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Abstract - This paper addresses the problem of stability analysis of time-delay systems. The quadratic function combined with
reciprocally convex lemma has been constructed to establish the stability criteria for the linear time-delay system. Finally, a

numerical example is given to demonstrate the effectiveness of the proposed criterion.
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1. Introduction

Over the past years, stability analysis of time-delay systems have acted an important part in the real systems, due to the
fact that the time delay is a potential harm to system stability. Thus, how to reduce the conservatism of time-delay systems have
attracted more and more scholars' concentration [1-4]. Time-delay is always regarded as a common phenomenon, which can
result in performance degradation and instability [5, 6, 25]. In the literatures, many methods have been proposed to reduce the
conservatism, such as: partition delay method [5, 7, 8], new LKF choices [9-15, 28], free-weighting matrices [16-18], improved
quadratic integral inequality [19-22], Reciprocally convex combination lemma[23], Bessel-Legendre-based inequality [24],
improved Jensen inequality[26], improved reciprocally convex inequality [27,30], negative definite lemmas of quadratic
functions [29].

Among the above research, stability analysis of time-delay systems based on Lyapunov-Krasovskii functional (LKF) and
LMI is the most popular. Under this framework, the main contributions of this paper show as follows. By considering the
crucial information about delay states and integral terms, a novel LKF is proposed. The negative definite lemma of quadratic
function combined with reciprocally convex lemma are used to establish the stability criteria for the linear time-delay system.
A less conservative stability criteria is proposed and expressed as negativity conditions for quadratic function, which uses a
quadratic negative definite lemma with a adjustable parameters to handle negativity conditions for quadratic function. Finally,

the effectiveness of the proposed stability criteria are proved in the numerical example.

Notation: The superscript "T" means the transpose of a matrix; R™ denotes the n-dimensional Euclidean space; P > 0(=
0) means that P is a real symmetric and positive definite (semi-positive definite) matrix; symmetric term in a symmetric

matrix is denoted by * and sym = {Y} =Y+ YT.
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2. Problem Formulation and Preliminaries
The following time-delay system is considered in this paper:

X(t)= AX(t) + Ay x(t —d (1))
x(t) = #(t),t e [0, h]

where x(t) € R™ is the state variable; A4,A4; € R™"™ are constant matrices; ¢(t) is an initial condition; the

(1)

time-varying delay d(t) satisfies the following constraints:
hy <d(t) < hyd, <d(t) <d,, )
which is a continuous function with constant scalars hq, h,,d; and d,.

Before developing the stability criteria for system (1), the following lemmas are given as follows:

Lemma 2.1.[29] For a quadratic function f(y) = a,y? + a;y +a, with ay €R, f(y) <0 is ensured for all
y € [hq, h,] if the following inequalities hold:

f(h)<0,i=12 3)

f(h)-h%a, <0 @

Lemma 2.2.[29] For a quadratic function f(y) = a,y? + a;y + a,with ag € R, f(y) <0 is ensured for all y €
[hq, hy], if the following inequalities hold:

f(h)<0,i=12 5)
f(h)-Ahja, <0 (©6)
f (h,) - (L—1)*h2a, <0 7

Remark 1: The above two negative definite lemmas of quadratic functions can be used as the basis for determining the
stability conditions of system (1). Lemma 2.1 can be derived from Lemma 2.2 by choosing a suitable value for the unknown

quantity A. In other words, the results derived by using Lemma 2.2 are less conservative than those by Lemma 2.1.
Lemma 2.3. (Second Order Bessel-Legendre Inequality). For any R € S™ and different x in [a,b] = R", the
following inequality holds:

[} 2" (w)Rx(w) = —— 0" diag(R, 3R, 5R) ®)

where () = COl{.Ql, Qz, Q3} N with

Q, =x(b) —x(a) ®
Q, = x(b) + x(@) - —— [ x(u)du (10)
b—a-a
6 (o 12
Q=0 - — j x(u)du tooar j (b—u)x(u)du (11)
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Lemma 2.4. (Reciprocally Convex lemma). Let R;,R, € S}; 01,0, € R™ and a scalar a € (0,1). Ifthere exist
matrices X;,X, € S™ and Y,Y, € R™™ such that

R=Xe YR Y2 |, (12)
* R,| | * R—=X,|

then the following inequality holds

1 1
~0o/Ro, +1—ag R,0, >0, [R +(l-a)X,]o, + o, [R, +aX,]o, + 20] [aY, + L-a)Y,]o, (13)
o ~a

3. Main results
In this part, by selecting an appropriate LKF, the stability analysis of the system (1) is researched in Theorem 3.1. Then,

a corollary is presented based on the Theorem 3.1.

