group
of bi-Cayley graphs (see[17,18,19,20]). Much work has also been done on normal bi-Cayley graph. For example, it was
shown that every finite group has a normal bi-Cayley graph in [21]. For a bi-Cayley graphI"over a group H, the normalizer
of group H in the full automorphism group of bi-Cayley graph I'was determined in [22].

In this paper, we will apply the normality of bi-Cayley graph to study the bi-Cayley graph with respect to the vertex-
transitive property and its full automorphism group. We present a classification of the vertex-transitive property of cubic
normal bi-Cayley graphsI"over a group of order pq?, and it is shown that if I'is vertex-transitive, it is also a Cayley graph.

p—1
Theorem 1.1 Let H = (a,b|a? = b =1,blab=a" "’ ,q|p — 1), where p and g be two primes with g<p, and r is a
primitive root of modulo p. LetT' = BiCay (H, R, L, S) be a connected normal cubic bi-Cayley graph over group H, it is
vertex-transitive if and only if the (R, L, S) is equivalent to the one of the triples in Table 1. Furthermore, all the graphs in
Table 1 are both Cayley graph.

Table 1. Cubic vertex-transitive normal bi-Cayley graphs over group H.

No (R,L,S) conditions Cayley
1 (0,0,{1,ab"%,b5}) 1<s<q-1 Yes
2 (9,8,{1,ab*,b%}) 1<s<q-1 Yes
3 (0,0,{1,ab*, b?}) k=ng+tt+0),0<nt<qg-—1 Yes
4 ({abs, (ab¥)™1},{b%, b5}, {1}) 1<s<gq-1 Yes
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2. Definition and Preliminaries

All graphs considered in this paper are finite, simple and undirected; some concepts and symbols not mentioned which
will be used in the whole paper; see [23,24]. For a vertex v of graph I', its neighborhood, denoted by N(v). Given a finite
group G and an inverse closed subset S € G¥{1}, the Cayley graph X=Cay(G,S) on G with respect to S is a graph with vertex
set G and edge set {{g,sg}|g € G, s € S}.Define the bi-Cayley graph I' =BiCay(H,R,L,S) with vertex set V(I')=H, U
H,and edge setk (I") = {{ho, go}lgh™" € R} U {{h1, g:}lgh™" € L} U {{ho, g:}|gh™" € S}whereH; = {h;|h € H},i=0,1; R, L
and S is subsets of a group Hsuchthat R = R™1, L. = L™*and R U L does not contain the identity element of H. The graph Iis
called s- type bi-Cayley if |R|=|L|=s, when R(H) is normal in Aut(I"), the bi-Cayley graph I'will be called a normal bi-Cayley
graph. For the case when |S|=1, the graph I'is also called one-matching bi-Cayley graph.

Proposition 2.1 [6] LetI' = BiCay(H, R, L, S) be a connected bi-Cayley graph over a group H. The following obvious
facts are basic for graph I'.
(1) His generated byR U L U S.
(2) Up to graph isomorphism, S can be chosen to contain the identity element of H.
(3) For any automorphismaof H, BiCay(H, R, L, S )= BiCay (H, R%, L%, S%).
(4) BiCay (H, R, L S)= BiCay(HL,R,S™).

In[22], letI' =BiCay(H, R, L, S). It is easy to see that R(H) can be regarded as a group of automorphisms of I' acting
on its vertices by the rule

h®9 = (hg),Vi=0,1;h,g € H.

For an automorphism eof H and x, y, g€H, define two permutations on V(I') = Hy U H, as following:

84y ho = (xh*)4, hy » (yh*)y, foreachh € H. ¢))

Oag:ho » (K)o, hy » (gh*),, foreachh € H. (1)
and then define
I={84yy|R* =x7'Lx,L* = y 'Ry and $* = y~ 1§~ 1x} € Aut(I).
F ={044/R*=R,L* = g"'Lg and S* = g~'S} < Aut(I).

