πJ^* -Closed Sets in Topological Spaces

Hamant Kumar

Department of Mathematics, Veerangana Avantibai Government Degree College, Atrauli, Aligarh, U. P. (India)

Abstract - In this paper, a new class of sets called πJ^* -closed sets is introduced and its properties are studied. The relationships among closed, r-closed, r*-closed, δ -closed, πJ^* -closed and other generalized closed sets are investigated. Several examples are provided to illustrate the characterizations of these new classes of sets.

Keywords - η^* -closed, r^* -closed, J^* -closed, J^{**-} closed and πJ^* -closed.

2020 Subject Classification: 54A05, 54C08

I. INTRODUCTION

In 1937, Stone [18] introduced the notion of regular open sets. In 1963, Levine [7] initiated s-open sets. In 1965, Njastad [13] introduced the concept of α -open sets. In 1968, the notion of π -open sets were introduced by Zaitsev [20] which are weaker form of regular open sets. Velicko [16] proposed δ -open sets which are stronger than open sets. In 1970, Levine [8] initiated the study of generalized closed (briefly g-closed) sets. In 1982, Mashour [9] introduced the concept of p-open sets. In 1983, Abd EI-Monsef et al [1] introduced the notion of β -open sets. In 1996, Dontchev and Ganster [4] introduced the notion of δ g-closed sets. In 2000, Dontchev and Noiri [5] introduced the concept of π g-closed sets. In 2006, Park [14] introduced the notion of π gp-closed sets. Aslim et al. [3] introduced the concept of π gs-closed sets. In 2009, Arockiarani and Janaki [2] introduced the notion of π g α -closed sets. In 2010, Sarsak and Rajesh [17] introduced the concept of π gsp-closed sets. In 2012, Sudha and Sivakamasundari [19] introduced the notion of δ g*-closed sets. In 2016, Pious and Annalakshmi [15] introduced the notion of regular*-open sets. In 2019, Meenakshi et. al [10, 11] introduced the concepts of η *-open and J-closed sets. In 2020, Meenakshi et. al [12] introduced a new class of sets namely J*-closed and J**-closed sets. Recently, Kumar [6] introduced a new class of sets and obtained their properties.

II. PRELIMINARIES

Throughout this paper, spaces (X, \Im), (Y, σ), and (Z, γ) (or simply X, Y and Z) always mean topological spaces. Let A be a subset of a space X. The closure of A and interior of A are denoted by cl(A) and int(A) respectively. A subset A is said to be regular open [18] (resp. regular closed [18]) if A = int(cl(A)) (resp. A = cl(int(A))). The finite union of regular open sets is said to be π -open [20]. The complement of a π -open set is said to be π -closed [20].

Definition 2.1. A subset A of a topological space (X, \mathfrak{I}) is said to be

(i) pre-open [9] (briefly p-open) if $A \subset cl(int(A))$.

(ii) **semi-open** [7] (briefly **s-open**) if $A \subset int(cl(A))$.

(iii) α -open [13] if $A \subset int(cl(int(A)))$.

(iv) β -open [1] if $A \subset cl(int(cl(A)))$.

The complement of a pre-open (resp. semi-open α -open, β -open) set is called pre-closed (briefly p-closed) (resp. semiclosed (briefly s-closed), α -closed, β -closed). The intersection of all p-closed (resp. s-closed, α -closed, β -closed) sets containing A, is called p-closure (s-closure, α -closure, β -closure) of A, and is denoted by p-cl(A) (resp. s-cl(A), α -cl(A), β cl(A)). A subset A of a topological space (X, \Im) is said to be clopen if it is both open and closed in (X, \Im).

Definition 2.2. A subset A of a topological space (X, \Im) is said to be generalized closed (briefly g-closed) [8] if cl(A) \subset U whenever A \subset U and U $\in \Im$. The complement of a g-closed set is called g-open.

The generalized closure of A is defined as the intersection of all g-closed sets in X containing A and is denoted by $cl^*(A)$. The generalized interior of A is defined as the union of all g-open sets in X contained in A and is denoted by $int^*(A)$.

Definition 2.3. The δ -interior of a subset A of X is the union of all regular open sets of X contained in A and is denoted by δ -int(A). The subset A is called δ -open [16] if δ -int(A) = A. i.e. a set is δ -open if it is the union of regular open sets, the complement of a δ -open set is called δ -closed. Alternatively, a set A \subset X is δ -closed if A = δ -cl(A), where δ -cl(A) is the intersection of all regular closed sets of (X, \Im) containing A.