Theorem 3.1. For given scalars d;, h; (j = 1,2), and a parameter A selected within [0,1], Vd(t) € [hy, h;], system (1)
is asymptotically stable if there exist matrices P; € s3",Q; € S™, R; € S™, i = 1,2, such that the following conditions hold:

{ﬁz_xl zl}zo,{ﬁz _ T }20 (14)
* R, *  R,—X,

A, =hiW,(d;)+hW¥,(d;)+¥,(d;) <0,
A, =hl¥,(d,)+h,¥,(d,)+¥,(d,;) <0,
Ay =A - 2h;W,(d;) <0,

A, =A,—(1-2)’h¥,(d;) <O0.

(15)

where R; = diag{R;,3R;,5R;}, i = 1,2 and
Yo = Sym{AiTlplAZ}—i_ sym{A3T1 P, A4}+ elT Re, + e; (Ql _Qz)ez - enges
+ 22ecT Rzec _FOT I511—‘0 _rlT I521—‘1 + hlirlT X0 _% Sym{rlTylrz}"‘%sym{rlTerz} (16)

2 2 2

=~ h
1ﬁzT R, _r_ll_zsym‘{:nT erz}

2

1 1
lIll = Sym{Asz Pz Az}"‘ Sym{AaTz Pz A4}_ h_ rlT Xlrl + hl_ Sym{rlTerz}
12 2

1 1 (17)
- h1_ Sym{rlTerz}"‘ hl_FZT X, I

2 2
Y, = Sym{AsTs P,A}+ ecT Re, (18)

with,

10
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I, =col{e, —e,,e +e,—2¢e,,e —¢e, + 66, —12¢,},
I =col{e, —e., e, +e,—2e,,e,—¢, +6e,-12¢},
I, =col{e, —e,,e, +e,—2¢,,e, —e, + 66, —12e,},
e, = Ae + Ae,,

A, = col{e,,—he;, hlzell}!

A, =col{e,, &€},

A = COI{ec 16— - d (t))e31 h1(e1 - es)},

Ay, =col{e;, he,, h12e9 + hzzelo +he,},

Ay, =col{e,,—e,,—2he; +-2he, —e;,},

Ay =col{e;, €y, €5 +€,},

A, =cole,, (1- d (t))e; —e;.h.e, —e, —e;}

and e; = [Onx(i—l)n Iy Opxisnl, 1 =1,2,...,13; €y = Opxqzn; hyp = hy — hy.
Proof. For systems (1), we consider the following Lyapunov-Krasovskii functional:
3
V() =D V(1) (19)
i=1

where

Vi) = I ()P (t) + 45 (D)P,3,(1)

Va(®) = [, *T()Qux(s)ds + [,1" xT(s)Qzx(s)ds

. . -h . .
Va(t) = hy f_"hl JL o XT(S)Ry 2(5)dsdO+hy, o Jf, o XT(S)R, %(5)dsd8

with
B t—h, St ot x(s)
¢, (1) = col{x(t), L oo X(O)ds L N L ?dsd 0}
~ t—d () 5 =M pt=h X(S)
&, =col{x(®), || " xs)ds. 5 [ [ Tz 05}
Since P; > 0,Q; > 0,R; > 0,i = 1,2,V (t) = &|lx(t)||? can be derived for a constant & > 0.
Calculating the derivative of the V(t) along the solution of (1), yield:
Vi(t) = 28T (P11 (8) + G5 () P24, (8)
= ET(t){Sym{AﬂPlAz} + d(t)sym{AT, P, A} + sym{AL P, As} + d(t)sym{AL,P,A,} +

dz(t)sym{A§3P2A4}}§'(t) (20)

V() = xT(©)Qyx(t) — xT(t — hy)(Q1 — Q2)x(t — t;) — xT (¢ — hy) Q4 (¢t — hy)

11
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=&T(t){ef Q1e1 + €] (Q1 — Qz)e; — el Qyes3E(t)

Vs(t) = x"(t)(RiRy + hi,R)%() = J1 — ]2
< &M {el (*(O)Ry + hizR)ecJé(t) — ] —
Where
() = col{x(t), x(t — hy), x(t — d(1)), x(t — d(£)), x(t — hp), u(d(t), hy, t), u(h,, d(t), t),
u(hy, 0,1),v(d(t), hy, ), v(hy, d(0), £),v(hy, 0,¢), (d(t) — hy)u(d(t), hy, ©),
(hy = d(®))ulhy, d(t), 1)},

t—-b t—-b ,t-b
u(a,b,t) =La ;(_S)b ds, v(ab,t) _ft ] f XESZ)Z

Ji = ftt_hl xT(s)R x (s)ds, ], = ftt :1 T(s)Ryx (s)ds.

