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Abstract - This paper addresses the problem of stability analysis of time-delay systems. The quadratic function combined with 

reciprocally convex lemma has been constructed to establish the stability criteria for the linear time-delay system. Finally, a 
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1. Introduction 

Over the past years, stability analysis of time-delay systems have acted an important part in the real systems, due to the 

fact that the time delay is a potential harm to system stability. Thus, how to reduce the conservatism of time-delay systems have 

attracted more and more scholars' concentration [1-4]. Time-delay is always regarded as a common phenomenon, which can 

result in performance degradation and instability [5, 6, 25]. In the literatures, many methods have been proposed to reduce the 

conservatism, such as: partition delay method [5, 7, 8], new LKF choices [9-15, 28], free-weighting matrices [16-18], improved 

quadratic integral inequality [19-22], Reciprocally convex combination lemma[23], Bessel-Legendre-based inequality [24], 

improved Jensen inequality[26], improved reciprocally convex inequality [27,30], negative definite lemmas of quadratic 

functions [29]. 

Among the above research, stability analysis of time-delay systems based on Lyapunov-Krasovskii functional (LKF) and 

LMI is the most popular. Under this framework, the main contributions of this paper show as follows. By considering the 

crucial information about delay states and integral terms, a novel LKF is proposed. The negative definite lemma of quadratic 

function combined with reciprocally convex lemma are used to establish the stability criteria for the linear time-delay system. 

A less conservative stability criteria is proposed and expressed as negativity conditions for quadratic function, which uses a 

quadratic negative definite lemma with a adjustable parameters to handle negativity conditions for quadratic function. Finally, 

the effectiveness of the proposed stability criteria are proved in the numerical example. 

Notation: The superscript "T" means the transpose of a matrix; 𝑅𝑛 denotes the n-dimensional Euclidean space; P > 0(≥

0) means that P is a real symmetric and positive definite (semi-positive definite) matrix; symmetric term in a symmetric 

matrix is denoted by ∗ and sym = {Y} = Y + YT. 
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2. Problem Formulation and Preliminaries 

The following time-delay system is considered in this paper: 
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where 𝑥(𝑡) ∈ 𝑅𝑛 is the state variable; 𝐴, 𝐴𝑑 ∈ 𝑅𝑛×𝑛 are constant matrices; 𝜙(𝑡) is an initial condition; the 

time-varying delay 𝑑(𝑡) satisfies the following constraints: 

ℎ1 ≤ 𝑑(𝑡) ≤ ℎ2, 𝑑1 ≤ 𝑑̇(𝑡) ≤ 𝑑2,                                               (2) 

which is a continuous function with constant scalars ℎ1, ℎ2, 𝑑1 and 𝑑2. 

Before developing the stability criteria for system (1), the following lemmas are given as follows: 

 

Lemma 2.1.[29] For a quadratic function 𝑓(𝑦) = 𝑎2𝑦2 + 𝑎1𝑦 + 𝑎0 with 𝑎0 ∈ 𝑅, 𝑓(𝑦) < 0 is ensured for all 

𝑦 ∈ [ℎ1, ℎ2] if the following inequalities hold: 
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Lemma 2.2.[29] For a quadratic function 𝑓(𝑦) = 𝑎2𝑦2 + 𝑎1𝑦 + 𝑎0 with 𝑎0 ∈ 𝑅, 𝑓(𝑦) < 0 is ensured for all 𝑦 ∈

[ℎ1, ℎ2], if the following inequalities hold: 
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Remark 1: The above two negative definite lemmas of quadratic functions can be used as the basis for determining the 

stability conditions of system (1). Lemma 2.1 can be derived from Lemma 2.2 by choosing a suitable value for the unknown 

quantity λ. In other words, the results derived by using Lemma 2.2 are less conservative than those by Lemma 2.1. 

