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Abstract - The problem of counting perfect matchings in graphs is an extremely difficult and important topic. In this paper, 

{(3,4),4}-fullerene graphs are classified according to the cyclical edge-connectivity, and then we show that {(3,4),4}-fullerene 

graph 𝐺with cyclical edge-connectivity 4 has exponentially many perfect matchings. 
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1. Introduction 
Counting perfect matchings is an important research subject in matching theory [1], which not only plays a significant 

role in understanding the structure of graphs. In early days, it was mainly to judge whether a graph has a perfect matching. In 

1891, Petersen first proved that every 3-regular connected graph without more than two cut edges has a perfect matching [2]. 

In 1917, German mathematician Frobenius gave a sufficient and necessary condition for the existence of perfect matching in 

bipartite graphs [3].  

In 1947, Tutte gave a sufficient and necessary condition for determining whether there is perfect matching in general 

graphs [4]. Gallai and Edmonds obtained Gallai Edmonds structure theorem through Gallai Edmonds standard decomposition. 

This theorem has a profound impact on the research of matching theory, and many important theorems can be derived from it, 

such as Tutte theorem and Berge formula. In addition, many results related to the number of perfect matchings of graphs can 

be derived from it [5-8]. With the deepening of research, it has not only developed into an important branch of graph theory, 

but also widely applied to other mathematical branches and disciplines, such as combinatorial optimization, mathematical 

modeling, and statistical physics. 

As an important topological index, perfect matching number has been applied in many fields, such as estimating resonance 

energy and π-electron energy, calculating Pauling bond order, etc [9,10]. Due to the special structure and properties of fullerenes, 

they have great application prospects in biomedicine, energy, and daily life, which also encourages researchers to devote 

themselves to the synthesis of new and more complex fullerenes. Up to now, more than 30 fullerenes have been synthesized 

and characterized [11-15]. 

 In recent years, the problem of counting perfect matchings of graphs has attracted many scholars' attention. In 1979, 

Valiant proved that the problem of calculating the number of perfect matchings of bipartite graph is NP-Hard [16]. Generally, 

it is very difficult to find a formula for the number of perfect matchings of a graph. Only for some graphs with special structures 

can we give its formula to calculate the number of perfect matchings. 

In this paper, we study one of the {(a,b),k}-fullerene, that is, the nature of  {(3,4),4}-fullerene. The concept of {(a,b),k}-

fullerene comes from Deza's (R,k)-fullerene [17], {(a,b),k}-fullerene is defined as a k-regular graph (𝑘 ≥ 3)  embedded in 

sphere whose faces are of length 𝑎and𝑏. Deza et al. proved that there are eight classes of {(a,b),k}-fullerenes [18]. Since these 

eight classes of fullerenes contain most of the considered graphs, they have attracted much attention. 

There is a classical class of fullerenes, namely {(5,6),3}-fullerene. In 1998, Došlić gave a better lower bound of the number 

of perfect matchings of {(5,6),3}-fullerene, that is, it contains at least 
𝑝

2
+ 1  perfect matchings [19]. In 2001, Zhang et al. 

improved this result, that is, the {(5,6),3}-fullerene with 𝑝  vertices contain at least 
3(𝑝+2)

4
  perfect matchings [20]. In 2009, 

kardoš et al. proved that the {(5,6),3}-fullerene with 𝑝 vertices contain at least  2
𝑝−380

61 perfect matchings [21]. Up to now, some 
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scholars have given formulas for calculating the number of perfect matchings of some special graphs [22,23], but many open 

problems have not been solved. 

In this paper, we discuss a special class of graphs, that is, {(3,4),4}-fullerenes. The content of this paper is organized as 

follows. In the first part, we introduce the significance of calculating the number of perfect matchings of {(3,4),4}-fullerenes 

and its development status. 