Definition 2.4. Let (X, \Im) be a topological space. A subset A of (X, \Im) is called regular*-open [15] (or r*-open) if A = int(cl*(A)). The complement of a regular*-open set is called regular*-closed. The union of all regular*-open sets of X contained in A is called regular*-interior and is denoted by r*-int(A). The intersection of all regular*-closed sets of X containing A is called regular*-closure is denoted by r*-cl(A).

Definition 2.5. A subset A of a topological space (X, \mathfrak{I}) is called η^* -open [10, 11] set if it is a union of regular*-open sets (r*-open sets). The complement of a η^* -open set is called η^* -closed. A subset A of a topological space (X, \mathfrak{I}) is called η^* -interior of A is the union of all η^* -open sets of X contained in A and is denoted by η^* -int(A). The intersection of all η^* -closed sets of X containing A is called as the η^* -closure of A and is denoted by η^* -cl(A).

Remark 2.6.

(i) regular open $\Rightarrow \pi$ -open $\Rightarrow \delta$ -open $\Rightarrow \eta^*$ -open $\Rightarrow \phi$ -open $\Rightarrow s$ -open $\Rightarrow \beta$ -open (ii) regular closed $\Rightarrow \pi$ -closed $\Rightarrow \delta$ -closed $\Rightarrow \eta^*$ -closed $\Rightarrow closed <math>\Rightarrow \alpha$ -closed $\Rightarrow s$ -closed $\Rightarrow \beta$ -closed (iii) regular open $\Rightarrow \pi$ -open $\Rightarrow \delta$ -open $\Rightarrow \eta^*$ -open $\Rightarrow \phi$ -open $\Rightarrow \phi$ -open $\Rightarrow \beta$ -open (iv) regular closed $\Rightarrow \pi$ -closed $\Rightarrow \delta$ -closed $\Rightarrow \eta^*$ -closed $\Rightarrow closed \Rightarrow \alpha$ -closed $\Rightarrow \phi$ -closed $\Rightarrow \beta$ -closed

Remark 2.7. For every subset U of X,

Definition 2.8. A subset A of a topological space (X, \mathfrak{I}) is said to be

(1) **J-closed** [10, 11] if $cl(A) \subset U$ whenever $A \subset U$ and U is η^* -open in X.

(2) **J*-closed** [12] if η^* -cl(A) \subset U whenever A \subset U and U $\in \mathfrak{I}$.

(3) **\delta-generalized closed** (briefly δ **g-closed**) [4] if δ -cl(A) \subset U whenever A \subset U and U \in \Im .

(4) δg^* -closed) [19] if δ -cl(A) \subset U whenever A \subset U and U is g-open in X.

(5) **J**-closed** [12] if η^* -cl(A) \subset U whenever A \subset U and U is η^* -open in X.

(6) π **g-closed** [5] if cl(A) \subset U whenever A \subset U and U is π -open in X.

(7) π gp-closed [14] if p-cl(A) \subset U whenever A \subset U and U is π -open in X.

(8) π gs-closed [3] if s-cl(A) \subset U whenever A \subset U and U is π -open in X.

(9) $\pi g\alpha$ -closed [2] if α -cl(A) \subset U whenever A \subset U and U is π -open in X.

(10) π gsp-closed [17] if sp-cl(A) \subset U whenever A \subset U and U is π -open in X.

(11) π g η -closed [6] if η -cl(A) \subset U whenever A \subset U and U is π -open in X.

(12) **J-open** (resp. **J*-open**, δg -open, δg *-open, πg -open, πg -open, $\pi g g$ -open, $\pi g \alpha$ -open, $\pi g g$ -open, $\pi g \eta$ -open) set if the complement of A is J-closed (resp. J*-closed, δg -closed, δg *-closed, J**-closed, πg -closed, $\pi g g$ -closed, $\pi g g - closed$, $\pi g g - closed$, $\pi g g - closed$).

III. πJ^* -CLOSED SETS

In this section a new class of generalized closed sets, called πJ^* -closed sets are introduced. The relations between πJ^* -closed sets and various existing generalized closed sets are investigated.

3.1 Definition A subset U of a topological space (X, \Im) is said to be πJ^* -closed if η^* -cl(U) \subset M whenever U \subset M and M is π -open in (X, \Im).