 

Lemma 2.3. (Second Order Bessel-Legendre Inequality). For any 𝑅 ∈ 𝑆𝑛 and different 𝑥 in [𝑎, 𝑏] → 𝑅𝑛, the 

following inequality holds: 
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where Ω = col{Ω1, Ω2, Ω3} , with 
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Lemma 2.4. (Reciprocally Convex lemma). Let 𝑅1, 𝑅2  ∈ 𝑆+
𝑛; 𝜎1, 𝜎2 ∈ 𝑅𝑚 and a scalar α ∈ (0, 1). If there exist 

matrices 𝑋1, 𝑋2 ∈ 𝑆𝑚 and 𝑌1, 𝑌2 ∈ 𝑅𝑚×𝑚 such that 
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then the following inequality holds 
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3. Main results 

In this part, by selecting an appropriate LKF, the stability analysis of the system (1) is researched in Theorem 3.1. Then, 

a corollary is presented based on the Theorem 3.1.  

 

Theorem 3.1. For given scalars 𝑑𝑗 , ℎ𝑗 (𝑗 = 1,2), and a parameter λ selected within [0,1], ∀𝑑(𝑡) ∈ [ℎ1, ℎ2], system (1) 

is asymptotically stable if there exist matrices 𝑃𝑖 ∈ 𝑠3𝑛, 𝑄𝑖 ∈ 𝑆𝑛, 𝑅𝑖 ∈ 𝑆𝑛, 𝑖 = 1,2, such that the following conditions hold:  
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where 𝑅̃𝑖 = 𝑑𝑖𝑎𝑔{𝑅𝑖 , 3𝑅𝑖 , 5𝑅𝑖}, 𝑖 = 1, 2 and 
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and 𝑒𝑖 = [0𝑛×(𝑖−1)𝑛  𝐼𝑛  0𝑛×13𝑛], 𝑖 = 1, 2, . . . , 13 ; 𝑒0 = 0𝑛×13𝑛; ℎ12 = ℎ2 − ℎ1. 

 

Proof. For systems (1), we consider the following Lyapunov-Krasovskii functional: 

)()(
3

1

tVtV
i

i
=

=                                            (19) 

where 

𝑉1(𝑡) = 𝜁1
𝑇(𝑡)𝑃1𝜁1(𝑡) + 𝜁2

𝑇(𝑡)𝑃2𝜁2(𝑡)                                                           

𝑉2(𝑡) = ∫ 𝑥𝑇(𝑠)𝑄1𝑥(𝑠)𝑑𝑠 + ∫ 𝑥𝑇(𝑠)𝑄2𝑥(𝑠)𝑑𝑠
𝑡−ℎ1

𝑡−ℎ2

𝑡

𝑡−ℎ1
                                             

𝑉3(𝑡) = ℎ1 ∫ ∫ 𝑥̇𝑇(𝑠)𝑅1
𝑡

𝑡+𝜃

0

−ℎ1
𝑥̇(𝑠)𝑑𝑠𝑑𝜃+ℎ12 ∫ ∫ 𝑥̇𝑇(𝑠)𝑅2

𝑡

𝑡+𝜃

−ℎ1

−ℎ2
𝑥̇(𝑠)𝑑𝑠𝑑𝜃                            

with
 

 

}
)(

,)(),({)(

}
)(

,)(),({)(

)(

2

12

2

122

)( 2

1

2

11

2

1

2

1

1

1









dsd
h

sx
hdssxtxcolt

dsd
h

sx
hdssxtxcolt

tdt

ht

ht

ht

ht

ht

tdt

t

ht

t

  

  

−

−

−

−

−

−

− −

=

=

 

Since 𝑃𝑖 > 0, 𝑄𝑖 > 0, 𝑅𝑖 > 0, 𝑖 = 1, 2, 𝑉(𝑡) ≥ 𝜀‖𝑥(𝑡)‖2 can be derived for a constant ε > 0. 

