
MODELING AND NUMERICAL SIMULATION OF INCOMPRESSIBLE FLOWS USING

A POLLUTANT DISPERSION APPROACH

Aboubacar Sidiki Cisse∗1 ,Dr. Roy Kiogora 2 , Dr. Kennedy Awuor 3

1 Mathematics Department Pan African University , Institute for Basic Science Technology and

Innovation , kenya

2 Mathematics Department Jomo Kenyatta University of Agriculture and Technology , Kenya

3 Department of Mathematics and Acturial Science Kenyatta University (KU) Nairobi, Kenya.

∗Corresponding author: cisseaboubacarsidiki925@gmail.com

Abstract

Keywords: Convection equation; finite difference method; dispersion of pollutants; fluid me-

chanics ; Cranck Nicholson. Pollution dispersion in water is of tremendous importance since it

has a direct impact on water quality, particularly in the open ocean. Using experimental and

computer tools, the behavior of contaminants spread in water has been anticipated. A mathe-

matical model has been developed based on incompressible flow using a pollutants dispersion

approach. These flows make up a substantial part of fluid mechanics and have applications in a

variety of sectors, including aeronautics, machine propulsion, free flow hydraulics, and so on. We

first established the general convection equation that control the flow of this type fluid, and then

we performed several simulations of basic compressible flows of fluid mechanics, such as pollu-

tant dispersion on the surface of a moving liquid. For the discretization of the terms occurring

in the different equations of this model, the numerical resolution is based on the method of finite

differences utilizing the Cranck Nicholson diagram and the analysis of the diffusion of pollutants,

changeable position of the polluting source. We were able to establish data from the literature

using the numerical method used in this investigation, displaying acceptable conformity.
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1 Introduction

Convective dispersion models are one of the most widely used models for assessing pollution trans-

port and diffusion CHERCHEURS & DU TALENT (n.d.). They’re simple to use, and the modeling

is backed up by a lot of technological know-how. Convection-type dispersion models have pro-

gressed to a point of maturity (Campbell & Glass, 2000). As a result, they are now widely employed

by authorities and numerous businesses as assessment tools. Draxler & Taylor (1982) developed a

computer model based on real-time meteorological data to simulate the impact of wind shear on a

single pollutant puff. The fact that these scale models may be used to predict pollution dispersion

in unidirectional flows with reasonable confidence (such as those occurring on the surface of water).

When the flows are stable and more challenging, they are less useful like for instance : Flows on

abrasive surface, flows around obstacles and objects that are distinct terrain or flows wakes that are

hypothetical situations. They confirmed the relation of puff spread to geostrophic wind speed under

homogeneous conditions using Taylor’s approach. With the remaining experimental data on long-

range dispersion indicative of average circumstances, they determined that the findings of the method

utilized and the computer simulation are both acceptable. Feng et al. (2021) Mechanical dispersion

and physico-chemical dispersion are two different types of dispersion. The rate at which mechanical

dispersion occurs is proportional to the flow velocity the phenomenon of dispersion is known as con-

vection. Using a medium In porous flows, the average flow velocity is higher diffusion can happen in

either the longitudinal or transverse flow directions. A physico-chemical dispersion is referred to as

molecular diffusion. As a result, unlike mechanical dispersion, this phenomenon can also occur while

the fluid is at rest(Milliez & Carissimo, 2007).

Environmental Impacts of Thermal and Brine Dispersion Using Hydrodynamic Modelling for Yanbu
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Desalination Plant, on the Eastern Coast of the Red Se (Aljohani et al., 2022). The environmental im-

plications of brine and thermal discharges from seawater desalination facilities near Yanbu, Saudi Ara-

bia, on the Red Sea’s southern shore, were the subject of this study. The calibrated three-dimensional

numerical model Delft3d was used to investigate the effects of recirculation patterns and dispersions.

The environmental impact assessment, identification, and characterization procedure might aid in the

development of improved strategies for the planning and management of desalination-related techni-

cal solutions. When considering the presence of seasonal turbulent circulations, the magnitude of the

flow near the position of the outflow was always large, according to the model simulations for the

different seasons. The level of thermal and brine dispersion, as well as environmental compliance,

were assessed. The well-mixed environment accelerated the process.

