Domain Decomposition Method for a Nonlocal Coupled System in the Stationary Case

Mohamed Ali Ipopa ${ }^{1}$, Brice Landry Doumbe Bangola ${ }^{2}$, Armel Andami Ovono ${ }^{3}$
${ }^{1}$ Département Sciences Générales de l'Ingénieur, Université des Sciences et Techniques de Masuku, Gabon
${ }^{2}$ Département de Mathématiques et Informatique, Université des Sciences et Techniques de Masuku, Gabon
${ }^{3}$ Département de Mathématiques, Ecole Normale Supérieure (ENS), Gabon

Received: 01 October 2022 Revised: 05 November 2022 Accepted: 17 November 2022 Published: 30 November 2022

Abstract

In this paper, we propose and study a domain decomposition method for a system of coupled equations with a nonlocal term in the stationary case. This algorithm combines an alternating direction scheme and a domain decomposition. The underlying idea is that with a good domain decomposition, we can better describe for each point the interaction neighbourhood. Moreover, the second step of this method is a good preconditioner of the first step. Indeed, the matrices of the first step are poorly dimensioned because of the nonlocal term. Finally, although combining the alternating direction scheme and the domain decomposition, our algorithm has a good degree of parallelism.

Keywords : Domain decomposition method; a coupled system equation with a nonlocal term; alternating direction scheme; preconditionner; a good degree of parallelism.

1 Introduction

The importance of the nonlocal term in the modelization of many phenomenas physics is best known in the scientific world. Indeed it permits to take better the interactions between the different elements that contribute to the realization of the phenomena (propagation of the epidemics, competition between two populations that occupying the same territory, ...). But the introduction of the nonlocal term in the model gives many difficulties as soon as theoretically than numerically. Indeed for example on the theorie plan, it is very difficult to show the existence and the uniqueness of the solution [2], [3], [5], [7], [21]. We can give as an example of works dealing with these questions [4], [19], [36], [37]. The presence of the nonlocal term introduces for each point of the domain an interaction neighbourhood, i.e. a ball composed of the points which are in interaction with it. Numerically, the interaction neighbourhood is not easy to describe because it is not the same for the different points of the domain. The domain decomposition methods can be described as an artificial division of a given domain where a partial differential equation has to be solved (see [14], [15], [16], [17], [24], [25], [39]). According to the subdomain division, domain decomposition methods are classified into two categories: overlapping and nonoverlapping methods. The well-known overlapping method is the Schwarz method [26], [31], [32], [33]. The nonoverlaping methods are more recent than overlapping methods. As works on nonoverlaping methods we have [8],[9], [10], [11], [12],[13],[18], [23]. The well-known nonoverlaping methods is Lions method [27], [31], [34], [35]. Using domain decomposition methods, we propose an approach that circumvents this difficulty. By reducing the study domain the domain decomposition method allows a better approximation of the nonlocal term than the approximation made in the global domain. Indeed, with the decomposition of the global domain into subdomains, the approximation that consists in taking the interaction neighbourhood of each point as being the sub-domain of study is a good consideration. Moreover the second step of this algorithm by solving two Neumann problems gives a good preconditioner for the first step of this method [28], [29], [38]. Indeed, with
the presence of the nonlocal term, the matrices of the first step are badly conditioned. Finally our algorithm, although combining the alternating direction scheme and the domain decomposition, presents a good degree of parallelism.

2 Existence and Uniqueness of the Local Solution

Let consider the nonlocal coupled system defined by:

$$
\begin{align*}
-\operatorname{div}\left(\kappa\left(l_{r}(u)\right) \nabla u\right)+f(u-v) & =\alpha(u-v) \quad \text { in } \Omega, \tag{2.1}\\
-\operatorname{div}\left(\kappa\left(l_{r}(v)\right) \nabla v\right)-f(u-v) & =\alpha(v-u) \quad \text { in } \Omega, \tag{2.2}\\
u=v & =0 \quad \text { on } \Gamma_{0} . \tag{2.3}
\end{align*}
$$

where $u(x)$ and $v(x)$ are real valued functions, $\Omega \subset \mathbb{R}^{n}$ is a bounded domain. The boundary $\Gamma_{0}=\partial \Omega$ is supposed to be class C^{2}. The real functions f and κ, defined on \mathbb{R}, are Lipschitz continuous such that

$$
\begin{align*}
|f(t)-f(s)| & \leq \gamma_{1}|t-s| \forall s, t \in \mathbb{R} \tag{2.4}\\
|\kappa(t)-\kappa(s)| \leq \gamma_{2}|t-s| \forall s, t \in \mathbb{R} & \tag{2.5}
\end{align*}
$$

Moreover, the function κ verifies that

$$
\begin{equation*}
0<m \leq a(\varepsilon) \leq M \forall \varepsilon \in \mathbb{R} \tag{2.6}
\end{equation*}
$$

with m and M two positive constants. And $l_{r}: L^{2}(\Omega) \rightarrow \mathbb{R}$ is the continuous linear form. The problem ((2.1)-(2.3)) can be consider as an asymptotic case of the problem studied by C. A. Raposo et al. [37] in the evolution case. This mathematical model have been used to describe many phenomenas in physical, chemical, biological and ecological systems. The originality of this approach is in the term $\kappa\left(l_{r}(u)\right)$. Indeed some publications on the subjet assume that the matrix of diffusion is a diagonal matrix so that coupling between the equations are present only through the term f (see [36]). However, many problems could be treated as equation in which the diffusion matrix is not diagonal (see [19], [22]). The new approach is to see the term $\kappa\left(l_{r}(u)\right)$ as a nonlocal quantity with

$$
l_{r}(u)=\int_{\Omega_{r}} u(x, t) d x
$$

where $\Omega_{r} \subset \Omega$ (the diffusion depends on the global population in Ω_{r} but not on the global population in Ω). In [4], Andami and Rougirel studie the following nonlocal problem

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
-\kappa\left(l_{r}(u)\right) \Delta u=f \quad \text { in } H^{-1}(\Omega) \tag{2.7}
\end{equation*}
$$

where

$$
l_{r}(u)(x)=\int_{\Omega \cup B(x, r)} g(x, y) u(y) d y
$$

For the model problem (2.1)-(2.3), we have the following existence and uniqueness theorem.
Theorem 2.1. Assume (2.4), (2.5) and (2.6) hold true and $r \in(0, L)$. Then (2.1)-(2.3) admits a solution (u_{r}, v_{r}) in $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$. If in addition solution $\left(u_{r}, v_{r}\right)$ of (2.1)-(2.3) satisfy

$$
\begin{align*}
& \left\|u_{r}\right\|_{H_{0}^{1}(\Omega)} \leq \frac{m-c(\Omega)\left(1+\gamma_{1}+2 \alpha\right)}{\gamma_{2}|\Omega|^{1 / 2} c(\Omega)^{1 / 2}} \tag{2.8}\\
& \left\|v_{r}\right\|_{H_{0}^{1}(\Omega)} \leq \frac{m-c(\Omega)\left(1+\gamma_{1}+2 \alpha\right)}{\gamma_{2}|\Omega|^{1 / 2} c(\Omega)^{1 / 2}} \tag{2.9}
\end{align*}
$$

where $c(\Omega)$ denotes the Poincaré Sobolev constante and $|\Omega|$ the measure of Ω. Then the solution is unique.
Proof. Existence:
The proof can be obtained by a paper Galerkin scheme. We refer the reader to [20].