3.2 Theorem. Every J*-closed set is π J*-closed but not conversely.

Proof. Let U be a J*-closed set and M be any π -open set containing U in X. Since every π -open set is open, so M is open. Given that U is J*-closed, η^* -cl(U) \subset M. Hence U is π J*-closed.

3.3 Theorem. Every J**-closed set is π J*-closed but not conversely.

Proof. Let U be a J**-closed set and M be any π -open set containing U in X. Since every π -open set is η^* -open, so M is η^* -open. Given that U is J**-closed, η^* -cl(U) \subset M. Hence U is π J*-closed.

3.4 Theorem. Every η^* -closed set is πJ^* -closed but not conversely. **Proof.** Let U be a η^* -closed set and M be any π -open set containing U in X. Given that U is η^* -closed, η^* -cl(U) = U \subset M. Hence U is πJ^* -closed.

3.5 Corollary. Every r*-closed set is πJ^* -closed but not conversely. **Proof.** Since every r*-closed set is η^* -closed and every η^* -closed set is πJ^* -closed.

3.6 Corollary. Every regular-closed set is πJ^* -closed but not conversely. **Proof.** Since every regular-closed set is η^* -closed and every η^* -closed set is πJ^* -closed.

3.7 Corollary. Every π -closed set is πJ^* -closed but not conversely. **Proof.** Since every π -closed set is η^* -closed and every η^* -closed set is πJ^* -closed.

3.8 Theorem. Every δ -closed set is πJ^* -closed but not conversely.

Proof. Let U be a δ -closed set and M be any π -open set containing U in X. Given that U is δ -closed, δ -cl(U) = U \subset M. Therefore η^* -cl(U) $\subset \delta$ -cl(U) \subset M. Hence U is πJ^* -closed.

3.9 Theorem. Every δg^* -closed set is πJ^* -closed but not conversely.

Proof. Let U be a δg^* -closed set and M be any π -open set containing U in X. Since every π -open set is g-open, so M is g-open. Given that U is δg^* -closed, δ -cl(U) \subset M. Therefore η^* -cl(U) $\subset \delta$ -cl(U) \subset M. Hence U is πJ^* -closed.

3.10 Theorem. Every δg -closed set is πJ^* -closed but not conversely.

Proof. Let U be a δg -closed set and M be any π -open set containing U in X. Since every π -open set is open, so M is open. Given that U is δg -closed, δ -cl(U) \subset M. Therefore η^* -cl(U) $\subset \delta$ -cl(U) \subset M. Hence U is πJ^* -closed.

3.11 Theorem. Every θ -closed set is πJ^* -closed but not conversely.

Proof. Let U be a θ -closed set and M be any π -open set containing U in X. Given that U is θ -closed, θ -cl(U) = U \subset M. Therefore η^* -cl(U) $\subset \theta$ -cl(U) \subset M. Hence U is πJ^* -closed.

3.12 Theorem. Every πJ^* -closed set is πg -closed but not conversely. **Proof.** Let U be a πJ^* -closed set and M be any π -open set containing U in X. Given that U is πJ^* -closed, η^* -cl(U) \subset M. Therefore cl(U) $\subset \eta^*$ -cl(U) \subset M. We get cl(U) \subset M. Hence U is πg -closed.

3.13 Theorem. Every πJ^* -closed set is πgp -closed but not conversely. **Proof.** Let U be a πJ^* -closed set and M be any π -open set containing U in X. Given that U is πJ^* -closed, η^* -cl(U) \subset M. Therefore p-cl(U) $\subset \eta^*$ -cl(U) \subset M. We get p-cl(U) \subset M. Hence U is πgp -closed.

3.14 Theorem. Every πJ^* -closed set is πgs -closed but not conversely.

Proof. Let U be a πJ^* -closed set and M be any π -open set containing U in X. Given that U is πJ^* -closed, η^* -cl(U) \subset M. Therefore s-cl(U) $\subset \eta^*$ -cl(U) \subset M. We get s-cl(U) \subset M. Hence U is πgs -closed.

3.15 Theorem. Every πJ^* -closed set is $\pi g\alpha$ -closed but not conversely.

Proof. Let U be a πJ^* -closed set and M be any π -open set containing U in X. Given that U is πJ^* -closed, η^* -cl(U) \subset M. Therefore α -cl(U) $\subset \eta^*$ -cl(U) \subset M. We get α -cl(U) \subset M. Hence U is $\pi g \alpha$ -closed.