Proposition 2.2 [6] Let I' = BiCay(H, R, L, S ). be a connected bi-Cayley graph over the group H. If I=@then N gy =
(R(H)) =R(H)x F, and If I+ @,then N ury = (R(H)) = R(H)(F, 8,,y) for somed,,,, € I. For any 84,y €1, X,
yeH,a € Aut(I'), we have the following:

(1)(R(H), 85y )acts transitively on V(I') and &, ,,normalizes R(H);

(2) If o(a) = 2and x=y=1, then I'is isomorphic to the Cayley graph Cay(H, R U aS), whereH = H x (a).

Lemma 2.3 Let p and g be two primes with g<p. Let

H = (a,bla? = b%" = 1,b™*ab = a”",q|p — 1),
where r is a primitive root of modulo p and thT_l. If H=(x, y), then{x, y}is either{a, b},or{ab¥, b*},or{ab’, b¥}where
k=ng+t, I=mq, and s, u, w, t, m=1, 2,---, g-1, n=0, 1,---, g-1.

Proof By Theorem in [25],
Aut(H)={a|a® = a}, b* = a'p™1*1},
where i=1, 2,--+, p-1, I=1, 2,---, p and n=0, 1,---, g-1. Then H can be generated either by elements of order p and g2, or
elements of order g2and g2, or elements of order g%and pg. If H=(x, y),then {x,y }is the following holds:
{ai1‘ ajbnq+5}‘ {ajbnq+s’ ahbn1CI+S1}, {aizbnzq’ ajbnq+5}’
whereiy, i, = 1,2,-,p—1;j,j; =01,--,p—1;nn, =0,1,--,9g — 1;5,5;,n, = 1,2,---,q — 1. There exista,, a,, as €
Aut(H) such that

(a, %)t = (a'1, a/ h™I*5), where a;:a - a't,b® - a/b™*s,
(ab™@+s ps1)*2 = (@) p9*S, qJ1pMa*s1), where a,:a » a’, bt — a/1h™Ma+s1,
{(ab™,b5)*3 = (q'2h™24, q) p1*5), where asz:a » a'2,b5 — alh™*5,

Hence, up to the automorphism of the group {x, y}is either {a, bs},or{ab¥, b*},or{ab’, b*}, where k=ng+t, I=mq, and s, u,
w, t, m=1, 2,---, -1, n=0, 1,---, g-1.

According to structure of group H, there is no elements of order 2 in H. Thus, there is no 1-type bi-Cayley graphs over
a group H. In the following; we only need to consider the O-type and 2-type bi-Cayley graphs over a group H.
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3. 0-Type vertex-transitive bi-Cayley graph
In this section, we shall give a characterization of connected cubic 0-type normal bi-Cayley graphs over a group H and
show that cubic 0-type vertex-transitive normal bi-Cayley graphs over a group H. Letl" = BiCay(H, R, L S) be a connected
cubic O-type normal bi-Cayley graph over group H. Firstly, determine R, L and S. Note thatI"is O-type bi-Cayley graphs, it is
clear that R=L={@}. By connectivity of I", we can get H=(S). From Lemma 2.3, we can get S is one of the following holds:
D S ={1,a,b%};
(2) S, ={1,ab*, b*},where k =nq + t;
(3) S3 ={1,ab',b*},where |l = mgq,

where s, u, w, t, m=1, 2,---, g-1, n=0, 1, 2,---, g-1

Lemma 3.1 Letl; = BiCay(H,®,9,S,),I; = BiCay(H,®,®,S,) be connected cubic 0-type bi-Cayley graphs over group
H, if s=u=Kk, thenl; = I5.