Uniqueness:

$\overline{\text { Let }\left(u_{1}, v_{1}\right)}$ and (u_{2}, v_{2}) be solutions of (2.1)-(2.3). Setting

$$
\begin{aligned}
\bar{u} & =u_{1}-u_{2} \quad w_{1}=u_{1}-v_{1} \\
\bar{v} & =v_{1}-v_{2} \quad w_{2}=u_{2}-v_{2}
\end{aligned}
$$

we have

$$
\begin{align*}
-\operatorname{div}\left(\kappa\left(l_{r}\left(u_{1}\right)\right) \nabla u_{1}\right)+f\left(w_{1}\right) & =\alpha w_{1} \quad \text { in } \Omega \tag{2.10}\\
-\operatorname{div}\left(\kappa\left(l_{r}\left(v_{1}\right)\right) \nabla v_{1}\right)-f\left(w_{1}\right) & =-\alpha w_{1} \quad \text { in } \Omega \tag{2.11}\\
u_{1}=v_{1} & =0 \text { on } \Gamma \tag{2.12}
\end{align*}
$$

and

$$
\begin{align*}
\left.-\operatorname{div}\left(\kappa\left(l_{r}\left(u_{2}\right)\right) \nabla u_{2}\right)\right)+f\left(w_{2}\right) & =\alpha w_{2} \quad \text { in } \Omega \tag{2.13}\\
\left.-\operatorname{div}\left(\kappa\left(l_{r}\left(v_{2}\right)\right) \nabla v_{2}\right)\right)-f\left(w_{2}\right) & =-\alpha w_{2} \quad \text { in } \Omega \tag{2.14}\\
u_{2}=v_{2} & =0 \text { on } \Gamma \tag{2.15}
\end{align*}
$$

By testing (2.10)-(2.12) and (2.13)-(2.15), we get

$$
\begin{align*}
\int_{\Omega}\left(\kappa\left(l_{r}\left(u_{1}\right)\right) \nabla u_{1}-\kappa\left(l_{r}\left(u_{2}\right)\right) \nabla u_{2}\right) \nabla \varphi_{1} d x & =-\int_{\Omega}\left(f\left(w_{1}\right)-f\left(w_{2}\right)\right) \varphi_{1} d x \\
& +\alpha \int_{\Omega}\left(w_{1}-w_{2}\right) \varphi_{1} d x \quad \forall \varphi_{1} \in H_{0}^{1}(\Omega) \tag{2.16}\\
\int_{\Omega}\left(\kappa\left(l_{r}\left(v_{1}\right)\right) \nabla v_{1}-\kappa\left(l_{r}\left(v_{2}\right)\right) \nabla v_{2}\right) \nabla \varphi_{2} d x & =\int_{\Omega}\left(f\left(w_{1}\right)-f\left(w_{2}\right)\right) \varphi_{2} d x \\
& +\alpha \int_{\Omega}\left(w_{2}-w_{1}\right) \varphi_{2} d x \quad \forall \varphi_{2} \in H_{0}^{1}(\Omega) \tag{2.17}
\end{align*}
$$

Since

$$
\begin{equation*}
\kappa\left(l_{r}(u)\right) \nabla u-\kappa\left(l_{r}(v)\right) \nabla v=\left(\kappa\left(l_{r}(u)\right)-\kappa\left(l_{r}(v)\right)\right) \nabla u+\kappa\left(l_{r}(v)\right) \nabla(u-v) \tag{2.18}
\end{equation*}
$$

if follows that

$$
\begin{align*}
\int_{\Omega}\left(\kappa\left(l_{r}\left(u_{1}\right)\right)-\kappa\left(l_{r}\left(u_{2}\right)\right)\right) \nabla u_{1} \nabla \varphi_{1} d x+\int_{\Omega} \kappa\left(l_{r}\left(u_{2}\right)\right) \nabla(\bar{u}) \nabla \varphi_{1} d x & =-\int_{\Omega}\left(f\left(w_{1}\right)-f\left(w_{2}\right)\right) \varphi_{1} d x \\
+\alpha \int_{\Omega}\left(w_{1}-w_{2}\right) \varphi_{1} d x, & \forall \varphi_{1} \in H_{0}^{1}(\Omega), \tag{2.19}
\end{align*}
$$

and

$$
\begin{array}{rlr}
\int_{\Omega}\left(\kappa\left(l_{r}\left(v_{1}\right)\right)-\kappa\left(l_{r}\left(v_{2}\right)\right)\right) \nabla v_{1} \nabla \varphi_{2} d x+\int_{\Omega} \kappa\left(l_{r}\left(v_{2}\right)\right) \nabla(\bar{u}) \nabla \varphi_{2} d x & =\int_{\Omega}\left(f\left(w_{1}\right)-f\left(w_{2}\right)\right) \varphi_{2} d x \\
+\alpha \int_{\Omega}\left(w_{2}-w_{1}\right) \varphi_{2} d x, & \forall \varphi_{2} \in H_{0}^{1}(\Omega) \tag{2.20}
\end{array}
$$

Setting $\varphi_{1}=\bar{u}$ and $\varphi_{2}=\bar{v}$, we get

$$
\begin{align*}
m\left|\left|\bar{u} \|_{H_{0}^{1}(\Omega)}^{2} \leq \int_{\Omega}\right| \kappa\left(l_{r}\left(u_{1}\right)\right)-\kappa\left(l_{r}\left(u_{2}\right)\right)\right|\left|\nabla u_{1}\right||\nabla \bar{u}| d x & +\int_{\Omega}\left|f\left(w_{1}\right)-f\left(w_{2}\right)\right||\bar{u}| d x+\alpha \int_{\Omega}|\bar{u}|^{2} d x \\
& +\alpha \int_{\Omega}|\bar{v}||\bar{u}| d x \tag{2.21}
\end{align*}
$$

From (2.4), (2.5) and (2.21)

$$
\begin{align*}
m\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2} \leq \gamma_{2} \int_{\Omega}\left|l_{r}\left(u_{1}\right)-l_{r}\left(u_{2}\right) \| \nabla u_{1}\right||\nabla \bar{u}| d x & +\gamma_{1} \int_{\Omega}|\bar{u}|^{2} d x+\gamma_{1} \int_{\Omega}|\bar{v}||\bar{u}| d x \\
& +\alpha \int_{\Omega}|\bar{u}|^{2} d x+\alpha \int_{\Omega}|\bar{v}||\bar{u}| d x \tag{2.22}
\end{align*}
$$

We can easily get by using Cauchy-Schwarz inequality

$$
\begin{equation*}
\left|l_{r}(u)\right| \leq|\Omega|^{1 / 2} c(\Omega)^{1 / 2}\|u\|_{H_{0}^{1}(\Omega)} \tag{2.23}
\end{equation*}
$$

Using (2.21), (2.22) and (2.23), we obtain

$$
\begin{align*}
m\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2} \leq \gamma_{2}|\Omega|^{1 / 2} c(\Omega)^{1 / 2}\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2}\left\|u_{1}\right\|_{H_{0}^{1}(\Omega)} & +\gamma_{1}\|\bar{u}\|_{L^{2}(\Omega)}^{2}+\gamma_{1}\|\bar{v}\|_{L^{2}(\Omega)} \\
& +\alpha\|\bar{u}\|_{L^{2}(\Omega)}^{2}+\left.\alpha\|\bar{v}\|_{L^{2}(\Omega)}\|\bar{u}\| \bar{u}\right|_{L^{2}(\Omega)} \tag{2.24}
\end{align*}
$$

And also by Young inequality

$$
\begin{align*}
m\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2} & \leq \gamma_{2}|\Omega|^{1 / 2} c(\Omega)^{1 / 2}\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2}\left\|u_{1}\right\|_{H_{0}^{1}(\Omega)}+c(\Omega)\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2}+\frac{\gamma_{1} c(\Omega)}{2}\|\bar{v}\|_{H_{0}^{1}(\Omega)}^{2} \\
& +\frac{\gamma_{1} c(\Omega)}{2}\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2}+\alpha c(\Omega)\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2}+\frac{\alpha c(\Omega)}{2}\|\bar{v}\|_{H_{0}^{1}(\Omega)}^{2}+\frac{\alpha c(\Omega)}{2}\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2} \tag{2.25}
\end{align*}
$$

