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Abstract - In this paper, a vector-valued nonlinear constrained game is studied. It is shown that the solution of this game 

can be obtained by finding the properly efficient solutions to a symmetric dual pair of multiobjective nonlinear 

programming problems in which the multiplier vector corresponding to the objective is a vector-valued function of two 

variables. An inf-invex alternative theorem of Gordan type is used as a tool to prove the equivalence between the 

constrained vector-valued game and the symmetric dual pair.  
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1. Introduction 
Game theory is the most extensively used methodology in decision making problems, when the decision makers have 

conflicting interests. Due to its myriad applications [ 1-8], many researchers suggested methods for solving game problem 

with the technique of certain mathematical programming problem [ 9-11]. These results were further extended to solve 

nonlinear constrained game and its equivalence with symmetric dual nonlinear programming problems [ 12-16].  

If a game problem has  multiple participants with divergent interests  then the goals  of an individual participant 

cannot be described  in terms of single index, which inevitably, leads to the use of vectorial objective functions. Such 

specific feature results in multiple criteria game problems where every player wants to optimize his own vectorial criterion 

(payoff function) or two-person games in which one player wishes to minimize and the other wishes to maximize the same 

vectorial function. These multiple criteria games analyse group decision problems when the decision makers consider 

several criteria, each of which depends on the decision of all players [17-18]. 

Motivated by such situations, in this paper, we study the following two-person vector-valued nonlinear constrained game 

𝐺 = (𝑋, 𝑌, 𝑓) where  

𝑋 = {𝑥 ∈ 𝑅+
𝑛: 𝑝𝑘(𝑥) ≥ 0, 𝑘 = 1,2, … , 𝑠} 

𝑌 = {𝑦 ∈ 𝑅+
𝑚: 𝑞𝑟(𝑦) ≤ 0, 𝑟 = 1,2, … , 𝑣} 

𝑓: 𝑋 × 𝑌 → 𝑅𝑙 

where 𝑝𝑘: 𝑅𝑛 → 𝑅 𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑠 and 𝑞𝑟: 𝑅𝑚 → 𝑅 𝑓𝑜𝑟 𝑟 = 1,2, … , 𝑡 are differentiable functions. X and Y represent 

the strategy spaces of players I and II respectively.  𝑓(𝑥, 𝑦) represents the pay-off to Player II from Player I when Player I 

selects strategy 𝑥 and Player II selects strategy y . 

The problem of solving vector-valued nonlinear constrained game 𝐺 = (𝑋, 𝑌, 𝑓) was earlier studied by Corley [12] 

who established the necessary and sufficient conditions for the solution of such a game. Chandra and Durga Prasad [13] 

partially generalized  the results of constrained scalar valued games [14,16] to a certain convex-concave vector-valued 

game. They established its relation with a pair of multiobjective programming problems involving nonlinear functions and 

remarked that the exact equivalence reported in scalar case does not seem to go through in vector valued games due to the 

certain difficulties with the matching of scalars in the resulting pair of multiobjective programs. Here, we overcome this 

difficulty by establishing the exact equivalence of the vector-valued game introduced above with a special symmetric dual 

pair of nonlinear programming problems in which the multiplier vector corresponding to the objectives is a vector-valued 

function 𝜆(𝑥, 𝑦) of two variables 𝑥𝜖𝑋, 𝑦𝜖𝑌 rather than a constant vector 𝜆. The principal tool used is Gordan theorem of 

alternative proved for inf-invex functions of two variables. 

2. Definitions 
Let 𝑅𝑛 be the n-dimensional Euclidean space and 𝑅+

𝑛 be its non-negative orthand. Let X and Y be nonempty sets in 𝑅𝑛 

and 𝑅𝑚 respectively. Let 𝜓(𝑥, 𝑦) be differentiable function of two variables 𝑥𝜖𝑋 𝑎𝑛𝑑 𝑦𝜖𝑌, and 𝜂1: 𝑋 × 𝑋 → 𝑅𝑛 and 

𝜂2: 𝑌 × 𝑌 → 𝑅𝑚. Let ∇𝑥𝜓(𝑥, 𝑦) denotes the partial derivative of  𝜓 with respect to its first component 𝑥  and ∇𝑦𝜓(𝑥, 𝑦) 

denotes the partial derivative of 𝜓 with respect to its second component 𝑦.  
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The definition of inf-invexity introduced by Caristi et al. [19]is extended to a function of two variables as follows. 

Definition 2.1. 𝜓(. , 𝑦) is said to be inf-invex at 𝑥0𝜖𝑋, for fixed y, with respect to 𝜂1 and 𝑋0 (a subset of X), if 

inf
𝑥𝜖𝑋0

(𝜓(𝑥, 𝑦) − 𝜓(𝑥0, 𝑦)) ≥ inf
𝑥𝜖𝑋0

〈𝜂1(𝑥, 𝑥0), ∇𝑥𝜓(𝑥0, 𝑦)〉. 