Numerical findings and stability of the ADI F. Wang et al. (2022) approach for two-dimensional

advection-diffusion equations with a time step of half a second. They’re interested in the stability and

numerical results of the discretization for the two-dimensional advection-diffusion equation using

the alternating implicit direct technique (ADI). The forward time difference and the central space

difference are used to identify two-dimensional advection-diffusion. Then they obtained two matrices

with the time step size and, in which this methodology is based on the ADI method. The Von-

Neumann stability methodology is used to achieve stability, and the ADI method’s stability feature is

unconditionally stable (Nurwidiyanto & Ghani, 2022).

2 Mathematical Model

The development of the mathematical equations involved in the current study, as well as the definition

of the equations that characterize the problem studied, the assumed hypothesis, and the therapeutic

interventions of a pollutant on the surface of such an appears to move, is shown below. Deformable

fluid flows are mathematically expressed using pollutant the effect of temporal variation in pollutant

concentrations, mass conservation, and the independence of the z-quantity assumption. Physical and

3
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mathematical foundations for these equations can be found in specialized literature. This study only

considers incompressible flows. The following are the key assumptions:

i . The effect of temporal variation in pollutant quantity in an elementary volume (the Balance

Equation)

c
∂ t

= ∇.(D∇c)−∇.(V c) (1)

where V denotes the quantity’s velocity field , the gradient is represented by ∇ , reflects the

divergence ▽. , the concentration gradient is represented by ∇c in this equation.

ii . The fluid is Newtonian, and the flow is incompressible.

iii . The advection-diffusion equation with source term governs the transport of any scalar variable.

The governing equations can be expressed in general terms using the assumptions mentioned

above:

Mass conservation equation:

∂c
∂ t

+V.∇c = 0 (2)

iv . Given the following assumptions about z’s independence (neglecting variations along the

vertical) and the diffusion coefficient D is constant :

∂c
∂ t

=
(
D∇

2c−V ∇c
)
= 0 (3)

Using Cartesian coordinates, we get the following form:

4
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∂c
∂ t

+V1
∂c
∂x

+V2
∂c
∂y

−D
(

∂ 2c
∂x2 +

∂ 2c
∂y2

)
= 0 (4)

3 Order of magnitude analysis.

Problem (4) Bath et al. (2022) is a parabolic evolution problem with a convection term and a diffusion

term, as is typical of fluid mechanics problems. We will first perform an order of magnitude analysis

on each of these terms. Let ϕ be the order of magnitude of the various terms of equation (4) , and τ

be the characteristic time: (Zhan et al., 2021)

∆c
τ

+V1
∆c
ϕ

+V2
∆c
ϕ

−D
(

∆c
ϕ2 +

∆c
ϕ2

)
= 0 (5)

When only diffusion is taken into account, the typical time is:

τd =
ϕ2

D
(6)

We calculate the characteristic time of diffusion W. Wang et al. (2022) for the heat equation.

The time characteristic verifies a type of relationship (to be compared to the stability condition for a

diffusion equation) .

Dτd

ϕ2 ≈ 1 (7)

It’s the time it takes for diffusion phenomena Weerasekera et al. (2022) to decay exponentially.

If only convection is taken into account, the typical time is as follows:

τc ≈
ϕ

V
(8)

The time it takes for the spot to be transported by the velocity field over a distance equal to the

task’s dimension is referred to as this duration. As a result, the type relation is confirmed by this
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characteristic time τc to be compared to the Ling et al. (2021) stability requirement of heat :

V τc

ϕ
≈ 1 (9)

Another characteristic time of convection Faúndez-Zanuy (2022) can be defined for our problem:

the time to leave τs outside the domain of the pollutant ω . It confirms the following using the domain’s

characteristic dimension K:

V τs

K
≈ 1 (10)

Finally, the Péclet (Pe) number is the ratio of the characteristic periods of τd diffusion and τc

convection:

τd

τc
=

V ϕ

D
= Pe (11)

which characterizes the relative importance of the convection term compared to the diffusion term.