Using the same arguments, we also obtain

$$
\begin{align*}
m\|\bar{v}\|_{H_{0}^{1}(\Omega)}^{2} & \leq \gamma_{2}|\Omega|^{1 / 2} c(\Omega)^{1 / 2}\|\bar{v}\|_{H_{0}^{1}(\Omega)}^{2}\left\|v_{1}\right\|_{H_{0}^{1}(\Omega)}+c(\Omega)\|\bar{v}\|_{H_{0}^{1}(\Omega)}^{2}+\frac{\gamma_{1} c(\Omega)}{2}\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2} \\
& +\frac{\gamma_{1} c(\Omega)}{2}\|\bar{v}\|_{H_{0}^{1}(\Omega)}^{2}+\alpha c(\Omega)\|\bar{v}\|_{H_{0}^{1}(\Omega)}^{2}+\frac{\alpha c(\Omega)}{2}\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2}+\frac{\alpha c(\Omega)}{2}\|\bar{v}\|_{H_{0}^{1}(\Omega)}^{2} \tag{2.26}
\end{align*}
$$

Additing (2.25) and (2.26), we get

$$
\begin{align*}
m\left(\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2}+\|\bar{v}\|_{H_{0}^{1}(\Omega)}^{2}\right) & \leq\left(\gamma_{2}|\Omega|^{1 / 2} c(\Omega)^{1 / 2}\left\|u_{1}\right\|_{H_{0}^{1}(\Omega)}+c(\Omega)+\gamma_{1} c(\Omega)+2 \alpha c(\Omega)\right)\|\bar{u}\|_{H_{0}^{1}(\Omega)}^{2} \\
& +\left(\gamma_{2}|\Omega|^{1 / 2} c(\Omega)^{1 / 2}\left\|v_{1}\right\|_{H_{0}^{1}(\Omega)}+c(\Omega)+\gamma_{1} c(\Omega)+2 \alpha c(\Omega)\right)\|\bar{v}\|_{H_{0}^{1}(\Omega)}^{2} \tag{2.27}
\end{align*}
$$

Using (Eq1) and (Eq2) in (2.27), we deduce the uniqueness.

3 Domain decomposition

Let $\boldsymbol{u}=(u, v)$ and

$$
\begin{aligned}
\boldsymbol{\kappa}\left(l_{r}(\boldsymbol{u})\right) & =\left(\begin{array}{cc}
\kappa\left(l_{r}(u)\right) & 0 \\
0 & \kappa\left(l_{r}(v)\right)
\end{array}\right) \\
\boldsymbol{f}(\boldsymbol{u}) & =\binom{f(u-v)-\alpha(u-v)}{-f(u-v)+\alpha(u-v)}
\end{aligned}
$$

With the above notations, (2.1)-(2.3) can be written as

$$
\begin{align*}
-\operatorname{div}\left(\boldsymbol{\kappa}\left(l_{r}(\boldsymbol{u})\right) \nabla \boldsymbol{u}\right)+\boldsymbol{f}(\boldsymbol{u}) & =0 \quad \text { in } \Omega \tag{3.1}\\
\boldsymbol{u} & =0 \quad \text { in } \Gamma_{0} . \tag{3.2}
\end{align*}
$$

Let $\left\{\Omega_{1}, \Omega_{2}\right\}$ be a partition of Ω. We set $\Gamma_{i}=\Omega_{i} \cap \Gamma_{0}$. We set $\boldsymbol{u}_{i}=\left(u_{i}, v_{i}\right)$ where $u_{i}=u_{\mid \Omega_{i}}$ and $v_{i}=v_{\mid \Omega_{i}}$. In each suddomain Ω_{i}, we propose to solve

$$
\begin{align*}
-\operatorname{div}\left(\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{1}\right)\right) \nabla \boldsymbol{u}_{1}\right)+\boldsymbol{f}\left(\boldsymbol{u}_{1}\right) & =0 \quad \text { in } \Omega_{1} \tag{3.3}\\
\boldsymbol{u}_{1} & =0 \quad \text { on } \Gamma_{1} \tag{3.4}\\
\boldsymbol{u}_{1} & =\boldsymbol{u}_{2} \quad \text { on } \Gamma_{12} \tag{3.5}
\end{align*}
$$

and

$$
\begin{align*}
-\operatorname{div}\left(\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{2}\right)\right) \nabla \boldsymbol{u}_{2}\right)+\boldsymbol{f}\left(\boldsymbol{u}_{2}\right) & =0 \quad \text { in } \Omega_{2} \tag{3.6}\\
\boldsymbol{u}_{2} & =0 \quad \text { in } \Gamma_{2} \tag{3.7}\\
\frac{\partial \boldsymbol{u}_{2}}{\partial n_{2}} & =-\frac{\partial \boldsymbol{u}_{1}}{\partial n_{1}} \quad \text { on } \Gamma_{12} \tag{3.8}
\end{align*}
$$

where $n_{i},(i=1,2)$ is the unit outward normal to Ω_{i}.
To show the equivalence between the multi-domain formulation (3.3)-(3.5) and (3.6)-(3.8), and the global formulation (2.1)-(2.3), we needs to write weak formulations. We then introduce the following spaces, for $\boldsymbol{u}_{i} \in H_{0}^{1}\left(\Omega_{i}\right)^{2}$

$$
\begin{aligned}
\mathbb{V}^{1} & =\left\{\boldsymbol{w} \in\left(H_{0}^{1}\left(\Omega_{1}\right)\right)^{2}, \boldsymbol{w}=\boldsymbol{u}_{2} \text { on } \Gamma_{12}\right\} \\
\mathbb{V}^{2} & =\left\{\boldsymbol{w} \in\left(H_{0}^{1}\left(\Omega_{2}\right)\right)^{2}, \frac{\partial \boldsymbol{w}}{\partial n_{2}}=-\frac{\partial \boldsymbol{u}_{1}}{\partial n_{1}} \text { on } \Gamma_{12}\right\}
\end{aligned}
$$

The variational formulation of the global problem (3.1)-(3.2) is
Find $\boldsymbol{u} \in H_{0}^{1}(\Omega)^{2}$ such that

$$
\begin{equation*}
\boldsymbol{\kappa}\left(l_{r}(\boldsymbol{u})\right) \boldsymbol{a}(\boldsymbol{u}, \boldsymbol{w})+\boldsymbol{l}(\boldsymbol{w})=0 \quad \forall \boldsymbol{w} \in\left(H_{0}^{1}(\Omega)\right)^{2} \tag{3.9}
\end{equation*}
$$

where $\boldsymbol{u}=(u, v)$ and

$$
\begin{aligned}
\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{w}) & =\int_{\Omega} \nabla \boldsymbol{u} \nabla \boldsymbol{w} d x \\
\boldsymbol{l}(\boldsymbol{w}) & =\int_{\Omega} \boldsymbol{f}(\boldsymbol{u}) \boldsymbol{w} d x
\end{aligned}
$$

Setting

$$
\begin{aligned}
\boldsymbol{a}_{i}\left(\boldsymbol{u}_{i}, \boldsymbol{w}\right) & =\int_{\Omega_{i}} \nabla \boldsymbol{u}_{i} \boldsymbol{w} d x \\
\boldsymbol{l}_{i}(\boldsymbol{w}) & =\int_{\Omega_{i}} \boldsymbol{f}\left(\boldsymbol{u}_{i}\right) \boldsymbol{w} d x
\end{aligned}
$$

the weak formulations for multi-domain formulation is then
Find $\boldsymbol{u}_{i} \in \mathbb{V}_{i}$ such that :

$$
\begin{equation*}
\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{i}\right)\right) \boldsymbol{a}_{i}\left(\boldsymbol{u}_{i}, \boldsymbol{w}\right)+\boldsymbol{l}_{i}(\boldsymbol{w})=0, \quad \forall \boldsymbol{w} \in \mathbb{V}_{i}, \quad i=1,2 \tag{3.10}
\end{equation*}
$$