Proof: Set V(I = {(a'h?)gn, (a'b?)1,]i = 0,+-,p — 1,j = 0,---,q% — 1}, where n=1, 2. Take a mappingpfromV (I})
toV (I;,) as follows:
p:(a'b?)g1 = (@7 b1z, (@'h7)yy = (@ 7B,
Firstly, we will show thatp is a bijection. For any(a‘b’),,, (a'h?)y, € V(I3), there exist(a='h’)y,, (a™" bf“‘),11 €
V(I;) such that(a“bf) (a"bf)lzand(a“""_hubf"“)f1 = (a‘b’)y,. Thuspis a surjection. For any(a‘b’)y,, (at b’/ )y, €
V(I;) and(a'b’)yy, (@' b )11 € V(F1) then
p((a'b)gy) = P((al b )01) o ((a” lb])lz) = (a7 )12 = (alb’)m = (@' b))y,
p((a'b?),1) = p((a* b )11) < ((a_w “bIT)g,) = (a'” “b _u)oz & (a'b))y; = (a' b )11
Therefore, p is a bijection.
Next, we show thatppreserves E (") if s=u=k. Note that
N((aibj)m)p = {(aibj)n: (aHlbj)n: (air_hubu”)n}p
= {(@ 7" D) gz, (@D DI, (@71h )05} = N((a™'h7)s5).
N((aibj)n)p = {(aibj)op(ai_lbj)m (airhubj “o1}”
= {(@™'b7)13 (a*7'b7)15, (a ~irtpi= “)12} = N((a a " pi “)o02)-
Therefore,p is an isomorphism from V(I;) toV(I3), then I} = [,.

—hu

Lemma 3.2 LetI' = BiCay(H,®,®,S,) be a connected cubic 0-type normal bi-Cayley graph over group H, thenr’is not
vertex-transitive, and Aut(I") = R(H) % Z,.

Proof: By Proposition 2.2, first, we show that I = @.

Suppose that I # @. Since H is transitive on {(a’b’),|i = 0,---,p — 1,j = 0,---,q% — 1}, without loss of generality,
we can assume that 1,*” = 1,, and it is easy to know that x=1. Moreover, N(1,)%17 = {1,,a,, b§}oe1y =
{15, (@Yo, (b75)o} = N(1,), the following three cases are discussed.

(i) If 1(;“’1” = 1,, it forces that y=1. By the definition of I, we have S& = {1,a,b5}* = {1,a™1,b~5} =
y~1S71x, and for any @ EAut(H), there is1¢ = 1. And we know that there is no a € Aut(H) such that {a, b*}" =
{a=1,b™*}, a contradiction.

(i) If 1f“'1'y = (a™1),, itforcesthaty = a~2. Sincea,x,y € I, it follows that S¢ = {1,a, b5}* = {a,1,ab™5} =
y~1S7tx. Forany a €Aut(H), we havel® = 1. Butthere isno @ € Aut(H) such that {a, b5}* = {a,ab™5},a
contradiction.

(ii) If 1, Sary _ = (b™5),, it forces thaty = b~S. Then, we haveS¥ = {1,a,b5}* = {b%,b%a"1,1} = y~1571x. But
there is noa E Aut(H) such that{a, bS}* = {b%a™1, b}, a contradiction.

Based on the above,/ = @. Next, we show that Aut(I") = R(H) X (g4q)Where a\qq:ho = (h%)o, by = (ah®),for
each
he H, wherea:a » a1, b5 » a™1b%,

By equation (I1) and the definition of F, for any o, , € F, we have S = {1,a,b°}* = g7'S; = {9~ ", g 'a, g7 b"}.
Note thata €Aut(H); then there is the identity element 1in {g~%, g~ 'a, g~ 1b*}.

(i) If g=1, then we can obtain Sl\a = {1,a,b%}* = S;, wherea is an identity mapping and a €Aut(H);

(i) If g=a, then we can obtain $;* = {1,a,b*}\* = {a~%,1,a" b5} = a~'S,, wherea:a » a~%,b* » a~'h%and
a EAuUt(H);

(iiii) If g=b*, then there exists no a € Aut(H) such that S\* = {1, a, bS}\* = {b=5a, 1,b™5} = b™SS,.
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Sincer” is normal bi-Cayley graph, we can obtain Aut(I") = R(H) % {0, 4) = R(H) » Z,. Moreover, by the
definition of F, it is easy to see that I' is not vertex-transitive.