 

  Calculating the derivative of the 𝑉(𝑡) along the solution of (1), yield: 

 

𝑉̇1(𝑡) = 2𝜁1
𝑇(𝑡)𝑃1𝜁1̇(𝑡) + 𝜁2

𝑇(𝑡)𝑃2𝜁2̇(𝑡) 

               = 𝜉𝑇(𝑡){𝑠𝑦𝑚{𝐴11
𝑇 𝑃1𝐴2} + 𝑑(𝑡)𝑠𝑦𝑚{𝐴12

𝑇 𝑃2𝐴2} + 𝑠𝑦𝑚{𝐴31
𝑇 𝑃2𝐴3} + 𝑑(𝑡)𝑠𝑦𝑚{𝐴32

𝑇 𝑃2𝐴4} +

                    𝑑2(𝑡)𝑠𝑦𝑚{𝐴33
𝑇 𝑃2𝐴4}}𝜉(𝑡)                                                                                                                                                (20)  

 

𝑉̇2(𝑡) = 𝑥𝑇(𝑡)𝑄1𝑥(𝑡) − 𝑥𝑇(𝑡 − ℎ1)(𝑄1 − 𝑄2)𝑥(𝑡 − 𝑡1) − 𝑥𝑇(𝑡 − ℎ2)𝑄2(𝑡 − ℎ2)                    
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     By selecting the parameter λ = 1 in Theorem 3.1, we can obtain the following corollary. Therefore, the stability 

analysis of corollary 3.1 is a special case of Theorem 3.1. 

 

Corollary 3.1. For given scalars 𝑑𝑗 , ℎ𝑗  (𝑗 = 1,2), ∀𝑑(𝑡) ∈ [ℎ1, ℎ2], system (1) is asymptotically stable if there exist 

matrices 𝑃𝑖 ∈ 𝑠3𝑛, 𝑄𝑖 ∈ 𝑆𝑛, 𝑅𝑖 ∈ 𝑆𝑛, 𝑖 = 1,2, such that the following conditions hold: 
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4. Numerical Example  

In this section, a numerical example is given to illustrate the effectiveness of Theorem 3.1 and Corollary 3.1.  

Example 1. Consider system (1) with the following parameters: 
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   For given bounds of the delay derivative 𝑑̇(𝑡) ∈ [𝑑1, 𝑑2], by setting 𝑑1 = −𝑑2, we search for the maximum admissible 

delay upper bound ℎ2 with ℎ1 = 0 according to the value of variable λ. 

 

Table 1. Maximum admissible upper bound 𝒉𝟐 of the delay 𝒅(𝒕) for given 𝒅𝟏 = −𝒅𝟐 

𝑑2 𝑑2 =0.1                     𝑑2 =0.4 𝑑2 =0.9 

[25, IQC analysis] 6.494 0.886 0.439 

[26, Theorem 1] 6.668 1.542 1.263 

[12, Proposition 1] 7.176 2.496 1.922 

[27, Proposition 2] 7.230 2.509 1.940 

[22, Theorem 2] 7.308 2.664 2.072 

[28, Theorem 1] 7.400 2.717 2.089 

Corollary 2.1 6.111 9.768 6.331 

Theorem 2.1(λ = 0.4) 8.989 1.677 6.031 

Theorem 2.1(λ = 0.6) 9.979 1.599 4.631 

Theorem 2.1(λ = 0.8) 8.848 11.139 3.661 

 

Remark 2：For system (1), λ ∈ [0, 1] was selected in Theorem 2.1. For different values of λ, we can get different results of 

the maximum admissible upper bound ℎ2. The above table indicates that the proposed criteria in Theorem 2.1 can lead to the 

less conservative results than those in literatures [12,22,25-28].  
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5. Conclusion 

The stability analysis of time-delay systems is considered in this paper. Based on an appropriate LKF, the negative definite 

lemma of quadratic function combined with reciprocally convex lemma are used to establish the stability criteria for the linear 

time-delay system. An adjustable parameter has been adopted to reduce the conservatism, and its advantages have been shown 

in the numerical example.  
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