In the second part, we introduce some basic concepts and symbols of graph theory used in this paper. In the third part, we 

classify {(3,4),4}-fullerenes by using cyclical edge-connectivity. The cyclical edge-connectivity of {(3,4),4}-fullerenes is 4 or 

6. Then we divide the set of perfect matchings of {(3,4),4}-fullerenes with cyclical edge-connectivity 4 into two independent 

sets and calculate the number of perfect matchings in the two sets. Finally, we collate all the results and obtain the formula for 

calculating the perfect matchings of {(3,4),4}-fullerenes with cyclical edge-connectivity 4. 

2. Definitions and Preliminary Results 
Definition 2.1.  A {(3,4),4}-fullerene is defined as a 4-regular graph embedded in sphere whose faces are of length 3 and 4. 

To simplify this paper, the {(3,4),4}-fullerene in this paper also represents its planar embedded graph. By definition 2.1 

and Euler formula, we get that there are 8 triangles in {(3,4),4}-fullerene, and the smallest {(3,4),4}-fullerene is an octahedron. 

Definition 2.2. A matching 𝑀 in graph 𝐺 is a set of edges of 𝐺 such that no two edges from 𝑀 have a point in common. 

Definition 2.3. Point 𝑣 ∈ 𝑉(𝐺) incident with some edge from 𝑀 is covered by matching𝑀. Matching 𝑀 is perfect if it covers 

every point of 𝐺. 

Definition 2.4. A graph 𝐺 is cyclically k-edge connected if at least k edges must be deleted from 𝐺in order to separate it into 

two components such that both contain a cycle. Obviously, if  𝐺is cyclically k-edge connected, it is cyclically m-edge connected, 

for all 1 ≤ 𝑚 ≤ 𝑘. Let us denote by 𝑐𝜆(𝐺) the greatest𝑘 ∈ 𝑁such that 𝐺 is cyclically k-edge connected, and call this number 

the cyclical edge-connectivity of 𝐺. 

Definition 2.5. If the edge set 𝐶 ⊂ 𝐸(𝐺)with |𝐶| = 𝑘satisfies 𝐺 − 𝐶 is disconnected, then 𝐶 is called k-edge cut set of a graph 

𝐺. If at least two components of 𝐺 − 𝐶contain a cycle respectively, then 𝐶 is called cyclical k-edge cut set of a graph 𝐺. 

Since {(3,4),4}-fullerene is 4-regular, each triangle emits six edges, these six edges form a cyclically 6-edge cut set, by 

the same taken, eight edges of each quadrilateral form a cyclically 8-edge cut set. We define the cyclically 6-edge cut set and 

cyclically 8-edge cut set as trivial, otherwise, non-trivial. The exact definition is as follows: 

Definition 2.6. Let 𝐺 be a graph and 𝐶 a cyclical k-edge cut. If a component of 𝐺 − 𝐶contains only one single cycle, then 𝐶is 

trivial, otherwise, non-trivial.  

For the cyclic edge-connectivity of {(3,4),4}-fullerene graphs, we have the following conclusions. 

Lemma 2.7. Every {(3,4),4}-fullerene is cyclically 4-edge-connected [24]. 

Lemma 2.8. If the {(3,4),4}-fullerene 𝐺  has a cyclically 4-edge-cut  𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} , then 𝐺 ≅ 𝑄𝑛  ( 𝑄𝑛  is the graph 

consisting of 𝑛concentric layers of quadrangles, capped on each end by a cap formed by four triangles which share a common 

vertex (see Fig.1)) [24]. 