Lemma 3.3 Letl" = BiCay(H, ®,®,S,) be a connected cubic 0-type normal bi-Cayley graph over group H, where k=u. If

k=-u, k=2u or u=2k, then I'is a vertex-transitive graph. Especially, I'is a Cayley graph and ;‘(tg) Z,.
Proof: If k=-u, then I" = BiCay(H, 0, ?,{1,ab™", b"}).Set
—hu -
viampalbea ¢ "‘1) b
in Aut(H). Note that
R it N B it SO s
@ =@y =a b =@ = by =d " TSy
Clearly,o(y) = 2. We take x=y=1, the no(6,,1,1) = 2. Next we show that 6, 1 € I.
~1-r T . )
SY ={1,ab™% b*}y ={1,a = v r=hi-1"p%*}

—hu

— {Lb uqT bu} —
Hence &, 1, € I. By Proposition 2.2,(R(H), 6),,1_1) acts transitively onV(F) and I'is isomorphic to a Cayley graph.
If k=2u, then I' = BiCay(H, ®, ®, {1, ab®*, b*}). Take

hu_l)
r=h-1 b

¢

T b a

mawa
in Aut(H).

Next, we show that 8, ; zp2u)-1 € I. Letx = 1,y = (ab®*)™", then

SF = {1,ab™,b¥}" = {1, = e =Y a(rr—h:—_ll)_l(rrj:—_ll)bu}
={1,ab?", ab"} = (ab*™)S; .
p2uy-1 € I. Consequently, I' is vertex-transitive graph.
1 € R(H). Forany hy = (a'b’), € H,, We have

Therefore, 61 4

Next, we show that 5711 (ab?i)-

2
(b)), ™ = (@™ @by
-1
= (@) (@ ™"a Gt 1) G T pIymy,
_( i—rZ"”'hjbj—Zu)OI

Similarly, for any 2, = (a‘b’), € Hl, we have
(a’b’) nl(ab 2uy=1 (((aqu)—l)n(aibj)nz)l
— (((aqu)—l)n ir_Zhu—r_hJ+1bj)
U_q

—(a(r—h 1) 1( r—h_ l)b 2ugr h“alr

=( l T b] Zu)l_

Zhu_r—hj+1b]-)1

2hu—hj

Hence, we can get thatééli(abzu)_l = R(a‘TZh“b‘Z“) € R(H). Therefore, we have (R(H), 8 1 qp2zw)-1)/R(H) = Z,and
KR(H), 67,1, (apzwy-1)| = 2pq®. Hence, |(R(H), 8.1,apzwy-1)|acts regularly onV (I").Then I'is isomorphic to a Cayley
graph.

If u=2k, thenI" = BiCay(H, ®, ®, {1, ab¥, b?¥}).Let

_—hk
eara’ bw-b
be an automorphic mapping of H. Next, we show that §, , -2« € I. We take x=1,y = b=2%%, then
S§ = {1,abk, b?K}€ = {1,a"""“bk, b2} = (b2K)S5 L.

Therefore,§, , ,-2« € 1. Then I'is vertex-transitive graph.

Next, we show thatdjl(b_zk) € R(H). Forany hy = (a‘b’), € H,, we have

inj 8:,1,13—2" — (h=2k(qipiVe?
(a'b’), (b=2(a'b)¥),
= (b~ (""" b)),
= (a'b/%K),.

i i . . 62 - . .
similarly, for any h, = (a'b’), € Hy, we have (a'b/),**""" = (a'b/~2¥),.
Hence, we have that 552,1,b-2k = R(b™?*) € R(H). Hence(R(H), 8, ,-21)/R(H) = Zyand |(R(H), 5 ,-2ic)| =
2pq?. Then
(R(H), 8, , ,-2«)acts regularly on V(I"), I' is isomorphic to a Cayley graph.
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By Proposition 2.2,Aut(I") = Nyery(R(H)) = R(H)(F, 5, 11). Next, we show that F = {1}.Since k=-u, k=2u,
u=2k, we have S;* = {1,ab™%,b%*}*t = g7}{1,ab™% b¥*} = g11S,, S ={Lab™,b"}* =g,'{L.ab®,b"}=g,'S,, S, =
{1, ab¥, b?k}*s = g{1,ab", b?*} = g3'S,, respectively. And we obtain that only g, g,, g5 = 1, ay, a5, a3 € Aut(H) is
identity mapping is satisfied. That is F = {1}.Then®:L) = 7,