𝜓(𝑥, . ) is said to be inf-invex at 𝑦0𝜖𝑌, for fixed x, with respect to 𝜂2 and 𝑌0 (a subset of Y), if 

inf
𝑦𝜖𝑌0

(𝜓(𝑥, 𝑦) − 𝜓(𝑥, 𝑦0)) ≥ inf
𝑦𝜖𝑌0

〈𝜂2(𝑦, 𝑦0), ∇𝑦𝜓(𝑥, 𝑦0)〉. 

Definition 2.2. 𝜓(. , 𝑦) is said to be inf-pseudoinvex at 𝑥0𝜖𝑋, for fixed y, with respect to 𝜂1 and 𝑋0 , if 

inf
𝑥𝜖𝑋0

〈𝜂1(𝑥, 𝑥0), ∇𝑥𝜓(𝑥0, 𝑦)〉 ≥ 0 ⇒ inf
𝑥𝜖𝑋0

(𝜓(𝑥, 𝑦) − 𝜓(𝑥0, 𝑦)) ≥ 0. 

𝜓(𝑥, . ) is said to be inf-pseudoinvex at 𝑦0𝜖𝑌, for fixed x, with respect to 𝜂2 and 𝑌0 , if 

inf
𝑦𝜖𝑌0

〈𝜂2(𝑦, 𝑦0), ∇𝑦𝜓(𝑥, 𝑦0)〉 ≥ 0 ⇒ inf
𝑦𝜖𝑌0

(𝜓(𝑥, 𝑦) − 𝜓(𝑥, 𝑦0)) ≥ 0. 

3. Alternative Theorem 
The Gordan’s theorem of alternative is an essential tool in optimization to establish the equivalence between the 

solvability of two systems of inequalities [20]. In this section, we first prove the following version of the Gordan’s theorem 

of the alternative for inf-invex functions of two variables. 

 

Theorem  3.1. Let 𝑔𝑗 ∶ 𝑋 × 𝑌 → 𝑅, 𝑗 ∈ 𝐽 = {1,2, … 𝑚} be inf-invex, for fixed 𝑦′ ∈ 𝑌, with respect to 𝜂. 

If max
𝑗∈𝐽

{𝑔𝑗(𝑥, 𝑦′)}attains a minimum on X,       (1) 

then either 

(i) there exists 𝑥 ∈ 𝑋 such that 𝑔𝑗(𝑥, 𝑦′) < 0, 𝑗 ∈ 𝐽 , or 

(ii) there exist scalars 𝜆𝑗(𝑦′) ≥ 0, 𝑗 ∈ 𝐽 , not all zero, dependent on  𝑦′ , such that 

∑
𝑗∈𝐽

𝜆𝑗(𝑦′)𝑔𝑗(𝑥, 𝑦′) ≥ 0, ∀𝑥 ∈ 𝑋 , 

but never both. 

Proof: Suppose that system (i) has a solution 𝑥′ ∈ 𝑋. Then for any scalars 𝜆𝑗(𝑦′) ≥ 0, 𝑗 ∈ 𝐽 , dependent on  𝑦′, not all zero, 

∑
𝑗∈𝐽

𝜆𝑗(𝑦′)𝑔𝑗(𝑥′, 𝑦′) < 0.  

Hence (ii) cannot have a solution. 

Conversely, assume that (i) has no solution ∈ 𝑋 . Let 

 (𝑃)𝑦′ min
𝑥∈𝑋

max
𝑗∈𝐽

{𝑔𝑗(𝑥, 𝑦′)}  

attains its minimum at 𝑥′ ∈ 𝑋.  

The equivalent auxiliary problem to problem (𝑃)𝑦′ is given by  

(𝐸𝑃)𝑦′   Minimize  𝑤 

               subject to 𝑔𝑗(𝑥, 𝑦′) − 𝑤 ≤ 0, 𝑗 ∈ 𝐽,        (2) 

                                  (𝑥, 𝑦′, 𝑤) ∈ 𝑋 × 𝑌 × 𝑅. 

By necessary optimality conditions [15], if (𝑥, 𝑦′, 𝑤′) is an optimal solution for (𝐸𝑃)𝑦′ , then there exist multipliers 

𝜆(𝑦′) ∈ 𝑅𝑚 , dependent on 𝑦′ such that  

∑
𝑗∈𝐽

𝜆𝑗(𝑦′)∇𝑥𝑔𝑗(𝑥′, 𝑦′) = 0,         (3) 
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𝜆𝑗(𝑦′)(𝑔𝑗(𝑥′, 𝑦′ ) − 𝑤′) = 0, 𝑗 ∈ 𝐽,             (4) 

𝑔𝑗(𝑥′, 𝑦′) ≤ 𝑤′, 𝑗 ∈ 𝐽,          (5) 

∑
𝑗∈𝐽

𝜆𝑗(𝑦′) = 1.                  (6) 

Moreover 𝑤′ ≥ 0. Otherwise system (i) will have a solution in X. 