Let 𝐺 be {(3,4),4}-fullerene, by Lemma 2.7, we can deduce that 𝑐𝜆(𝐺) ≥ 4, from the definition and degree sum formula 

of  {(3,4),4}-fullerene, we can know that 𝑐𝜆(𝐺) is an even number. We have the following lemma: 

 

Lemma 2.9. Let 𝐺 be a {(3,4),4}-fullerene, then 𝑐𝜆(𝐺) ≥ 4 and 𝑐𝜆(𝐺) = 2𝑚. 
Proof.  It only needs to prove that 𝑐𝜆(𝐺) is even, let 𝑐𝜆(𝐺) = 𝑘, the cyclically 𝑘 edge-cut set 𝐶 = {𝑒1, 𝑒2, 𝑒3, … 𝑒𝑘}, 𝐺1is a 

component of 𝐺 − 𝐶, then, we have 

 4|𝑉(𝐺1)| − 𝑘 = 2|𝐸(𝐺1)| (1) 

  Obviously, 𝑘is an even number. 
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Corollary 2.10. Let 𝐺 be a {(3,4),4}-fullerene, then 𝑐𝜆(𝐺) = 4 or 6. 

Proof. By Lemma 2.9, the cyclical edge-connectivity of {(3,4),4}-fullerene is 4, or 6, or 8, …, and because each triangle emits 

six edges, these six edges form a trivial cyclically 6-edge cut set, so we can know that the cyclical edge-connectivity of 𝐺 is 4 

or 6. 

For the definitions and symbols used in this paper but not shown in this paper, please refer to the literature [25]. For 

convenience, let 𝑁𝑛 represents the number of perfect matchings of 𝑄𝑛, by Corollary 2.10,𝑐𝜆(𝑄𝑛) = 4. 

With the above preparation, next, we can calculate the number of perfect matchings of {(3,4),4}-fullerenes with cyclical 

edge-connectivity 4. 

 
          Fig. 1 The {(3,4),4}-fullerene 𝑄𝑛. 

 

3. Main Results 

Lemma 3.1. The number of perfect matchings of {(3,4),4} -fullerenes𝑄𝑛equals 𝑁𝑛 = √2 [(1 + √2)
𝑛+2

− (1 − √2)
𝑛+2

]. 

Proof. Obviously, 𝑄𝑛  have perfect matchings. For convenience, the plane embedding graph of 𝑄𝑛  is shown in Fig.1. 

𝑄𝑛consists of 𝑛 + 1 concentric rings, each with four vertices and two vertices on two hats, these 𝑛 + 1 concentric rings are 

respectively marked as 𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑛+1 from the inside to the outside. 

Label the vertices of 𝑄𝑛  as follows: the vertices shared by four triangles on two hats are represented by 𝑣 ′ and 𝑣″ 

respectively, the vertices on the i-th ring are recorded as𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, 𝑣𝑖4(𝑖 = 1,2, … , 𝑛 + 1) in clockwise order, so that 𝑣𝑖1, 𝑣𝑖3 

and 𝑣𝑖2, 𝑣𝑖4 are respectively on the same line (see Fig.1). 

Let H  be the set of perfect matchings of 𝑄𝑛, then for any perfect matching HH  , 𝐻 must contain vertex 𝑣′. Let the set 

of perfect matchings containing 𝑣 ′𝑣11, 𝑣 ′𝑣12, 𝑣 ′𝑣13, 𝑣 ′𝑣14be
1 2 3 4, , ,H H H H  respectively, then ( ), 1,2,3,4,H Hi j i j i j = =   

and 
4

1

H Hi

i=

= , from the symmetry of graphs, ( ), 1, 2,3,4,H Hi j i j i j= =  , then 

 
14H HnN = =     (2) 

   
Next, we calculate the number of 

1H , for any perfect matching
1HH  , 𝑣 ′𝑣11 must be covered by𝐻, but there are two 

ways when 𝑣12 is covered, that is,𝑣12𝑣22 ∈ 𝐻 or𝑣12𝑣13 ∈ 𝐻. Let the set of perfect matchings covering 𝑣 ′𝑣11, 𝑣12𝑣22 be 𝐻1 and 

the set of perfect matchings covering 𝑣 ′𝑣11, 𝑣12𝑣13 be𝐻2, then
1 1 2H H H=  and𝐻1 ∩ 𝐻2 = ∅, so 

 

 
1 1 2H H H= +  (3) 

Next, we calculate the number of 𝐻1 and𝐻2, respectively.  
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Claim 1:|𝐻1| =
1

4
𝑁𝑛−2 +

1

4
𝑁𝑛−1. 