Theorem 3.1. Problem (3.9) is equivalent to Problem (3.10).
Proof. If $\boldsymbol{u}=\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right)$ is the solution of (3.10), we have

$$
\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{w})=\int_{\Omega} \nabla \boldsymbol{u} \nabla \boldsymbol{w} d x=\int_{\Omega_{1} \cup \Omega_{2}} \nabla \boldsymbol{u} \nabla \boldsymbol{w} d x=\int_{\Omega_{1}} \nabla \boldsymbol{u}_{1} \nabla \boldsymbol{w}_{1} d x+\int_{\Omega_{2}} \nabla \boldsymbol{u}_{2} \nabla \boldsymbol{w}_{2} d x
$$

for all $\boldsymbol{w} \in\left(H_{0}^{1}(\Omega)\right)^{2}$. Then, we get

$$
\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{w})=\boldsymbol{a}_{1}\left(\boldsymbol{u}_{1}, \boldsymbol{w}_{1}\right)+\boldsymbol{a}_{2}\left(\boldsymbol{u}_{2}, \boldsymbol{w}_{2}\right) .
$$

We can show by using the same procedure that $\boldsymbol{l}(\boldsymbol{w})=\boldsymbol{l}_{1}\left(\boldsymbol{w}_{1}\right)+\boldsymbol{l}_{2}\left(\boldsymbol{w}_{2}\right)$. Then

$$
\boldsymbol{\kappa}\left(l_{r}(\boldsymbol{u})\right) \boldsymbol{a}(\boldsymbol{u}, \boldsymbol{w})+\boldsymbol{l}(\boldsymbol{w})=0
$$

is equivalent to

$$
\begin{equation*}
\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{1}\right)\right) \boldsymbol{a}_{1}\left(\boldsymbol{u}_{1}, \boldsymbol{w}_{1}\right)+\boldsymbol{l}_{1}\left(\boldsymbol{w}_{1}\right)+\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{2}\right)\right) \boldsymbol{a}_{2}\left(\boldsymbol{u}_{2}, \boldsymbol{w}_{2}\right)+\boldsymbol{l}_{2}\left(\boldsymbol{w}_{2}\right)=0 \tag{3.11}
\end{equation*}
$$

Let $\boldsymbol{w}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right) \in\left(H_{0}^{1}(\Omega)\right)^{2}$. If we set $\boldsymbol{w}_{2}=0$ in (3.11) we get

$$
\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{1}\right)\right) \boldsymbol{a}_{1}\left(\boldsymbol{u}_{1}, \boldsymbol{w}_{1}\right)+\boldsymbol{l}_{1}\left(\boldsymbol{w}_{1}\right)=0
$$

In other words, \boldsymbol{u}_{1} is solution of (3.10) for $i=1$. If we set $\boldsymbol{w}_{1}=0$, we get

$$
\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{2}\right)\right) \boldsymbol{a}_{2}\left(\boldsymbol{u}_{2}, \boldsymbol{w}_{2}\right)+\boldsymbol{l}_{2}\left(\boldsymbol{w}_{2}\right)=0
$$

with the contitinuity condition on the normal derivatives on Γ_{12}. We then deduce that \boldsymbol{u}_{2} is solution of (3.10) for $i=2$.

If $\boldsymbol{u}_{i}(i=1,2)$ is solution of (3.10), then it is easy to see that $\boldsymbol{u}=\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right)$ solution of (3.9).

4 Domain Decomposition Algorithm

Algorithm

For the numerical resolution of the problems ((2.1)- (2.3)), we propose the following algorithm. Starting with Given $\left(\boldsymbol{u}_{i}^{0}\right) \in\left(H_{0}^{1}\left(\Omega^{\alpha}\right)\right)^{2}$ and $\lambda_{0} \in H^{1 / 2}\left(\Gamma_{i}\right)$, we build a sequence of approximate solutions $\boldsymbol{u}_{i k \geq 0}^{k} \in\left(H_{0}^{1}\left(\Omega^{\alpha}\right)\right)^{2}$, for $i=1,2$ by solving the following three-step algorithm.

Step 1.

$$
\begin{align*}
& \begin{cases}\text { find } \boldsymbol{u}_{1}^{k} \text { such that: } \\
\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{1}^{k-1}\right)\right) \boldsymbol{a}_{1}\left(\boldsymbol{u}_{1}^{k}, \boldsymbol{v}\right)+\boldsymbol{l}_{1}(\boldsymbol{v})=0, & \forall \boldsymbol{v} \in\left(H_{0}^{1}\left(\Omega^{1}\right)\right)^{2}, \\
\boldsymbol{u}_{1}^{k}=\lambda_{k-1} & \text { on } \Gamma_{12}\end{cases} \tag{4.1}\\
& \begin{cases}\text { find } \boldsymbol{u}_{2}^{k} \text { such that: } \\
\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{2}^{k-1}\right)\right) \boldsymbol{a}_{2}\left(\boldsymbol{u}_{2}^{k}, \boldsymbol{v}\right)+\boldsymbol{l}_{2}(\boldsymbol{v})=0, & \forall \boldsymbol{v} \in\left(H_{0}^{1}\left(\Omega^{2}\right)\right)^{2}, \\
\boldsymbol{u}_{2}^{k}=\lambda_{k-1} & \text { on } \Gamma_{12}\end{cases} \tag{4.2}
\end{align*}
$$

Step 2.

$$
\begin{align*}
& \left\{\begin{array}{l}
\text { find } \boldsymbol{w}_{1}^{k} \in\left(H^{1}\left(\Omega^{1}\right)\right)^{2} \text { such that } \\
\boldsymbol{a}_{1}\left(\boldsymbol{w}_{1}^{k}, \boldsymbol{v}\right)=\frac{1}{2}\left(\boldsymbol{a}_{1}\left(\boldsymbol{u}_{1}^{k}, \boldsymbol{v}\right)-\boldsymbol{l}_{1}(\boldsymbol{v})+\boldsymbol{a}_{2}\left(\boldsymbol{u}_{2}^{k}, R^{2}(\boldsymbol{v})\right)-\boldsymbol{l}_{2}\left(R^{2}(\boldsymbol{v})\right)\right) \\
\forall \boldsymbol{v} \in \mathbb{V}_{0}^{1},
\end{array}\right. \tag{4.3}\\
& \left\{\begin{array}{l}
\text { find } \boldsymbol{w}_{2}^{k} \in\left(H^{1}\left(\Omega^{2}\right)\right)^{2} \text { such that } \\
\boldsymbol{a}_{2}\left(\boldsymbol{w}_{2}^{k}, \boldsymbol{v}\right)=\frac{1}{2}\left(-\boldsymbol{a}_{1}\left(\boldsymbol{u}_{1}^{k}, R^{1}(\boldsymbol{v})\right)+\boldsymbol{l}_{1}\left(R^{1}(\boldsymbol{v})\right)-\boldsymbol{a}_{2}\left(\boldsymbol{u}_{2}^{k}, \boldsymbol{v}\right)+\boldsymbol{l}_{2}(\boldsymbol{v})\right) \\
\forall \boldsymbol{v} \in \mathbb{V}_{0}^{2},
\end{array}\right. \tag{4.4}
\end{align*}
$$

where $R^{\alpha}:\left(H^{1 / 2}\left(\Gamma_{i}\right)\right)^{2} \rightarrow\left(H^{1}\left(\Omega_{i}\right)\right)^{2}, i=1,2$ such that $\forall \varphi \in\left(H^{1 / 2}\left(\Gamma_{i}\right)\right)^{2}, R^{\alpha}(\varphi)=\tilde{\boldsymbol{w}}_{i}$ with $\tilde{\boldsymbol{w}}_{i}$ solution of the problem

$$
\left\{\begin{array}{l}
\text { find } \boldsymbol{w}_{i} \in\left(H^{1}\left(\Omega^{2}\right)\right)^{2} \text { such that } \tag{4.5}\\
\boldsymbol{a}_{i}\left(\tilde{\boldsymbol{w}}_{i}, \boldsymbol{v}\right)=0, \forall \boldsymbol{v} \in \mathbb{V}_{0}^{\alpha} \\
\tilde{\boldsymbol{w}}_{i}=\varphi \text { on } \Gamma_{12}
\end{array}\right.
$$

and $\mathbb{V}_{0}^{\alpha}=\left\{v \in\left(H^{1}\left(\Omega^{\alpha}\right)\right)^{2} ; \quad v=0\right.$ on $\left.\Gamma_{i}\right\}$.
Step 3. Update the interface

$$
\begin{equation*}
\lambda_{k}=\lambda_{k-1}-\theta\left(\boldsymbol{w}_{1}^{k}-\boldsymbol{w}_{2}^{k}\right) \quad \text { on } \Gamma_{12} \tag{4.6}
\end{equation*}
$$

with $\theta \in[0,1]$ the relaxation parameter.