h, —d(t
Let o= 2—() , J]1 and], can be rewritten as following by lemma 2.3,
2

J,=h, j:h %" (5)R.X(s)ds
> [X(t) = X(t —hy), X(8) + x(t —h,) = 2u(h,,0, 1), X(t) — x(t —h,) + 6u(h,,0,t) ~12v(h,,0,1)]

ﬁl[x(t) —Xx(t—hy),x(t) + x(t —h,) —2u(h,,0,t), x(t) — x(t —h,) + 6u(h,,0,t) —12v(h,,0,1)]"

t—d(t) t—h,y

t—hy
Jy = has j AT ($)Ry£()ds = hy ( j
t t—

_hz

xT (s)R,x(s)ds + j

t—d(t)

L'RIE() +87()

xT (s)RZJ'c(s)ds)

hz

< fT(t) LRy IE()

d() d() h

- 1 -
= O RLEW) + T O REE)
Hence, we can apply lemma 2.4 to obtain

1. 1) 1 T 1) T o _ T _
Z 4 (t)rl Rzrlf(t) + E g (t)rz Rzrzg(t) ¢ (t){rl [R1 +(1-a) Xl]rl] +2I [aY1 +(1 a)Yz ]rz
+T][R, +aX,I,1E(t)

Then

> ET (O] [R, + (- ) X, IR ]+ 217 [@Y, + (- @)Y, T, + T [R, + X, I5,1E(t)

Thus, based on the previous inequalities (20)-(25) we have that

V(t) < ETO[A* ()P, + AP + Pol (1)

2D

(22)

(23)

(24)

(25)

(26)

with W,, ¥,. ¥, are given in (16), (17), and (18), respectively. Therefore, under the constraints (14) and (15), V(t) <

0 is satisfied.

12
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By selecting the parameter A = 1 in Theorem 3.1, we can obtain the following corollary. Therefore, the stability

analysis of corollary 3.1 is a special case of Theorem 3.1.

Corollary 3.1. For given scalars dj, h; (j = 1,2), Vd(t) € [hy, h;], system (1) is asymptotically stable if there exist
matrices P; € s3",Q; € S™,R; € S",i = 1,2, such that the following conditions hold:

ﬁ2_)(1 Xl >0 ﬁ2 _ Yz >0
* R, | | * R—X,
hf‘Pz(dj)+h1‘Pl(dj)+‘{’O(dj)<0,

A, =h2®,(d,)+h,¥,(d,) +¥,(d,) <O,
A=A, -h3¥,(d,) <0,

A,

where W,,¥,, W, are given in Theorem 3.1.

4. Numerical Example
In this section, a numerical example is given to illustrate the effectiveness of Theorem 3.1 and Corollary 3.1.

Example 1. Consider system (1) with the following parameters:

S e

For given bounds of the delay derivative d(t) € [dy,d,], by setting d; = —d,, we search for the maximum admissible

delay upper bound h, with h; = 0 according to the value of variable A.

Table 1. Maximum admissible upper bound h, of the delay d(t) for given d, = —d,

d, d, =0.1 d, =04 d, =09
[25, IQC analysis] 6.494 0.886 0.439
[26, Theorem 1] 6.668 1.542 1.263
[12, Proposition 1] 7.176 2.496 1.922
[27, Proposition 2] 7.230 2.509 1.940
[22, Theorem 2] 7.308 2.664 2.072
[28, Theorem 1] 7.400 2.717 2.089
Corollary 2.1 6.111 9.768 6.331
Theorem 2.1(A = 0.4) 8.989 1.677 6.031
Theorem 2.1(A = 0.6) 9.979 1.599 4.631
Theorem 2.1(A = 0.8) 8.848 11.139 3.661

Remark 2: For system (1), A € [0,1] was selected in Theorem 2.1. For different values of A, we can get different results of
the maximum admissible upper bound h,. The above table indicates that the proposed criteria in Theorem 2.1 can lead to the

less conservative results than those in literatures [12,22,25-28].

13
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5. Conclusion

The stability analysis of time-delay systems is considered in this paper. Based on an appropriate LKF, the negative definite
lemma of quadratic function combined with reciprocally convex lemma are used to establish the stability criteria for the linear
time-delay system. An adjustable parameter has been adopted to reduce the conservatism, and its advantages have been shown

in the numerical example.
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