Proof. It is known that 𝐻1 is a set of perfect matchings such that each 𝑀 covers𝑣 ′𝑣11, 𝑣12𝑣22 for𝑀 ∈ 𝐻1. Next , we choose the 

vertex𝑣13 , there are two ways when 𝑣13  is covered, that is, 𝑣13𝑣23 ∈ 𝐻1 or𝑣13𝑣14 ∈ 𝐻1 . Let the set of perfect matchings 

covering𝑣 ′𝑣11, 𝑣12𝑣22, 𝑣13𝑣23 be 𝐻11 and the set of perfect matches covering 𝑣 ′𝑣11, 𝑣12𝑣22, 𝑣13𝑣14 be𝐻12,𝐻1 = 𝐻11 ∪ 𝐻12. We 

regard 𝐻11 and𝐻12 as two cases to prove. 

 

Case 1. Calculating the number of 𝑛 𝐻11. 

𝐻11has covered𝑣 ′𝑣11, 𝑣12𝑣22, 𝑣13𝑣23, so 𝑣14𝑣24 must be covered by 𝑀 for any𝑀 ∈ 𝐻11. After selecting the edges, it is 

equivalent to removing vertices𝑣 ′, 𝑣11, 𝑣12, 𝑣22, 𝑣13, 𝑣23, 𝑣14, 𝑣24, and it is known that𝑀 must cover𝑣21𝑣31 for any𝑀 ∈ 𝐻11. We 

connect 𝑣21𝑣32, 𝑣21𝑣33, 𝑣21𝑣34 respectively, then we get a {(3,4),4}-fullerene 𝑄𝑛−2  (see Fig.2), and 𝑄𝑛−2  used 𝑣21  as the 

common adjacent vertex of a hat, let the number of 𝑄𝑛−2 be𝑁𝑛−2, then 

 
|𝐻11| =

1

4
𝑁𝑛−2 (4) 

 
Fig. 2 The {(3,4),4}-fullerene 𝑄𝑛−2with 𝑣21 as the common vertex of a hat. 

 
Case 2. Calculating the number of 𝐻12. 

𝐻12 has covered 𝑣 ′𝑣11, 𝑣12𝑣22, 𝑣13𝑣14 ,  it is equivalent to removing vertices 𝑣 ′, 𝑣11, 𝑣13, 𝑣14 and we connect 

𝑣12𝑣21, 𝑣12𝑣23, 𝑣12𝑣24 

(see Fig.3). Now, we get a {(3,4),4}-fullerene 𝑄𝑛−1  and𝑄𝑛−1 used 𝑣12  as the common adjacent vertex of a hat, also as the 

number of 𝑄𝑛−1 is𝑁𝑛−1, then 

 |𝐻12| =
1

4
𝑁𝑛−1   (5) 

 

 
Fig. 3 The {(3,4),4}-fullerene𝑄𝑛−1with𝑣12 as the common vertex of a hat. 
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Since|𝐻1| = |𝐻11| + |𝐻12|, then 

 |𝐻1| =
1

4
𝑁𝑛−2 +

1

4
𝑁𝑛−1   (6) 

Claim 2: |𝐻2| =
1

4
𝑁𝑛−1. 

Proof. It is known that 𝐻2 is a set of perfect matchings such that each𝑀 covers 𝑣 ′𝑣11, 𝑣12𝑣13 for𝑀 ∈ 𝐻2. After selecting these 

edges, it is equivalent to removing vertices𝑣 ′, 𝑣11, 𝑣12, 𝑣13, and it is known that 𝐻2 must cover𝑣14𝑣24. Now, we respectively 

connect𝑣14𝑣21, 𝑣14𝑣22, 𝑣14𝑣23, then we get a{(3,4),4}-fullerene 𝑄𝑛−1 (see Fig.4) and 𝑄𝑛−1used 𝑣14 as the common adjacent 

vertex of a hat. 