Also, 𝜂(𝑥, 𝑥′) is the common function for the inf-invexity of 𝑔𝑗(. , 𝑦′), 𝑗 ∈ 𝐽 , for fixed 𝑦′ , with respect to X, that is, 

 inf
𝑥∈𝑋

(𝑔𝑗(𝑥, 𝑦′) − 𝑔𝑗(𝑥′, 𝑦′)) ≥ inf
𝑥∈𝑋

〈𝜂(𝑥, 𝑥′), ∇𝑥𝑔𝑗(𝑥′, 𝑦′)〉 , 𝑗 ∈ 𝐽. 

Since 𝜆𝑗(�̅�) ≥ 0, 𝑗 ∈ 𝐽 ,  we have 

inf
𝑥∈𝑋

( ∑
𝑗∈𝐽

𝜆𝑗(𝑦′)𝑔𝑗(𝑥, 𝑦′) − ∑
𝑗∈𝐽

𝜆𝑗(𝑦′)𝑔𝑗(𝑥′, 𝑦′)) ≥ inf
𝑥∈𝑋

〈𝜂(𝑥, 𝑥′), ∑
𝑗∈𝐽

𝜆𝑗(𝑦′) ∇𝑥𝑔𝑗(𝑥′, 𝑦′)〉. 

Using condition (3), the inequality gives 

∑
𝑗∈𝐽

𝜆𝑗(𝑦′)𝑔𝑗(𝑥, 𝑦′) ≥ ∑
𝑗∈𝐽

𝜆𝑗(𝑦′)𝑔𝑗(𝑥′, 𝑦′) ,  

that is, ∑
𝑗∈𝐽

𝜆𝑗(𝑦′)𝑔𝑗(𝑥, 𝑦′) ≥ 0 (using (4) and (6)). 

Hence system (ii) has a solution. 

Remark 3.1 [21]. In the alternative (ii) of Theorem 1, we use scalars 𝜆𝑗
′𝑠 dependent on �̅� instead of using fixed scalars  

𝜆𝑗
′𝑠. 

4. Equivalence of Constrained Vector-Valued Game and Symmetric Dual Pair 
In this section, in order to prove the equivalence of the constrained vector-valued game to a symmetric dual pair of 

non-linear programming problems, we associate the vector-valued game 𝐺 = (𝑋, 𝑌, 𝑓(𝑥, 𝑦)) to the scaler valued game  

𝐺′ = (𝑋, 𝑌, 𝜆𝑇(𝑥, 𝑦)𝑓(𝑥, 𝑦)) . The multiplier vector 𝜆(𝑥, 𝑦) = 𝑋 × 𝑌 → 𝑅+
𝑙  used for achieving this goal is a vector-valued 

differentiable function of two variables 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 such that 𝑎𝑖 ≤ 𝜆𝑖(𝑥, 𝑦) ≤ 𝑏𝑖 , 𝑖 = 1,2, … , 𝑙 where 𝑎𝑖 and 𝑏𝑖 are 

specified constants. Associated with game 𝐺′ = (𝑋, 𝑌, 𝜆𝑇(𝑥, 𝑦)𝑓(𝑥, 𝑦)) are the two programming problems 

min
𝑥∈𝑋

max
𝑦∈𝑌

𝜆𝑇(𝑥, 𝑦)𝑓(𝑥, 𝑦) and max
𝑦∈𝑌

min
𝑥∈𝑋

𝜆𝑇(𝑥, 𝑦)𝑓(𝑥, 𝑦) which will be reduced to the following pair of problems (P1) and 

(D1) respectively. 

(P1) Minimize 𝜆(𝑥, 𝑦)𝑇𝑓(𝑥, 𝑦)  

subject to ∇𝑦[𝜆(𝑥, 𝑦)𝑇𝑓(𝑥, 𝑦) − ∑ 𝜇𝑟𝑞𝑟(𝑦)𝑡
𝑟=1 ] ≤ 0, 

 𝑦𝑇∇𝑦[𝜆(𝑥, 𝑦)𝑇𝑓(𝑥, 𝑦) − ∑ 𝜇𝑟𝑞𝑟(𝑦)𝑡
𝑟=1 ] ≥ 0, 

 ∑ 𝜇𝑟𝑞𝑟(𝑦)𝑡
𝑟=1 ≥ 0, 

𝑝𝑘(𝑥) ≥ 0, 𝑘 = 1,2, … , 𝑠, 

𝑥 ≥ 0, 𝜇 ≥ 0. 