R(H)

Lemma 3.4 LetI" = BiCay(H, ®,®,S,) be a connected cubic 0-type normal bi-Cayley graph over group H, where k #
—u, k # 2uand k # u/2, then I'is not vertex-transitive graph, andAut(I") = R(H).
Proof If k=u, thenBiCay(H,®,®,S,) = BiCay(H,®,®,S;) by Lemma 3.1.

If k # —u, 2u,u/2. By Proposition 2.2, first, we show that = @.

Suppose that I # @. Since H is transitive on {(a‘b’),|i = 0,+-,p — 1,j = 0, -+, g — 1}, without loss of generality,
we can assume thatlg“'x'y = 1,, and it is easy to know that x=1. Moreover, N (1,)%«1y = {1, (ab¥),, b}}0a1y =
{10, (ab")g", by} = N(1y), the
following three cases are discussed.

(i) If 1f“’1'y = 1,, it forces that y=1. By the definition of I, we have S§ = {1, ab", b*}* = {1, (ab*) ™}, b} =
y‘lelx, and for any a € Aut(H), there is1* = 1. And we know that there is noa € Aut(H) such
that{ab®, b*}* = {(ab*)~1, b~%*},a contradiction.

(i) If 1f“'1'y = (ab®)y?, it forces thaty = (ab®)~1. Sincea, x,y € I, it follows that S = {1, ab®, b*}* =
{ab®,1,ab* ¥} =
y~1S31x. Forany a € Aut(H), we havel® = 1. Butthere isno a € Aut(H) such that {ab*, b*}* = {ab¥,ab* *},a
contradiction.

(iii) If 1f“'1'y = (b™%),, it forces thaty = b~*. Then, we have S¢ = {1, ab¥, b*}* = {b*, b**a™1,1} = y~15; 1x.
But there is no « € Aut(H) such that {ab*, b*}* = {b**a~1, b“}, a contradiction.

Based on the above, I = @. Next, we show that Aut(I") = R(H) X (0. ,),wherea;: hy = (h®)g, hy = (h®), and € is
an identity mapping.

By equation (1) and definition of F, for any o, ; € F, we have S = {1, ab®, b*}* = g1§, =
{g~%, g tab*, g~*b“}. Note that
a € Aut(H), then there is the identity element 1 in {g~*, g~ tab¥, g~ *b*}.

(i) If g=1, then we can obtain S¢ = {1, ab¥, b*}\* = S,, wherea is an identity mapping and a € Aut(H);

(i)Ifg = ab, thereis noa € Aut(H) such that S& = {1, abk, b*}\® = {(ab¥)~1,1,a ""b* "k} = (ab*)~1S,;

(iii)Ifg = b¥, there is noa € Aut(H) such that S;* = {1,ab¥, b*}\ = {b~¥,a™"b¥"*,1} = b™1S,.

Sincer" is normal bi-Cayley graph, we can obtain Aut(I") = R(H). Consequently, I'is not vertex-transitive.

Lemma 3.5 Letl" = BiCay(H,®,®,S;) be a connected cubic O-type normal bi-Cayley graph over group H, thenI"is not
vertex-transitive, and Aut(I") = R(H).
Proof By Proposition 2.2, first, we show that/ = @.

Suppose that I # @. Since H is transitive on {(a’h/),]i = 0,---,p — 1,j = 0,---,q% — 1}, without loss of generality,
we can assume that 1‘3“’x'y = 1,, and it is easy to know that x=1. Moreover, N(1,)%=1y = {1,,ab!, b}"}0a1y =
{1,, (abHgt, b5} = N(1,), the following three cases are discussed.