(Shamshuddin et al., 2022)

3.1 Convection diffusion of a Gaussian

The power to which e in the Gaussian function is raised in two dimensions is any negatively definite

quadratic form. As a result, the Gaussian’s level sets will always be ellipses (Szarek et al., 2022).

Consider the following starting point: ?

Φ(x,y) = e−
(

x− x0

r0

)2

e−
(

y− y0

r0

)2

(12)

This denotes a Gaussian spot with amplitude 1 and radius r0 centered in (x0,y0). If no convection

exists, this spot diffuses in a self-similar manner, i.e., its amplitude reduces and its radius grows while

preserving a Gaussian Kopyev et al. (2022) form:

c(x,y, t) = A(t)e−
(

x− x0

rt

)2

e−
(

y− y0

rt

)2

(13)

Rinaldi et al. (2022) Using the domain-wide global conservation of c:

6
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∫∫
c(x,y, t)dxdy =

∫∫
Φ(x,y)dxdy = constant (14)

The diffusion solution of equation (4) is therefore written:

c(x,y, t) =

 r0√
4Dt + r2

0

2

e−

 x− x0√
4Dt + r2

0

2

e−

 y− y0√
4kt + r2

0

2

(15)

The amplitude of this Gaussian therefore decreases according to the law:

A(t) =

 r0√
4Dt + r2

0

2

(16)

This Gaussian point is carried without deformation and diffuses along the velocity field’s trajec-

tories, as before, assuming convection by a velocity field without shear is taken into account. The

trajectories are straight lines in a constant-speed field: (Chen et al., 2022)

x(t) = x0 + v1t1,y(t) = y0 + v2t (17)

The convection-diffusion solution of equation (4) is therefore written:

c(x,y, t) =
(

r0√
4Dt + r2

)2

e−

x− x0 − v1t√
4Dt + r2

0

2

e−

y− y0 − v2t√
4Dt + r2

0

2

(18)

This is a solution in an infinite medium that does not consider the problem’s boundary conditions (4).

If the diameter of the spot r0 is modest compared to the dimension K of the domain ω , it is a good

estimate of the answer (Aghili, 2021) .

3.2 Diffusion eigenmodes

To seek solutions checking the boundary conditions, one determines first of all the eigen modes

of diffusion Solders et al. (2022) using the variable separation method described in the analytical

paragraph (Kubota & Piccinini, 2022) . The calculation is the same, and it is easily shown that the

eigenmodes are the following functions:

7
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The general diffusion solution is then a linear combination of its modes (Faúndez-Zanuy, 2022):

c(x,y, t) =
∞

∑
p=0

∞

∑
q=0

αp,qcp,q (x,y, t) (19)

4 Method of solution

4.1 Finite difference method

The finite difference technique was used to solve the governing equations above. The final set of

equations in finite difference form is given below. Liang et al. (2022). The Cranck Nicholson scheme

Ngondiep (2022) is used to precisely discretize the parabolic problem (4) .

∂c
∂ t

+V1
∂c
∂x

+V2
∂c
∂y

−D
(

∂ 2c
∂x2 +

∂ 2c
∂y2

)
= 0 (20)

cn+1
i, j − cn

i, j

dt
=

D
dx2

(
cn

i+1, j −2cn
i, j + cn

i−1, j
)
+

D
dy2

(
cn

i, j+1 −2cn
i, j + cn

i, j−1
)
− V1

dx

(
cn

i+1, j − cn
i, j
)
− V2

dy

(
cn

i, j+1 − cn
i, j
)

(21)

4.2 Method of implicit alternating directions(ADI)

.

The ADI methods work on the basis of decomposing spatial operators along the x and y directions

of space (Ou et al., 2022) .

Equation (4) is written in the following symbolic form:

c∗i, j − cn
i, j

dt/2
=−V1

c∗i+1, j − c∗i−1, j

2dx
+D

u∗i+1, j −2c∗i, j +c∗i−1, j

dx2

−V2
cn

i+1, j − cn
i−1, j

2dx
+D

cn
i+1, j −2cn

i, j + cn
i−1, j

dx2

(22)
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cn+1
i, j − c∗i, j

dt/2
=−V1

c∗i+1, j − c∗i−1, j

2dx
+D

c∗i+1, j −2c∗i, j + c∗i−1, j

dx2

−V2
cn+1

i+1, j − cn+1
i−1, j

2dx
+D

cn+1
i+1, j −2cn+1

i, j + cn+1
i−1, j

dx2

(23)

Equation (21) can be written as Ax=b, where c1 is the tridiagonal matrix and c1(cn
i, j) is a vector

along the Nx direction.