(D1) Maximize 𝜆(𝑢, 𝑣)𝑇𝑓(𝑢, 𝑣)  

subject to ∇𝑥[𝜆(𝑢, 𝑣)𝑇𝑓(𝑢, 𝑣) − ∑ 𝛾𝑘𝑝𝑘(𝑢)𝑠
𝑘=1 ] ≥ 0, 

 𝑢𝑇∇𝑥[𝜆(𝑢, 𝑣)𝑇𝑓(𝑢, 𝑣) − ∑ 𝛾𝑘𝑝𝑘(𝑢)𝑠
𝑘=1 ] ≤ 0, 

 ∑ 𝛾𝑘𝑝𝑘(𝑢)𝑠
𝑘=1 ≤ 0, 

𝑞𝑘(𝑣) ≤ 0, 𝑟 = 1,2, … , 𝑡, 

𝑣 ≥ 0, 𝛾 ≥ 0. 

Corresponding to these two problems, we have the following vector-valued problems (P2) and (D2). 

(P2) Minimize 𝑓(𝑥, 𝑦) = [𝑓1(𝑥, 𝑦), … , 𝑓𝑝(𝑥, 𝑦)]  
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subject to ∇𝑦[𝜆(𝑥, 𝑦)𝑇𝑓(𝑥, 𝑦) − ∑ 𝜇𝑟𝑞𝑟(𝑦)𝑡
𝑟=1 ] ≤ 0,            (7) 

 𝑦𝑇∇𝑦[𝜆(𝑥, 𝑦)𝑇𝑓(𝑥, 𝑦) − ∑ 𝜇𝑟𝑞𝑟(𝑦)𝑡
𝑟=1 ] ≥ 0,        (8) 

∑ 𝜇𝑟𝑞𝑟(𝑦)𝑡
𝑟=1 ≥ 0,                                  (9) 

𝑝𝑘(𝑥) ≥ 0, 𝑘 = 1,2, … , 𝑠,                                             (10) 

𝑥 ≥ 0, 𝜇 ≥ 0.                          (11) 

        Let 𝑊1 denotes the feasible solution set of (P2). 

(D2) Maximize 𝑓(𝑢, 𝑣) = [𝑓1(𝑢, 𝑣), … , 𝑓𝑝(𝑢, 𝑣)]  

subject to ∇𝑥[𝜆(𝑢, 𝑣)𝑇𝑓(𝑢, 𝑣) − ∑ 𝛾𝑘𝑝𝑘(𝑢)𝑠
𝑘=1 ] ≥ 0,    (12) 

 𝑢𝑇∇𝑥[𝜆(𝑢, 𝑣)𝑇𝑓(𝑢, 𝑣) − ∑ 𝛾𝑘𝑝𝑘(𝑢)𝑠
𝑘=1 ] ≤ 0,             (13) 

 ∑ 𝛾𝑘𝑝𝑘(𝑢)𝑠
𝑘=1 ≤ 0,                                      (14) 

𝑞𝑘(𝑣) ≤ 0, 𝑟 = 1,2, … , 𝑡,                        (15) 

𝑣 ≥ 0, 𝛾 ≥ 0.                                  (16) 

Let 𝑊2 denote the set of feasible solutions of (D2). 

We now establish weak duality theorem for the dual pair (P2) and (D2) under the following assumptions: 

(A1) For each 𝑥0 ∈ 𝑋, 𝜇0 ∈ 𝑅+
𝑡 , −𝜆(𝑥0, . )𝑇𝑓(𝑥0, . ) + ∑ 𝜇𝑟

0𝑡
𝑟=1 𝑞𝑟(. ) is inf-pseudoinvex with respect to some 𝜉 𝑎𝑛𝑑 𝑌, 

where sup
𝑣∈𝑌

[𝜉(𝑣, 𝑦) + 𝑦] ≥ 0, ∀𝑦 ∈ 𝑌 such that (𝑥0, 𝑦, 𝜇0, 𝜆(𝑥0, 𝑦)) ∈ 𝑊1. 

(A2) For each 𝑣0 ∈ 𝑌, 𝛾0 ∈ 𝑅+
𝑠 , 𝜆(. , 𝑣0)𝑇𝑓(. , 𝑣0) − ∑ 𝛾𝑘

0𝑘
𝑘=1 𝑝𝑘(. ) is inf-pseudoinvex with respect to some 𝜂 𝑎𝑛𝑑 𝑋, where 

inf
𝑥∈𝑋

[𝜂(𝑥, 𝑢) + 𝑢] ≥ 0, ∀𝑢 ∈ 𝑋 such that (𝑢, 𝑣0, 𝛾0, 𝜆(𝑢, 𝑣0)) ∈ 𝑊2. 

Remark 4.1. The hypothesis in (A1) that a scale function 𝜉(𝑣, 𝑦)satisfies sup
𝑣∈𝑌

[𝜉(𝑣, 𝑦) + 𝑦] ≥ 0, ∀𝑦 ∈ 𝑌 is worth noticing, 

since it is more likely to be satisfied in applications than the hypothesis [𝜉(𝑣, 𝑦) + 𝑦] ≥ 0, ∀𝑦 ∈ 𝑌 made in the various 

other papers. 

Similar remark holds for assumption (A2) also. 