3.16 Theorem. Every πJ^* -closed set is πgsp -closed but not conversely.

Proof. Let U be a πJ^* -closed set and M be any π -open set containing U in X. Given that U is πJ^* -closed, η^* -cl(U) $\subset M$. Therefore sp-cl(U) $\subset \eta^*$ -cl(U) $\subset M$. We get sp-cl(U) $\subset M$. Hence U is π gsp-closed.

3.17 Theorem. Every πJ^* -closed set is $\pi g\eta$ -closed but not conversely.

Proof. Let U be a πJ^* -closed set and M be any π -open set containing U in X. Given that U is πJ^* -closed, η^* -cl(U) \subset M. Therefore η -cl(U) $\subset \eta^*$ -cl(U) \subset M. We get η -cl(U) \subset M. Hence U is $\pi g\eta$ -closed.

3.18 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, X, \{a\}\}$. Then the subset $A = \{b, c\}$ is η^* -closed as well as J*-closed but not δ -closed in (X, \mathfrak{I}) .

3.19 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, X, \{a\}, \{a, b\}\}$. Then the subset $A = \{b\}$ is J**-closed as well as πJ^* -closed but not η^* -closed in (X, \mathfrak{I}) .

3.20 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. Then the subset $A = \{b\}$ is πJ^* -closed but not δg^* -closed in (X, \mathfrak{I}) .

3.21 Example. Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}, \{a, c, d\}\}$. Then the subset $A = \{c\}$ is J**-closed as well π J*-closed in (X, \Im).

3.22 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$. Then the subset $A = \{a, b\}$ is J*-closed as well as π J*-closed but not J**-closed in (X, \mathfrak{I}).

3.23 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, X, \{a, b\}\}$. Then the subset $A = \{a\}$ is J**-closed as well as πJ^* -closed but not closed in (X, \mathfrak{I}) .

3.24 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then the subset $A = \{c\}$ is η^* -closed as well as πJ^* -closed but not r*-closed in (X, \mathfrak{I}) .

3.25 Remark. From the above definitions, theorems and known results the relationship between πJ^* -closed sets and some other existing generalized closed sets:

Where none of the implications is reversible as can be seen from the above examples:

IV. PROPERTIES Of πJ^* -Closed

In this section, we obtained properties of πJ^* -closed sets.

Theorem 4.1. Let X be a topological space. If A is π -open and πJ^* -closed, then A is η^* -closed. **Proof.** Let A is π -open and πJ^* -closed. Let $A \subset A$ where A is π -open. Since A is πJ^* -closed, η^* -cl(A) \subset A. Then $A = \eta^*$ -cl(A). Hence A is η^* -closed.

Theorem 4.2. Let X be a topological space. If A is regular-open and πJ^* -closed, then A is η^* -closed. **Proof.** Let A is regular-open and πJ^* -closed. Since every regular-open set is π -open and since A is πJ^* -closed, η^* -cl(A) \subset A. Then A = η^* -cl(A). Hence A is η^* -closed.

Theorem 4.3. Let A be a πJ^* -closed set in X. Then η^* -cl(A) – A does not contain any nonempty π -closed set. **Proof.** Let F be a nonempty π -closed set such that $F \subset \eta^*$ -cl(A) – A. Then $F \subset \eta^*$ -cl(A) $\cap (X - A) \subset (X - A)$ implies $A \subset X - F$ where X - F is π -open. Therefore η^* -cl(A) $\subset X - F$ implies $F \subset (\eta^*$ -cl(A)^c. Now $F \subset \eta^*$ -cl(A) $\cap (\eta^*$ -cl(A))^c implies F is empty.

Corollary 4.4. Let A be πJ^* -closed. A is η^* -closed iff η^* -cl(A) – A is π -closed.

Proof. Let A be η^* -closed set then A = η^* -Cl(A) implies η^* -cl(A) – A = ϕ which is π -closed. Conversely, if η^* -cl(A) – A is π -closed then A is η^* -closed.

Theorem 4.5. If A is πJ^* -closed and B is any set $A \subset B \subset \eta^*$ -cl(A) then B is πJ^* -closed. **Proof:** Since A is πJ^* -closed, η^* -cl(A) $\subset U$ whenever $A \subset U$ and U is π -open. Let $B \subset U$ and U is π -open. Since $B \subset \eta^*$ -cl(A), η^* -cl(B) $\subset \eta^*$ -cl(A) $\subset U$. Hence B is πJ^* -closed.