. . . . . . 0 . . . 0

. . . . . . . . . . . . ...

0 a1
1 a1

2 a1
3 0

... . . . . . . . . . . . .

0 . . . 0 . . . . . .


×



...

cn
i, j−1

cn
i, j

cn
i, j+1

...



Equation (22) can be written along the Ny direction.



. . . . . . 0 . . . 0

. . . . . . . . . . . . ...

0 a1
1 a1

2 a1
3 0

... . . . . . . . . . . . .

0 . . . 0 . . . . . .


×



...

c∗i−1, j

c∗i, j

c∗i+1, j

...


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5 Results and Discussion

5.1 Diffusion eigenmode

we plot our amplitude by taking into account the p =1.5 and q = 1.5 with a coefficient k = 0.01 and a

length L= 1m. The last time was taken to be Tf = 0.5. We observed that the amplitude of this diffusion

is reducing; it declines with a value of 0.75 in the direction of the ordinates’ axis.

Figure 1: Mod of Amplitude

5.2 The solution’s temporal evolution

With a mesh of Nx = Ny = 30 points in each direction and a parameter K= 0,01, we first simulate the

diffusion of the correct mode in Fig. 4.1 to test the validity of this program. The solution estimated

at time Tf = 0.5 with dt = 0.1 is presented; the shape of this solution matches the exact solution

eigenmode of diffusion in Figure 4.1, which depicts the solution’s temporal evolution at the point

where x equals 1 and y equals 1.

10
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Figure 2: Diffusion eigenmode 001

5.3 solution for broadcasting using the ADI system

We calculated the inaccuracy at the location x = 1 and y = 1 at time 2 of the order of the typical

diffusion time as a function of the integration step in time dt in order to understand the accuracy of

the integration in time of the graphic. The trace of fig. 4.2 demonstrates that the error, for the selected

time steps, is almost independent of the time step dt and is mostly a spatial discretization mistake.

Keep in mind that the time steps chosen are substantially shorter than the typical diffusion time dt<<

τd ⋍ 2.5 .

Figure 3: broadcast solution with the ADI scheme
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5.4 Iso value of solution (during convection diffusion)

Note the convection that the initial solution does not deform, that is, it does not change the initial

value. This indicates that boundary conditions allow the structure to leave the field. We also inves-

tigated the time evolution of the maximum value of the exact diffusion solution and the maximum

value of the calculated solution. This hypothesis has shown that the disintegration of the solution is a

viscous disintegration.

Figure 4: Iso value of solution

5.5 Numeric error in ADI schema

Next, Figure (4.6) shows the effect of the time dt integration step by plotting the difference between

the maximum value of the exact diffusion solution and the maximum value of the calculated solution

as a function of dt. It can be seen that this difference increases rapidly above the value dt = 0.01. This

value is exactly in the range of characteristic convection time τc = 0.02. To conclude this simulation,

note that the choice of numerical parameters was determined by physics. It is a problem, not due to

numerical stability constraints.
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Figure 5: dt function error convection

5.6 Convection of a Gaussian:

Next, draw a convection and diffusion diagram of a Gaussian distribution with a diffusion constant D

= 10e−40m2/s and a fluid velocity of 5 mm / s. The numerical solution is displayed in the initialized

state after 1 millisecond. For mesh, Nx = Ny = 30 and time step dt = 0.01. The resolution was t = 0.6

seconds and t = 0.7 seconds.

Figure 6: Convection of a Gaussian Numerical
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Figure 7: Convection of a Gaussian Numerical with amplitude

6 Conclusion

In this study, we proposed a finite difference method to find the exact solution of a system of ordinary

differential equations resulting from the discretization of convection-diffusion equations for spatial

variables. The discretion of many PDEs leads to this type of system, and the proposed method can be

applied to calculate the exact solution of the system.
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