Theorem 4.1 (Weak duality). Assume that for all feasible solutions (𝑥0, 𝑦0, 𝜇0, 𝜆(𝑥0, 𝑦0)) for (P2) and all feasible 

(𝑢0, 𝑣0, 𝛾0, 𝜆(𝑢0, 𝑣0)) for (D2), conditions (A1) and (A2) are satisfied and 0 < 𝜆(𝑥0, 𝑦0) ≤ 𝜆(𝑢0, 𝑣0). Then the following 

cannot hold: 

𝑓𝑖(𝑥0, 𝑦0) ≤ 𝑓𝑗(𝑢0, 𝑣0) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑝,       (17) 

𝑓𝑗(𝑥0, 𝑦0) < 𝑓𝑗(𝑢0, 𝑣0) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗 ∈ {1,2, … , 𝑝}.       (18)   

Proof: Suppose contrary to the result of the theorem (17) and (18) hold. Using  

0 < 𝜆(𝑥0, 𝑦0) ≤ 𝜆(𝑢0, 𝑣0), it follows 

𝜆(𝑥0, 𝑦0)𝑇𝑓(𝑥0, 𝑦0) ≤ 𝜆(𝑢0, 𝑣0)𝑇𝑓(𝑢0, 𝑣0).       (19) 

Let (𝑥0, 𝑦0, 𝜇0, 𝜆(𝑥0, 𝑦0))  ∈ 𝑊1, (𝑢0, 𝑣0, 𝛾0, 𝜆(𝑢0, 𝑣0)) ∈ 𝑊2. 

Since  sup
𝑣∈𝑌

[𝜉(𝑣, 𝑦) + 𝑦] ≥ 0, ∀𝑦 ∈ { y ∈ Y|(𝑥0, 𝑦, 𝜇0, 𝜆(𝑥0, 𝑦)) ∈ 𝑊1}. From (7), we have  

sup
𝑣∈𝑌

[𝜉(𝑣, 𝑦0) + 𝑦0]∇𝑦 [𝜆(𝑥0, 𝑦0)𝑇𝑓(𝑥0, 𝑦0) − ∑ 𝜇𝑟
0𝑞𝑟(𝑦0)

𝑡

𝑟=1

] ≤ 0. 

Adding the above inequality in (8), we get 

sup
𝑣∈𝑌

[𝜉(𝑣, 𝑦0)]∇𝑦[𝜆(𝑥0, 𝑦0)𝑇𝑓(𝑥0, 𝑦0) − ∑ 𝜇𝑟
0𝑞𝑟(𝑦0)𝑡

𝑟=1 ] ≤ 0, 
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that is,  

inf
𝑣∈𝑌

[−𝜉(𝑣, 𝑦0)]∇𝑦 [𝜆(𝑥0, 𝑦0)𝑇𝑓(𝑥0, 𝑦0) − ∑ 𝜇𝑟
0𝑞𝑟(𝑦0)

𝑡

𝑟=1

] ≥ 0 

Using assumption (A1), this gives 

inf
𝑣∈𝑌

[−𝜆(𝑥0, 𝑣)𝑇𝑓(𝑥0, 𝑣) + ∑ 𝜇𝑟
0𝑞𝑟(𝑣)𝑡

𝑟=1 + 𝜆(𝑥0, 𝑦0)𝑇𝑓(𝑥0, 𝑦0) − ∑ 𝜇𝑟
0𝑞𝑟(𝑦0)𝑡

𝑟=1 ] ≥ 0 , 

and since 𝑣0 ∈ 𝑌, it results 

[−𝜆(𝑥0, 𝑣0)𝑇𝑓(𝑥0, 𝑣0) + ∑ 𝜇𝑟
0𝑞𝑟(𝑣0)𝑡

𝑟=1 + 𝜆(𝑥0, 𝑦0)𝑇𝑓(𝑥0, 𝑦0) − ∑ 𝜇𝑟
0𝑞𝑟(𝑦0)𝑡

𝑟=1 ] ≥ 0. 

Using (11) and (15), it results 

−𝜆(𝑥0, 𝑣0)𝑇𝑓(𝑥0, 𝑣0) + 𝜆(𝑥0, 𝑣0)𝑇𝑓(𝑥0, 𝑣0) ≥ 0. 

A similar argument using condition (A2) with 

inf
𝑥∈𝑋

[𝜂(𝑥, 𝑢) + 𝑢] ≥ 0, ∀𝑢 ∈ {u ∈ X|(𝑢, 𝑣0, 𝛾0, 𝜆(𝑢, 𝑣0)) ∈ 𝑊2} gives 

𝜆(𝑥0, 𝑣0)𝑇𝑓(𝑥0, 𝑣0) − 𝜆(𝑢0, 𝑣0)𝑇𝑓(𝑢0, 𝑣0) ≥ 0. 

The last two inequalities imply 

𝜆(𝑥0, 𝑦0)𝑇𝑓(𝑥0, 𝑦0) ≥ 𝜆(𝑢0, 𝑣0)𝑇𝑓(𝑢0, 𝑣0) 

which contradicts (19). Hence the result. 