Convergence

To prove the convergence of this algorithm, we need to show that the sequences of functions $\left\{\boldsymbol{u}_{i}^{k}\right\}_{k \geq 0}$ and $\left\{\boldsymbol{w}_{i}^{k}\right\}_{k \geq 0}$ converge if the sequence $\left\{\lambda_{k}\right\}_{k \geq 0}$ converges. We first rewrite the problem (4.1) as

$$
\left\{\begin{array}{l}
\text { find } \boldsymbol{u}_{1}^{\boldsymbol{l}_{1}} \text { such that } \tag{4.7}\\
\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{1}^{k-1}\right)\right) \boldsymbol{a}_{1}\left(\boldsymbol{u}_{1}^{\boldsymbol{l}_{1}}, \boldsymbol{v}\right)+\boldsymbol{l}_{1}(\boldsymbol{v})=0, \quad \forall \boldsymbol{v} \in\left(H_{0}^{1}\left(\Omega^{1}\right)\right)^{2},
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\text { find } \boldsymbol{u}_{1}^{\lambda} \text { such that } \tag{4.8}\\
\boldsymbol{\kappa}\left(l_{r}\left(\boldsymbol{u}_{1}^{k-1}\right)\right) \boldsymbol{a}_{1}\left(\boldsymbol{u}_{1}^{\lambda}, \boldsymbol{v}\right)=0, \quad \forall \boldsymbol{v} \in\left(H_{0}^{1}\left(\Omega^{1}\right)\right)^{2}, \\
\boldsymbol{u}_{1}^{\lambda}=\lambda_{k-1}
\end{array}\right.
$$

Indeed we have to separate the influence of the volume forces and the harmonic's behavior of the domain Ω^{1} (See [30]). Then $\boldsymbol{u}_{1}^{k}=\boldsymbol{u}_{1}^{l_{1}}+\boldsymbol{u}_{1}^{\lambda}$. Using the definition of the mapping R^{i}, we get $\boldsymbol{u}_{1}^{\lambda}=R^{1}\left(\lambda_{k-1}\right)$. It follows that

$$
\begin{equation*}
\boldsymbol{u}_{1}^{k}=\boldsymbol{u}_{1}^{\boldsymbol{l}_{1}}+R^{1}\left(\lambda_{k-1}\right) \tag{4.9}
\end{equation*}
$$

By doing the same for the (4.2), we obtain

$$
\begin{equation*}
\boldsymbol{u}_{2}^{k}=\boldsymbol{u}_{2}^{\boldsymbol{l}_{2}}+R^{2}\left(\lambda_{k-1}\right) \tag{4.10}
\end{equation*}
$$

For (4.3)-(4.4), we have to use the definition of Steklov-Poincaré's operator and we obtain

$$
\left\{\begin{array}{l}
\boldsymbol{w}_{1}^{k}=\frac{1}{2} S_{1}^{-1}\left(S_{1} \boldsymbol{u}_{1}^{k}+S_{2} \boldsymbol{u}_{2}^{k}\right) \quad \text { on } \Gamma_{i} \tag{4.11}\\
\boldsymbol{w}_{2}^{k}=-\frac{1}{2} S_{2}^{-1}\left(S_{1} \boldsymbol{u}_{1}^{k}+S_{2} \boldsymbol{u}_{2}^{k}\right) \quad \text { on } \Gamma_{i}
\end{array}\right.
$$

where $S_{i}, i=1,2$ is the Steklov-Poincaré's operator define by $S_{i}:\left(H^{1 / 2}\left(\Gamma_{i}\right)\right)^{2} \rightarrow\left(H^{-1 / 2}\left(\Gamma_{i}\right)\right)^{2}$, such that $\forall \mu \in$ $\left(H^{1 / 2}\left(\Gamma_{i}\right)\right)^{2}, S_{i}(\mu)=\frac{\partial \boldsymbol{w}_{i}}{\partial n_{i}}$ with \boldsymbol{w}_{i} solution of the problem

$$
\left\{\begin{array}{l}
\text { find } \boldsymbol{w}_{i} \in\left(H^{1}\left(\Omega_{i}\right)\right)^{2} \text { such that } \tag{4.12}\\
\boldsymbol{a}_{i}\left(\boldsymbol{w}_{i}, \boldsymbol{v}\right)=0, \forall b v \in\left(H_{0}^{1}\left(\Omega_{i}\right)\right)^{2} \\
\boldsymbol{w}_{i}=\mu \text { on } \Gamma_{i}
\end{array}\right.
$$

and S_{i}^{-1} the inverse operator of Steklov-Poincaré's operator.
Using the mapping $R_{i}, i=1,2$, (4.9)-(4.11) lead to

$$
\left\{\begin{array}{l}
\boldsymbol{w}_{1}^{k}=\frac{1}{2} R^{1} S_{1}^{-1}\left(S_{1} \boldsymbol{u}_{1}^{\boldsymbol{l}_{1}}+S_{2} \boldsymbol{u}_{2}^{\boldsymbol{l}_{2}}+S_{1} \lambda_{k-1}+S_{2} \lambda_{k-1}\right) \tag{4.13}\\
\boldsymbol{w}_{2}^{k}=-\frac{1}{2} R^{2} S_{2}^{-1}\left(S_{1} \boldsymbol{u}_{1}^{\boldsymbol{l}_{1}}+S_{2} \boldsymbol{u}_{2}^{\boldsymbol{l}_{2}}+S_{1} \lambda_{k-1}+S_{2} \lambda_{k-1}\right)
\end{array}\right.
$$

Concerining S_{i} and R^{i}, we recall the following theorems
Theorem 4.1. The operators S_{i}, S_{i}^{-1} are linear, bounded, bijective, self-adjoint and coercive.
Proof. See, e.g., [1].
Lemma 4.2. The mapping $R^{i}, i=1,2$ is linear, bounded and bijective.
Proof. See, e.g., [6], [28].
Lemma 4.3. Assuming the existence of $\left.\theta_{\max } \in\right] 0,1\left[\right.$ such that for all $\theta \leq \theta_{\max }$, the sequence $\left\{\lambda_{k}\right\}_{k \geq 0}$ converges in $\left(H^{1 / 2}\left(\Gamma_{i}\right)\right)^{2}$. Then $\left\{\boldsymbol{u}_{i}^{k}\right\}_{k \geq 0}, i=1,2$ converges in $\left(H^{1}\left(\Omega_{i}\right)\right)^{2}$.