As the above, we have  

 |𝐻2| =
1

4
𝑁𝑛−1   (7) 

 
Fig 4. The {(3,4),4}-fullerene𝑄𝑛−1with𝑣14   as the common vertex of a hat. 

From (3),(6),(7),  then 

1 1 2 2 1 1 2 1

1 1 1 1 1

4 4 4 4 2
H n n n n nH H N N N N N− − − − −= + = + + = +       (8) 

By equation (2), 1 1 24 2H Hn n nN N N− −= = = + , then 

 𝑁𝑛 = 2𝑁𝑛−1 + 𝑁𝑛−2 (9) 

   

We can use the method like solve differential equations in ordinary differential equations for calculating 𝑁𝑛 , its 

characteristic equation is as follows: 

 𝑞2 − 2𝑞 − 1 = 0 (10) 

We get two characteristic roots:  

 𝑞1 = 1 + √2, 𝑞2 = 1 − √2         (11) 

Therefore, its general solution is as follows: 

 ( ) ( )1 21 2 1 2}
n n

nN c c= + + −  (12) 

   

To calculate𝑁𝑛, take the two initial values𝑁0 = 8 and 𝑁1 = 20 into the equation (12). We get a set of equations as follows:  

 

 
{

𝑐1 + 𝑐2 = 8(𝑛 = 0)

𝑐1(1 + √2) + 𝑐2(1 − √2) = 20(𝑛 = 1)
 (13)  

Then  

 𝑐1 = 4 + 3√2, 𝑐2 = 4 − 3√2 (14) 

   

Take 𝑐1, 𝑐2 into the equation (12), then we get 𝑁𝑛, Lemma 3.1 has been completed. 

From the above lemmas and corollaries, we have the following theorem. 
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Theorem 3.2. If𝑐𝜆(𝐺) = 4, the number of perfect matchings of {(3,4),4}-fullerene 𝐺 with 𝑝 vertices equals 

𝑁(𝑝) = √2 [(1 + √2)
𝑝−6

4
+2

− (1 − √2)
𝑝−6

4
+2

]. 

Proof. By Lemma 2.8, Lemma 3.1 and Corollary 2.10, 𝑐𝜆(𝐺) = 4, 𝐺 ≅ 𝑄𝑛, the number of perfect matchings of 𝑄𝑛equals𝑁𝑛 =

√2 [(1 + √2)
𝑛+2

− (1 − √2)
𝑛+2

]. 

 According to the structure of 𝑄𝑛 , so |𝑉(𝐺)| = |𝑉(𝑄𝑛)| = 4(𝑛 + 1) + 2 = 𝑝(6 ≤ 𝑝 ≤ 4𝑛 + 6)  then𝑛 =
𝑝−6

4
 . So the 

number of perfect matchings of {(3,4),4}-fullerene 𝐺 with 𝑝 vertices equals𝑁(𝑝) = √2 [(1 + √2)
𝑝−6

4
+2

− (1 − √2)
𝑝−6

4
+2

]. 

4. Conclusion  
So far, we have obtained a formula for calculating the number of perfect matchings of {(3,4),4}-fullerene with cyclical 

edge-connectivity 4. Similarly, we find that this formula has exponential order. 

Secondly, it is worth noting that in Theorem 3.2, the formula for calculating the number of perfect matchings of {(3,4),4}-

fullerenes includes the irrational number "√2" and the variable "𝑝 ". But what is more interesting is that it is just like the general 

formula of Fibonacci series, when 𝑝 is equal to the number of vertices of the {(3,4),4}-fullerene, this irrational number "√2" 

can always be eliminated, so we can always get integer results. For example, when𝑝 = 10,  𝑁(10) = 20. 
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