In order to establish strong duality theorem between (P2) and (D2), we characterize the properly efficient solutions of 

vector-valued problems (P2) and (D2) in terms of the optimal solutions of scalar-valued problems (P1) and (D1) under 

weaker invexity type conditions, that is inf-invexity conditions, using a version of the Gordan’s theorem of alternative 

(Theorem 1) as a principal tool. 

Lemma 4.1. Let 𝑓𝑖(. , 𝑦), 𝑖 = 1,2, … , 𝑝 be inf-invex, for fixed 𝑦 ∈ 𝑌, with respect to 𝜂 𝑎𝑛𝑑 𝑋. Then (𝑥0, 𝑦0, 𝜇0, 𝜆(𝑥0, 𝑦0)) 

is properly efficient for (P2) if and only if (𝑥0, 𝑦0, 𝜇0, 𝜆(𝑥0, 𝑦0)) is optimal for (P1) with 0 < 𝜆(𝑥, 𝑦) ≤

𝜆(𝑥0, 𝑦0)∀(𝑥, 𝑦) ∈ 𝑊1. 

Proof: The part ‘if’ of the proof of the lemma follows on the similar lines as that of Theorem 1, [22]. The part ‘only if’ of 

the proof of the lemma  runs on the similar lines as that of Theorem 2, [22] except that we will apply Gordans’s  theorem 

of alternative for inf-invexity (Theorem 1). 

Theorem 4.2 (Strong duality). Let (𝑥0, 𝑦0, 𝜇0, 𝜆(𝑥0, 𝑦0)) be properly efficient solution for (P2). Let the vectors 

∇𝑦[𝜆(𝑥0, 𝑦0)𝑇𝑓(𝑥0, 𝑦0)] and ∇𝑦[∑ 𝜇𝑟
0𝑞𝑟(𝑦0)𝑡

𝑟=1 ] be linearly independent and the Hessian matrix 

∇𝑦𝑦[𝜆(𝑥0, 𝑦0)𝑇𝑓(𝑥0, 𝑦0) − ∑ 𝜇𝑟
0𝑞𝑟(𝑦0)𝑡

𝑟=1 ] be positive or negative. Let P be the matrix (∇𝑦𝑝𝑘(𝑥0), 𝑘 =

1,2, … . , 𝑠) 𝑎𝑛𝑑 𝑃𝜌 ≤ 0, 𝜌 ≥ 0 imply 𝜌 = 0. Assume that the weak duality Theorem 2 holds. Then there exist 𝛾𝑘
0, 𝑘 =

1,2, … , 𝑠 such that (𝑥0, 𝑦0, 𝛾0, 𝜆(𝑥0, 𝑦0)) is properly efficient for (D2). 

Proof: Since (𝑥0, 𝑦0, 𝜇0, 𝜆(𝑥0, 𝑦0))is properly efficient solution for (P2), therefore, it follows from Lemma 1 that 

(𝑥0, 𝑦0, 𝜇0, 𝜆(𝑥0, 𝑦0)) is optimal for (P1). Rest of the proof runs on the same lines as that in Agarwal et al. [23]. 

Theorem 4.3. For the vector-valued constrained game 𝐺 = (𝑋, 𝑌, ), min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓(𝑥, 𝑦) exists if and only max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓(𝑥, 𝑦) 

exists, and when this happens min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓(𝑥, 𝑦) = max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓(𝑥, 𝑦). 

Proof follows in view of multiobjective duality between (P2) and (D2) and the way these problems are constructed. 

5. Applications and Usefulness of the Results 
In the game theory, it is typically assumed that each player has only one payoff function and the strategy set of the 

game is composed of the product of the individual player’s strategy. However, in reality, player’s strategy sets maybe 

interactive and each player may have more than one payoff function. Such games are called multicriteria games or games 

with vector payoffs. Several authors [23-26] have worked for the growth of this class under generalized convexity or 

invexity conditions on the pay-off functions and the constraints functions. These are used in modelling various real life 
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problems such as in management decisions, politics and various other situations where the players do not have a priori 

opinion on the relative importance of the components of their payoff vectors. Suppose such a situation apts to arise in 

connection with military engagements where two members of a combat team are forced to separate and that they cannot 

communicate with each other, or which their home base, because of the danger of revealing their positions to their enemy. 