@) If lf“'l'y = 1,, it forces that y = 1. By the definition of I, we have S = {1,ab!,b¥}* =
{1, (ab) ™1, b7} = y~1551x, and for any a € Aut(H), there is 1 = 1. And we know that there is noa € Aut(H) such
that {ab’, b¥}* = {(ab")~, b~"},a contradiction.

(i) Iflf“‘l‘y = (abY)yt, it forces that y = (ab')~'. Sincea, x,y € I, it follows that S¢ = {1, ab!,bW}* =
{ab',1,ab"™} = y~1571x.
For anya € Aut(H), there is1* = 1. But there is noa € Aut(H) such that {ab',b~"}* = {ab',ab'~"}, a contradiction.

(iii) If 1f“'1'y = (b™"),, it forces thaty = b=". Then, we have S¢ = {1,ab’,b¥}* = {b¥,b" a1, 1} = y~15; x.
But there is no
a € Aut(H) such that{ab',b*}* = {b¥, b¥~'a~'},a contradiction.

Based on the above,I = @.Next, we show that Aut(I") = R(H) % (o ),where o, ,: hg = (h®)o, hy = (h¥), and € is
an identity mapping.

By equation (I1) and definition of F, for anya,, ;, we have S§ = {1,ab’,b*¥}* = g7'S; = {g~*, g *ab’, g *b"}. Note
that a € Aut(H), then there is the identity element 1 in{g~*, g~*ab', g~ *b"}.

(i) If g=1, then we can obtain 53\“ = {1,ab!, b¥}\* = S;, where « is an identity mapping;
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(ii) Ifg = ab', there is noa € Aut(H) such that S\* = {1,ab’,b¥}* = {(ab")™%,1,a™"b* 1} = (ab')1S;;
(i) Ifg = b%, then there is noa € Aut(H) such that S¢ = {1,ab’, b¥}* = {b™¥, a" pt-w, 1} =b7"Ss.
Sincer" is normal bi-Cayley graph, we can obtain Aut(I") = R(H). Consequently, I' is not vertex-transitive.

4. 2-Type vertex-transitive bi-Cayley graph
In this section, we shall give a characterization of connected cubic 2-type normal bi-Cayley graphs over a group H and

show that cubic 2-type vertex-transitive normal bi-Cayley graphs over a group H. Let I' = BiCay(H,R,L,S) be a
connected cubic 2-type normal bi-Cayley graph over group H. Firstly, determine R, L and S. Note that I is 2-type bi-Cayley
graphs, then § = {1}. By connectivity of I' we can get H = (R U L). From Lemma 2.3, we can get R, L, S is one of the
following holds:

(D Ry ={a,a '}, Ly = {b°, b7}, S = {1};

(2) R, = {ab', (ab") ™'}, L, = {b¥,b™"},S = {1}, where |l = mq;

(3) R; = {ab¥, (ab*)™},L; = {b*,b7%},S = {1}, where k = nq + t;

where s,u,w,t m=12,---,q—-1,n=0,12,---,q — 1.

Lemma4.1 LetI; = BiCay(H, {ab*, (ab®)~1},{b%, b~%},{1})and I, = BiCay(H, {(ab~ )1, ab™*}, {b* b4}, {1})be
two connected cubic 2-type bi-Cayley graphs over a group H, then I; = I,.
Proof: Take a € Aut(H) suchthata:a - a‘r_hk,b ~ b. Itis clear that {1}\* = {1}. Furthermore, we have
{ab*, (ab*)™13% = (&= "“b¥, O Op K = (ab K, (ab™) 1},
{b%, b "}* ={b*, b7"}.
By Proposition 2.1(3), it follows that I; = I,.

Lemma 4.2 Letl; = BiCay(H,R;, L;,S), where i=1,2, be a connected cubic 2-type normal bi-Cayley graph over group H,
then I'is not vertex-transitive, and Aut(I') = R(H) x4 Z,.

Proof: By Proposition 2.2, first, we show that I = @.
Suppose that &, € I. By the definition of I, we have S* = {1}* = y~'S~'x = {1}, this forces that y=x.