Proof. We need to show that $\left\{\boldsymbol{u}_{i}^{k}\right\}_{k \geq 0}$ is a Cauchy sequence in the Banach space $\left(H^{1}\left(\Omega_{i}\right)\right)^{2}$.

$$
\begin{aligned}
\left\|\boldsymbol{u}_{i}^{k}-\boldsymbol{u}_{i}^{\ell}\right\|_{1} & =\left\|\boldsymbol{u}_{i}^{l_{i}}+R^{i}\left(\lambda_{k-1}\right)-\left(\boldsymbol{u}_{i}^{l_{i}}+R^{i}\left(\lambda_{\ell-1}\right)\right)\right\|_{1} \\
& =\left\|R^{i}\left(\lambda_{k-1}-\lambda_{\ell-1}\right)\right\|_{1} \\
& \leq\left\|R^{i}\right\|\left\|\lambda_{k-1}-\lambda_{\ell-1}\right\|_{1 / 2} \quad \text { (using the lemma 4.2) }
\end{aligned}
$$

Theorem 4.4. Using the same assumptions as in theorem 4.3, the sequence $\left(\boldsymbol{w}_{i}^{k}\right)_{k \geq 0}$ converges in $\left(H^{1}\left(\Omega^{\alpha}\right)\right)^{2}$.
Proof. We need to show that $\left(\boldsymbol{w}_{i}^{k}\right)_{k \geq 0}$ is a Cauchy sequence in the Banach $\left(H^{1}\left(\Omega_{i}\right)\right)^{2}$.

$$
\begin{aligned}
\left\|\boldsymbol{w}_{i}^{k}-\boldsymbol{w}_{i}^{\ell}\right\|_{1} & =\frac{1}{2}\left\|R^{i} S_{i}^{-1}\left(S_{1}\left(\lambda_{k-1}-\lambda_{\ell-1}\right)+S_{2}\left(\lambda_{k-1}-\lambda_{\ell-1}\right)\right)\right\|_{1} \\
& \leq \frac{1}{2}\left\|R^{i} S_{i}^{-1}\right\| \cdot\left(\left\|S_{1}\right\|+\left\|S_{2}\right\|\right)\left\|\lambda_{k-1}-\lambda_{\ell-1}\right\|_{1 / 2} \\
& \leq C\left\|\lambda_{k-1}-\lambda_{\ell-1}\right\|_{1 / 2}
\end{aligned}
$$

with

$$
C=\frac{1}{2}\left\|R^{i} S_{i}^{-1}\right\|\left(\left\|S_{1}\right\|+\left\|S_{2}\right\|\right)
$$

and by using the lemmas 4.1 and 4.2.
Now, it remains to prove the existence of $\theta_{\max }$ such that the sequence $\left\{\lambda_{k}\right\}_{k \geq 0}$ converges for $\theta \leq \theta_{\max }$. Let be $T_{\theta}:\left(H^{1 / 2}\left(\Gamma_{i}\right)\right)^{2} \rightarrow\left(H^{1 / 2}\left(\Gamma_{i}\right)\right)^{2}$ the mapping defined by

$$
\begin{equation*}
T_{\theta}\left(\lambda_{k}\right)=\lambda_{k-1}-\theta\left(\boldsymbol{w}_{1}^{k}-\boldsymbol{w}_{2}^{k}\right) \tag{4.14}
\end{equation*}
$$

with $\theta \in] 0,1\left[\right.$. To apply the Banach fixe point to T_{θ}, let introduce the operator M define by $M=S_{1}^{-1}+S_{2}^{-1}$ and M^{-1} the inverse operator of M. We are endow the space $\left(H^{1 / 2}\left(\Gamma_{i}\right)\right)^{2}$ with the scalar product

$$
\left.<\varphi, \psi>_{M^{-1}}=<M^{-1} \varphi, \psi>=<\varphi, M^{-1} \psi>, \forall \varphi, \psi \in H^{1 / 2}\left(\Gamma_{i}\right)\right)^{2}
$$

and the norm

$$
\|\varphi\|_{M^{-1}}=\left(<M^{-1} \varphi, \varphi>\right)^{1 / 2}
$$

We are the following technical lemmas.
Lemma 4.5. The operator M is bijective, self-adjoint and coercitive. Moreover there exists a constant $c>0$ such taht

$$
\|M \mu\|_{1 / 2} \leq c\|\mu\|_{-1 / 2}, \quad \forall \mu \in\left(H^{-1 / 2}\left(\Gamma_{i}\right)\right)^{2}
$$

Lemma 4.6. The norms $\|\cdot\|_{M^{-1}}$ and $\|\cdot\|_{1 / 2}$ are equivalent.

Proof. The operator $S_{i}^{-1}, i=1,2$, is bijective, sel-autoadjoint and coercive (see Theorem 4.1). Moreover

$$
\begin{gather*}
S_{i}^{-1}:\left(H^{-\frac{1}{2}}\left(\Gamma_{c}\right)\right)^{2} \longrightarrow\left(H^{\frac{1}{2}}\left(\Gamma_{c}\right)\right)^{2} \\
\mu \longmapsto S_{i}^{-1} \mu=\frac{\partial \boldsymbol{w}_{i}}{\partial n_{i}}, \tag{4.15}
\end{gather*}
$$

with \boldsymbol{w}_{i} is the unique solution of the Neumann's problem

$$
\begin{equation*}
\boldsymbol{a}_{i}\left(\boldsymbol{w}_{i}, \boldsymbol{v}\right)=<\mu, \frac{\partial \boldsymbol{w}_{i}}{\partial n_{i}}>_{-\frac{1}{2}, \frac{1}{2}} \forall \boldsymbol{v} \in\left(H^{1}\left(\Omega^{\alpha}\right)\right)^{2} \tag{4.16}
\end{equation*}
$$

where $<\cdot, \cdot>_{-\frac{1}{2}, \frac{1}{2}}$ is the duality product between the spaces $H^{\frac{1}{2}}\left(\Gamma_{c}\right)$ and his dual $H^{-\frac{1}{2}}\left(\Gamma_{c}\right)$.
We have

$$
\left\|S_{i}^{-1} \mu\right\|_{\frac{1}{2}, \Gamma_{c}}=\left\|\frac{\partial \boldsymbol{w}_{i}}{\partial n_{i}}\right\|_{\frac{1}{2}, \Gamma_{c}}
$$

Using trace theorem, we get

$$
\left\|\frac{\partial \boldsymbol{w}_{i}}{\partial n_{i}}\right\|_{\frac{1}{2}, \Gamma_{c}} \leq C\left\|\boldsymbol{w}^{i}\right\|_{i}
$$

From (4.16), we obtain

$$
\left\|\boldsymbol{w}^{i}\right\|_{i}^{2} \leq C_{2}\|\mu\|_{-\frac{1}{2}, \Gamma_{c}}\left\|\frac{\partial \boldsymbol{w}_{i}}{\partial n_{i}}\right\|_{\frac{1}{2}, \Gamma_{c}} \leq C_{3}\|\mu\|_{-\frac{1}{2}, \Gamma_{c}}\left\|\boldsymbol{w}^{i}\right\|_{i}
$$

So

$$
\left\|S_{i}^{-1} \mu\right\|_{\frac{1}{2}, \Gamma_{c}} \leq C_{1}\|\mu\|_{-\frac{1}{2}, \Gamma_{c}} .
$$

That is proove the Lemma 4.5.
The operator M^{-1} is clairely bijective, self-autoadjoint, coercive as the operator M. The Lemma 4.6 is the consequence of the continuty and coervicity of M^{-1}.