For example, the payoff function offered to the two members of a combat team is a vector valued function 𝑓: 𝑋 × 𝑌 →

𝑅2defined by  𝑓(𝑥, 𝑦) = (𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦)) where 𝑓1(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑥 − 𝑦), 𝑓2(𝑥, 𝑦) = 𝑐𝑜𝑠(𝑥 + 𝑦).Strategy spaces of two 

members are respectively defined by two sets 𝑋 = {𝑥 ∈ 𝑅+:
𝜋

2
− 𝑥 ≥ 0} and 𝑌 = {𝑦 ∈ 𝑅+: 𝑦 −

𝜋

2
≤ 0}.The game problem 

presented in this example can be related to the problem of defining the optimal ways of playing the game in a normalised 

form. The normalising multiplier vector 𝜆(𝑥, 𝑦) can be any positive vector-valued function of two variables of the form 

𝜆(𝑥, 𝑦) = (𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦)) with particular values 𝜆1(𝑥, 𝑦) = sin(𝑥 + 𝑦), 𝜆2(𝑥, 𝑦) = cos(𝑥 − 𝑦).The solution of the 

above game can be found to be exactly equivalent to the solution of the pair of corresponding symmetric duel non-linear 

programming problems (P1) and (D1). Moreover, the assumptions (A1) and (A2) stated in the text are also satisfied with 

respect to 𝜉(𝑦, 𝑦0) = 2𝑦 − 𝑦0 𝑎𝑛𝑑 𝜂(𝑥, 𝑥0) = 𝑥 + 𝑥0  . 
 

6. Conclusion 
A class of two-person vector-valued nonlinear constrained game is studied in this paper.  The main feature of the 

paper is to use the Gordan theorem of alternative as a tool to prove the equivalence between the constrained vector-valued 

game and the symmetric dual pair of non-linear programming problems. The multiplier vector corresponding to the 

objective in symmetric dual pair is a vector-valued function of two variables instead of a scaler. The results presented in 

the paper generalises the results already existing in literature in two ways. One is by generalising the class of functions 

permitted in the problem to the new notion of functions and other is by generalising the optimality conditions by virtue of 

Gordan’s alternative theorem. Moreover, the results presented here can be generalized to n-person vector-valued game 

problem with vector-payoff functions showing its equivalence with symmetric duel non-linear programming problems. 
 

References 
[1] Aplak, Hakan Soner, and Orhan Türkbey, “Fuzzy Logic Based Game Theory Applications in Multi-Criteria Decision Making 

Process,” Journal of Intelligent & Fuzzy Systems, vol. 25, no. 2, pp. 359-371, 2013. Crossref, http://dx.doi.org/10.3233/IFS-2012-

0642 

[2] Ardeshir Ahmadi, and Raquel Salazar Moreno, “Game Theory Applications in a Water Distribution Problem,” Journal of Water 

Resource and Protection, vol. 5, no.1, pp. 91-96, 2013. Crossref, http://dx.doi.org/10.4236/jwarp.2013.51011 

[3] Katharina Schüller, Kateřina Staňková, and Frank Thuijsman, “Game Theory of Pollution: National Policies and their International 

Effects,” Games, vol. 8, no. 3, p. 30, 2017. Crossref, https://doi.org/10.3390/g8030030 

[4] Bukkuri, Anuraag, and Joel S. Brown, “Evolutionary Game Theory: Darwinian Dynamics and the G Function Approach,” 

Games, vol. 12, no. 4, pp. 1-19, 2021. Crossref, https://doi.org/10.3390/g12040072 

[5] Maria Montero, and Alex Possajennikov, “An Adaptive Model of Demand Adjustment in Weighted Majority Games,” Games, vol. 

13, no. 1, p. 5, 2022. Crossref, https://doi.org/10.3390/g13010005 

[6] Jovic Aaron S. Caasi et al., “A Game-Theoretic Model of Voluntary Yellow Fever Vaccination to Prevent Urban Outbreaks,” 

Games, vol. 13, no. 4, pp. 55, 2022. Crossref, https://doi.org/10.3390/g13040055 

[7] Ying Ji, Meng Li, and Shaojian Qu, “Multi-objective Linear Programming Games and Applications in Supply Chain Competition,” 

Future Generation Computer Systems, vol. 86, pp. 591-597, 2018. Crossref, https://doi.org/10.1016/j.future.2018.04.041 

[8] Marwan Abdul Hameed Ashour, Iman A.H.Al-Dahhan, and  Sahar M.A. Al-Qabily, “Solving Game Theory Problems using Linear 

Programming and Genetic Algorithms,” In International Conference on Human Interaction and Emerging Technologies, pp. 247-

252. Springer, Cham, 2019. 

[9] Abraham Charnes, “Constrained Games and Linear Programming,” Proceedings of the National Academy of Sciences, vol. 39, no. 

7, pp. 639-641, 1953. Crossref, https://doi.org/10.1073/pnas.39.7.639 

[10] Deng-Feng Li, “Linear Programming Approach to Solve Interval-Valued Matrix Games,” Omega, vol. 39, no. 6, pp. 655-666, 

2011. Crossref, https://doi.org/10.1016/j.omega.2011.01.007 

[11] Prasun Kumar Nayak, and Madhumangal Pal, “Linear Programming Technique to Solve Two Person Matrix Games with Interval 

Pay-offs,” Asia-Pacific Journal of Operational Research, vol. 26, no. 2, pp. 285-305, 2009. Crossref,  

https://doi.org/10.1142/S0217595909002201 

[12] Corley Herbert W, “Games with Vector Payoffs,” Journal of Optimization Theory and Applications, vol. 47, no. 4, pp. 491-498, 

1985. Crossref, https://doi.org/10.1007/BF00942194 

[13] Chandra, S. A., and Durga Prasad, “Constrained Vector Valued Games and Multiobjective Programming," Opsearch, vol. 29, no. 1, 

pp.1-10l, 1992. 