Since R¥ = x~L;x = L* = L°™, it follows that Rf”’("_l) = L;, wherea(x) is inner automorphism induced by x. Note
that the order of the element in R;is different from the order of the element in L;. Then there is no &, .., in | such that
Rf=x"Lix=1*=
L°™, a contradiction.

Based on the above, I = @. Next, we will determine F. For any o, 4 € F, we have S* = {1} = g5, this forces that
=1

Note that R¥ = {a,a"}* = {a,a™'} = Ry, LS = {b%,b~°}\* = {b%,b~5} = L,. This forces that « is as
follows:a:a - a™1,bS » bS.

Note that R = {ab’, (ab")™1}* = {ab’, (ab") ™'} = R,, L% = {b",b™"}% = {b¥,b~"} = L,, it is easy to see thatais
identity mapping.

Since I; is normal bi-Cayley graph, we can obtain Aut(l7) = R(H) X (0,41) = R(H) % Z,and Aut(l;) = R(H).
Moreover, I} is not vertex-transitive, wherei = 1,2.

Lemma 4.3 LetI" = BiCay(H, R, L3, S) be a connected cubic 2-type normal bi-Cayley graph over group H. If k=u, then
I is vertex-transitive. Especially, I"is a Cayley graph, and Aut(I") = (R(H), 8¢,1,1)-

Proof: If k=u, then ' = BiCay(H, {ab", (ab™)~1},{b% b~%},{1}). Take
rhi_q _
¢p:aatbe a1 ‘b
in Aut(H). Note that

roii_q rohi_q _ rm_g _
a®® = (a 1) = q,b** = (@71 1b)"’ = D T = b,

Clearly,o(¢) = 2. We take x=y=1, then 0(84 1,1) = 2. Next, we show that 54, € I.

R? = {ab¥, (ab®)"1}*® = {b*,b "} = L,,

L = (b*,b~4}% = {ab¥, (ab*)"} = R,

s¢={1}=5""1
Hence, 84,1,1 € I. By Proposition 2.2,(R(H), 64,,1,1) acts transitively on V(I"), and I is isomorphic to a Cayley graph.
By Proposition 2.2, Aut(I") = NayrryR(H)) = R(H)(F, 84,11). Next, we show that F={1}. Since § = {1} = g~'S, this
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force that g=1. Note that RY = {ab¥, (ab¥*)"*}\* = {ab¥, (ab¥)™1} = R,, L\* = {b*,b™*}\* = {b*,h™*} = L,. It is easy
to see that there is no nonidentity element in Aut(H) satisfying the above equation. That is F={1}. Then Aut(I') =
(R(H),6p,1,1)

Lemma 4.4 LetI" = BiCay(H, R, L3, S) be a connected cubic 2-type normal bi-Cayley graph over group H. If k # u,
then T'is not vertex-transitive, andAut(I") = R(H).

Proof: Suppose that 8, ,, € I. Since H is transitive on{(a'h’),]i =0,--,p—1,j = 0,---,q% — 1}, without loss of

axy _

generality, we assume that 1g = 1,, and it is easy to know that x=1. By the definition of I, we have S = {1}* =

{1} = y~1S~1x, this forces that y=1. Sincek # u, there is noa € Aut(H) such that RS = {ab¥, (ab®)™1}* = {b*, b4} =
Ly, L% = {b*,b~*}* = {abk, (ab*)~1} = R,, a contradiction.

Suppose that &, , € F. By equation (II), if S* = {1} = g5, this forces that g=1.

Note that RS = {ab*, (ab®)~1}* = {abk, (ab*)™'} = R,, L% = {b*, b~%}* = {b*,b~%} = L,, itis easy to see that only
identity mapping in Aut(H) satisfies the above equation. If I'is normal bi-Cayley graph, we can obtain Aut(I") = R(H).
Consequently, I is not vertex-transitive.

In the end, by Lemma 3.1, 3.2, 3.3, 3.4, 3.5, 4.1, 4.2, 4.3 and 4.4, we complete the proof of Theorem 1.1.
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