We have the following existence theorem.
Theorem 4.7. There exists $\left.\theta_{\max } \in\right] 0,1\left[\right.$ such that $\forall \theta \leq \theta_{\max }$, the mapping T_{θ} is a contraction.
Proof. Let λ and μ such that we have (dropping the iterations index k)

$$
\begin{aligned}
& T_{\theta}(\lambda)=\lambda-\theta\left(\boldsymbol{w}_{1}-\boldsymbol{w}_{2}\right) \\
& T_{\theta}(\mu)=\mu-\theta\left(\tilde{\boldsymbol{w}}_{1}-\tilde{\boldsymbol{w}}_{2}\right)
\end{aligned}
$$

Using (4.11), we obtain that

$$
\left\{\begin{array}{l}
T_{\theta}(\lambda)=\lambda-\frac{\theta}{2}\left(S_{1}^{-1}+S_{2}^{-1}\right)\left(S_{1} U_{L^{1}}^{1}+S_{2} U_{L^{2}}^{2}+\left(S_{1}+S_{2}\right) \lambda\right) \tag{4.17}\\
T_{\theta}(\beta)=\beta-\frac{\theta}{2}\left(S_{1}^{-1}+S_{2}^{-1}\right)\left(S_{1} U_{L^{1}}^{1}+S_{2} U_{L^{2}}^{2}+\left(S_{1}+S_{2}\right) \beta\right)
\end{array}\right.
$$

From (4.17) and the lemmas 4.5 and 4.6 there follows

$$
\begin{aligned}
& \left\|T_{\theta}(\lambda)-T_{\theta}(\beta)\right\|_{M^{-1}}^{2}=\left\|\lambda-\beta-\frac{\theta}{2}\left(S_{1}^{-1}+S_{2}^{-1}\right)\left(S_{1}+S_{2}\right)(\lambda-\beta)\right\|_{M^{-1}}^{2} \\
& \leq\|\lambda-\beta\|_{M^{-1}}^{2}-\theta<\left(S_{1}+S_{2}\right)(\lambda-\beta), \lambda-\beta>+\frac{\theta^{2}}{4}\left\|\left(S_{1}^{-1}+S_{2}^{-1}\right)\left(S_{1}+S_{2}\right)(\lambda-\beta)\right\|_{M^{-1}}^{2} \\
& \leq\left(1-C_{S_{1}+S_{2}} \theta+\| \| S_{1}+S_{2}\left|\|\cdot\|\left\|S_{1}^{-1}+S_{2}^{-1} \mid\right\| \frac{\theta^{2}}{4}\right)\|\lambda-\beta\|_{M^{-1}}^{2}\right.
\end{aligned}
$$

where $C_{S_{1}+S_{2}}$ is the constante of coercitivity of the operator $S_{1}+S_{2}$. Then T_{θ} is a contraction if

$$
\theta \leq \frac{4 C_{S_{1}+S_{2}}}{\left\|\left|S_{1}+S_{2}\right|\right\| \cdot\left\|S_{1}^{-1}+S_{2}^{-1} \mid\right\|}=\theta_{\max }
$$

5 Numerical experiments

In this section, we shall compare performancies of domain decomposition method and the global resolution. All computations are performed in Matlab 7.

Let us consider the problem ((2.1)-(2.3)) in the two dimensional space Ω defined by $\Omega=(0,1) \times(0,1)$. We choose to work with uniform mesh for the simplicity of simulated models. We take $f(s)-\alpha(s)=\beta s(q-s) \forall s \in \Omega$ with $\beta=1$ and $q=10$. For the beginning of the algorithm, we need to have u_{0} and v_{0}. So, we supposed that $\forall(x, y) \in \Omega$

$$
\begin{aligned}
& u_{0}(x, y)=0.01 \\
& v_{0}(x, y)=0.01 \cos \left(x-x_{0}\right) \cos \left(y-y_{0}\right)
\end{aligned}
$$

where $x_{0}=0.25$ and $y_{0}=0.25$.
For the nonlocal term $a\left(l_{r}(u)\right)$, we defined l_{r} by

$$
l_{r}(u(X))=\frac{1}{\operatorname{meas}(\Omega)} \int_{0}^{1} u(X) d X
$$

with $X=(x, y)$.
To compare the behaviour of Domain Decomposition Method and the global resolution, we have to do two tests: in the first numerical test, we take a constant i.e $a(\varphi)=1, \forall \varphi$ and in the second test $a(\varphi)=0.1 \varphi$. The table gives the number of iterations before the convergence of the algorithm.
Case 1: $a(\varphi)=1$
The behaviour of the Domain Decomposition Method is seen in Table 1. The results demonstrates the numerical scalability and robustness for various values of the relaxation parameter θ. The figures 1 shown that with the constant diffusion the behaviour of the population that the density is given by $u(x, y)$ are symmetric and similar in each subdomain. The axis $y=0.5$ is clearly the axis of symmetrize. It is the same thing for the population that the density is given by $v(x, y)$. For the global method, the Table 2 shown that the global resolution is less performante than the Domain Decomposition Method. Indeed the number of iteration for the convergence of the global resolution varies with the step of discretization. Global resolution is not numerical scalability.

N_{v} / N_{e}	$\theta=0.1$	$\theta=0.2$	$\theta=0.3$	$\theta=0.4$	$\theta=0.7$	$\theta=0.9$
$9 / 8$	11	11	11	11	11	11
$16 / 18$	11	11	11	11	11	11
$25 / 32$	11	11	11	11	11	11
$81 / 128$	11	11	11	11	11	11
$625 / 1152$	11	11	11	11	11	11
$2500 / 4802$	11	11	11	11	11	11
$5625 / 10952$	11	11	11	11	11	11

Table 1: Results of the Domain Decomposition Method in the case of $a(\varphi)=1$ where N_{v}, N_{e} are the number of vertices and the number of elements on each subdomain respectively.

Figure 1: Evolution of the population of $\mathbf{u}(\mathrm{x}, \mathrm{y})$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})$ in the two subdomains for the case with $a(\varphi)=1$
The figures 1 shown that with the constant diffusion the behaviour of the population that the density is given by $u(x, y)$ are symmetric and similar in each subdomain. The axis $y=0.5$ is clearly the axis of symmetrize. It is the same thing for the population that the density is given by $v(x, y)$.

N_{v} / N_{e}	iterations
$9 / 8$	7
$16 / 18$	12
$25 / 32$	19
$81 / 128$	66
$625 / 1152$	1436
$2500 / 4802$	1049
$5625 / 10952$	1028

Table 2: Global algorithm in the case of $a(\varphi)=1$

Figure 2: Evolution of $u(x, y)$ and $v(x, y)$ for case with constant diffusion
The figure 2 obtain with the global method in the case of the constant diffusion confirms that the behaviour of the population that the density is given by $u(x, y)$ and $v(x, y)$ are symmetric and similar in each subdomain.

Case 2: $a(\varphi)=0.1 \varphi$
The numerical results shown that the behaviour of the population $u(x, y)$ and $v(x, y)$ are symmetric and similar in each subdomain. If we compare to the numerical results with constant diffusion, we can see that the axis $y=0.5$ is not the axis of symmetrize in the case of the nonlocal diffusion. The density of the population $u(x, y)$ and $v(x, y)$ are more or less important in the center of each subdomain. In the nonlocal diffusion case, the results confirms the numerical scalability and robustness of the Domain Decomposition Method. Indeed with the presence of the nonlocal term, the matrix are badly scaled but the Domain Decomposition Method needs the same number of iterations for the convergence than the case of constant diffusion. The global resolution needs a preconditionner in the case of nonlocal diffusion.

N_{v} / N_{e}	$\theta=0.1$	$\theta=0.2$	$\theta=0.3$	$\theta=0.4$	$\theta=0.7$	$\theta=0.9$
$9 / 8$	11	11	11	11	11	11
$16 / 18$	11	11	11	11	11	11
$25 / 32$	11	11	11	11	11	11
$81 / 128$	11	11	11	11	11	11
$625 / 1152$	11	11	11	11	11	11
$2500 / 4802$	11	11	11	11	11	11
$5625 / 10952$	11	11	11	11	11	11

Table 3: Results for Domain Decomposition Method in the case of $a(\varphi)=0.1 \varphi$

Figure 3: Evolution of $\mathbf{u}(\mathrm{x}, \mathrm{y})$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})$ in the first subdomains for case with $a(\varphi)=0.1 \varphi$
The numerical results shown that the behaviour of the population $u(x, y)$ and $v(x, y)$ are symmetric and similar in each subdomain. If we compare to the numerical results with constant diffusion, we can see that the axis $y=0.5$ is not the axis of symmetrize in the case of the nonlocal diffusion. The density of the population $u(x, y)$ and $v(x, y)$ are more or less important in the center of each subdomain. In the nonlocal diffusion case, the results confirms the numerical scalability and robustness of the Domain Decomposition Method. Indeed with the presence of the nonlocal term, the matrix are badly scaled but the Domain Decomposition Method needs the same number of iterations for the convergence than the case of constant diffusion. The global resolution needs a preconditionner in the case of nonlocal diffusion.