[14] T. Kawaguchi, and Y. Maruyama, “A Note on Minimax (Maximin) Programming,” Management Science, vol. 12, no. 6, pp. 670-

676, 1976.  

[15] Weir, T., and B. Mond, "Sufficient Optimality Conditions and Duality for a Pseudoconvex Minimax Problem," Notebooks of the 

Center for Operational Research Studies, vol. 33, no. 1-2, pp. 123-128,1991. 

http://dx.doi.org/10.3233/IFS-2012-0642
http://dx.doi.org/10.3233/IFS-2012-0642
https://www.scirp.org/journal/journalarticles.aspx?journalid=46
https://www.scirp.org/journal/journalarticles.aspx?journalid=46
http://dx.doi.org/10.4236/jwarp.2013.51011
https://doi.org/10.3390/g8030030
https://doi.org/10.3390/g12040072
https://doi.org/10.3390/g13010005
https://doi.org/10.3390/g13040055
https://doi.org/10.1016/j.future.2018.04.041
https://doi.org/10.1073/pnas.39.7.639
https://doi.org/10.1016/j.omega.2011.01.007
https://doi.org/10.1007/BF00942194


Arpana Sharma et al. / IJMTT, 68(12), 112-118, 2022 

 

118 

[16] Bertram Mond, Suresh Chandra, and Durga Prasad Venkata Modekurti, “Constrained Games and Symmetric Duality,” 

Opsearch, vol. 24, pp. 69-77, 1987.  

[17] Luisa Monroy, and Francisco R. Fernández, “Multi-Criteria Simple Games,” Multiobjective Programming and Goal Programming, 

pp. 157-166, 2009. Crossref, https://doi.org/10.1007/978-3-540-85646-7_15 

[18] Debasish Ghose, and U. R. Prasad, “Solution Concepts in Two-Person Multicriteria Games,” Journal of Optimization Theory and 

Applications, vol. 63, no. 2, pp. 167-189, 1989. Crossref, https://doi.org/10.1007/BF00939572 

[19] Giuseppe Caristi, Ferrara Massimiliano, and Anton Stefanescu, “New Invexity-type Conditions in Constrained Optimization,” 

Generalized Convexity and Generalized Monotonicity, pp. 159-166, 2001. Crossref, https://doi.org/10.1007/978-3-642-56645-5_10 

[20] Manuel Ruiz Galán, “The Gordan Theorem and Its Implications for Minimax Theory,” Journal of Nonlinear and Convex 

Analysis, vol. 17, no. 12, pp. 2385-2405, 2016.  

[21] Hanson Morgan A, “A Generalization of the Kuhn-Tucker Sufficiency Conditions,” Journal of Mathematical Analysis and 

Applications, vol. 184, no. 1, pp. 146-155, 1994. Crossref, https://doi.org/10.1006/jmaa.1994.1190 

[22] Arthur M. Geoffrion, “Proper Efficiency and the Theory of Vector Maximization,” Journal of Mathematical Analysis and 

Applications, vol. 22, no. 3, pp. 618-630, 1968. Crossref, https://doi.org/10.1016/0022-247X(68)90201-1 

[23] Aggarwal, S., and D. Bhatia. "Vector-valued Constrained Games and Multiobjective Symmetric Duality," Asia-Pacific Journal of 

Operational Research, vol. 8, no. 2, pp. 106-118, 1991. 

[24] I. Husain, and Vikas K. Jain, “Constrained Vector-Valued Dynamic Game and Symmetric Duality for Multiobjective Variational 

Problems,” The Open Operational Research Journal, vol. 7, no. 1, pp. 1-10, 2013. Crossref,  

http://dx.doi.org/10.2174/1874243201307010001 

[25] Singh C., and N. Rueda, "Constrained Vector Valued Games and Generalized Multiobjective Minmax Programming,” 

Opsearch, vol. 31, pp. 149-154, 1994. 

[26] D. Bhatia, and A. Sharma, “New-Invexity type Conditions with Applications to Constrained Dynamic Games,” European Journal 

of Operational Research, vol. 148, no. 1, pp. 48-55, 2003. Crossref, https://doi.org/10.1016/S0377-2217(02)00357-0 

 

https://doi.org/10.1007/978-3-540-85646-7_15
https://doi.org/10.1007/BF00939572
https://doi.org/10.1007/978-3-642-56645-5_10
https://doi.org/10.1006/jmaa.1994.1190
https://doi.org/10.1016/0022-247X(68)90201-1