Figure 4: Evolution of $u(x, y)$ and $v(x, y)$ in the first subdomains for case with nonlocal diffusion

References

[1] Agoshkov, V. I. Poincaré-Steklov's operators and domain decomposition methods in finite-dimensional spaces. First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), 73-112, SIAM, Philadelphia, PA, 1988.
[2] Andami Ovono, A.From local to nonlocal in a diffusion model. Discrete. Conti. Dyn. Syst. Ser. S,(2011), 54-60.
[3] Andami Ovono, A.Asymptotic behaviour for a diffusion equation gouverned by nonlocal interactions. Electron. J. Differential Equations. 134(2010), 1-16.
[4] Andami Ovono, A.; Rougirel, A. Elliptic equation with diffusion parameterized by the range of nonlocal interactions. Annali di Matematica, (2010) 189, 163-185.
[5] Andami Ovono, A.; Ipopa, M. A. On the nonlocal diffusion equation with competition between a nonlocal source and damping terms. J. Math. Anal. 6(2015), no. 2, 1-12 ; MR3367007.
[6] Bayada, G.; Sabil, J.; Sassi, T. Algorithme de Neumann-Dirichlet pour des problèmes de contact unilatéral: résultat de convergence. (French) [Neumann-Dirichlet algorithm for unilateral contact problems: convergence results] C. R. Math. Acad. Sci. Paris 335 (2002), no. 4, 381-386.
[7] Bendahmane, M.; Sepulveda, M. A. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete. Conti. Dyn. Syst. Ser. B, 11 (2009), 823-853.
[8] Bramble, J., Pasciak, J., Schatz, A. The construction of preconditionners for elliptic problems by substructuring I. Math. Comp., 47 (1986), pp 103-134.
[9] Bramble, J., Pasciak, J., Schatz, A. The construction of preconditionners for elliptic problems by substructuring II. Math. Comp., 49 (1987), pp 1-16.
[10] Bramble, J., Pasciak, J., Schatz, A. The construction of preconditionners for elliptic problems by substructuring III. Math. Comp., 51 (1988), pp 415-430.
[11] Bramble, J., Pasciak, J., Schatz, A. The construction of preconditionners for elliptic problems by substructuring IV. Math. Comp., 53 (1989), pp 1-24.
[12] Bjorstad, P., Widlund, O. B. Solving elliptic problems on regions partitioned into substructures. in Elliptic Problem Solvers II, Birkhoff, G., Schoenstadt, eds., Academic Press, New York, 1984, pp 245-255.
[13] Bjorstad, P., Widlund, O. B. Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal., 23 (1986), pp 1097-1120.
[14] Chan, T., Glowinski, R., Périaux, J., Widlund, O. B. Domain decomposition methods. SIAM, Philadephia, PA, 1989.
[15] Chan, T., Glowinski, R., Périaux, J., Widlund, O. B. Proceedings of the Third International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadephia, PA, 1990.
[16] Chan, T., Keyes, D., Meurant, G., Scroggs, J., Voigt, R. Proceedings of the Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadephia, PA, 1992.
[17] Chan, T., Mathew, T. Domain decomposition algorithms. Acta Numerica 1994, Acta Numer., Cambridge University Press, UK, 1994, 61-143.
[18] Chan, T., Resasco, D. C., A survey of preconditioners for Domain Decomposition. Technical Report, /DCS/RR414, Yale University, New Haven, CT, 1985.
[19] Chipot,M. Lovat, B.Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. Theory Methods Appl. 30 (1993), no. 7, 4619-4627.
[20] Chipot,M. Elements of Nonlinear Analysis. Basel Boston Berlin: Birkhäuser, 2000. Print.
[21] Chipot,M.; Lovat, B.Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2001), 35-51.
[22] Chipot,M.; , Rodrigues, J.-F. On a class of nonlocal nonlinear elliptic problems. RAIRO Model. Math. Anal. Num. 26 (1992), 447-467.
[23] Dinh, Q., Glowinski, R., Périaux, J.Solving elliptic problems by domain decomposition methods with application. in Elliptic Problem Solvers II, Birkhoff, G., Schoenstadt, eds., Academic Press, New York, 1984, pp 395-426.
[24] Glowinski R., Golub, G., Meurant, G., Périaux, J. Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadephia, PA, 1988.
[25] Glowinski R., Kuznetsov, Y., Meurant, G., Périaux, J., Widlund, O. B. Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadephia, PA, 1991.
[26] Glowinski R., Le Tallec, P. Augmented lagrangian interpretation of the nonoverlaping Schwarz alternating method in the Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadephia, PA, 1990, pp 224-231.
[27] Guo, W.; Hou, L. S., Generalizations and accelerations of Lions' nonoverlapping domain decomposition method for linear elliptic PDE. SIAM J. Numer. Anal. 41 (2003), no. 6, 2056-2080
[28] Ipopa M.A., Sassi T., Un algorithme de type Robin pour les problèmes de contact unilatéral. C.R.Acad. Sci. Paris, Ser. I, 346 (2008).
[29] Ipopa M.A., Roux F.-X., Sassi T., Generalization of Lion's nonoverlapping domain decomposition method for contact problems. Lecture Notes in Computational Science and Engineering, Vol 60, pp 623-630, 2008.
[30] Krause, R. H.; Wohlmuth, B. I. Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer. Math. 8 (2000), no. 3, 177-206.
[31] Le Tallec, P. Domain decomposition methods in computational mechanics. Comput. Mech. Adv., 1(2):121-220, 1994.
[32] Le Tallec, P.; Sassi, T. Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math. Comp. 64 (1995), no. 212, 1367-1396.
[33] Le Tallec, P.; Vidrascu M. Méthode de Décomposition de Domaines en Calcul de Structure. Premier Colloque National en Calcul de Structures. Giens, 1993.
[34] Lions, P.-L. On the Schwarz alternating method I. A variant for nonoverlapping subdomains. In Glowinski R., Golub B. H., Meurant G. B., Périeux J., Widlund O. B., editors, Proc. 1rst Conference on Domain Decomposition Methods, 1-42, SIAM, Philadelphia, 1988.
[35] Lions, P.-L. On the Schwarz alternating method III. A variant for nonoverlapping subdomains. Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), 202-223, SIAM, Philadelphia, PA, 1990.
[36] Oliveira, L. A. F. On reaction-diffusion system. Electron. J. Equ. (1998), no. 24, 1-10.
[37] Raposo, C. A.; Sepulveda, M.; Villagran, O. V.; Pereira, D. C.; Santos, M. L. Solution and Asymptotic Behaviour for a Nonlocal Coupled System of Reaction-Diffusion . Acta. Appl. Math. (2008), no. 102, 37-56.
[38] Roux, F.-X.; Magoulès, F.; Series, L.; Boubendir, Y. Approximation of optimal interface boundary conditions for two-Lagrange multiplier FETI method. Domain decomposition methods in science and engineering, 283-290, Lect. Notes Comput. Sci. Eng., 40, Springer, Berlin, 2005.
[39] Schwarz, H. A. Gasamelete Mathematische Abhanlugen. Springer, Berlin. (1890), Volume 2, 133-143. First published in Vierteljahrsschrift der Naturorschenden Gesellschaft in Zurich. (1870), volume 15, 272-286.