Theorem 4.6. If A is π -open and πJ^* -closed. Then A is η^* -closed and hence clopen. **Proof.** Let A be regular open. Since A is πJ^* -closed, η^* -cl(A) \subset A implies A is η^* -closed. Hence A is closed. (Since every π open η^* -closed set is closed). Therefore A is clopen.

Remark 4.7. Let (X, \Im) be a topological space. A finite intersection of πJ^* -closed sets may fail to be a πJ^* -closed set.

Example 4.8. Let $X = \{a, b, c, d\}$ and let $\Im = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let $A = \{a, b, c\}$ and $B = \{a, b, d\}$ are πJ^* -closed sets. But $A \cap B = \{a, b\} \subset \{a, b\}$ which is π -open. η^* -Cl($A \cap B$) = $X \not\subset \{a, b\}$. Hence $A \cap B$ is not πJ^* -closed.

Theorem 4.9. Let (X, \mathfrak{I}) be a topological space. Every finite union of πJ^* -closed sets is always a πJ^* -closed set.

Proof. Let A and B be any two πJ^* -closed sets. Therefore η^* -cl(A) $\subset U$ and η^* -cl(B) $\subset U$ whenever A $\subset U$, B $\subset U$ and U is π -open. Let A \cup B $\subset U$ where U is π -open. Since, η^* -cl(A \cup B) $\subset \eta^*$ -cl(B) $\subset U$, we have A \cup B is πJ^* -closed.

V. πJ*-OPEN SETS

In this section, we introduced πJ^* -open sets and obtained properties of πJ^* -open sets.

Definition 5.1. Let (X, \mathfrak{I}) be a topological space. A subset A of X is called πJ^* -open iff its complement is $\pi g\eta$ -closed set. We denote the family of all πJ^* -open (resp. πJ^* -closed) sets of a topological space by πJ^* -O(X) (resp. πJ^* -C(X)).

Lemma 5.2. If A be a subset of X, then (a) $\eta^*-cl(X - A) = X - \eta^*-int(A)$. (b) $\eta^*-int(X - A) = X - \eta^*-cl(A)$.

Theorem 5.3. A subset A of a space X is πJ^* -open iff $F \subset \eta^*$ -int(A) whenever F is π -closed and $F \subset A$. **Proof.** Let F be π -closed set such that $F \subset A$. Since X – A is πJ^* -closed and X – A \subset X – F where $F \subset \eta^*$ -int(A). Conversely. Let $F \subset \eta^*$ -int(A) where F is π -closed and $F \subset A$. Since $F \subset A$ and X - F is π -open, η^* -cl(X - A) = X - \eta^*-int(A) $\subset X - F$. Therefore A is $\pi g \eta$ -open.

Theorem 5.4. If η^* -int(A) \subset B \subset A and A πJ^* -open then B is πJ^* -open. **Proof:** Since η^* -int(A) \subset B \subset A, by **Theorem 4.5**, η^* -cl(X – A) \supset (X – B) implies B is πJ^* -open.

Remark 5.5. For any $A \subset X$, η^* -int $(\eta^*$ -cl $(A) - A) = \phi$.

Theorem 5.6. If $A \subset X$ is πJ^* -closed then η^* -cl(A) – A is πJ^* -open.

Proof. Let A be πJ^* -closed and F be a π -closed set such that $F \subset \eta^*$ -cl(A) – A. By **Theorem 4.3**, $F = \emptyset$ implies $F \subset \eta^*$ -int(η^* -cl(A) – A)). By **Theorem 5.3**, η^* -cl(A) – A is πJ^* -open.

Definition 5.7. A topological space X is called a $\pi J^*-T_{1/2}$ space if every πJ^* -closed set is η^* -closed.

Theorem 5.8. Let (X, \Im) be a topological space.

(a) $\eta^*-O(X) \subset \pi J^*-O(X)$,

(b) A space X is $\pi g \eta - T_{1/2}$ iff $\eta^* - O(X) = \pi J^* - O(X)$.

Proof. (a) Let A be a η^* -open set, then X – A is η^* -closed so X – A is πJ^* -closed. Thus A is πJ^* -open. Hence η^* -O(X) $\subset \pi J^*$ -O(X).

(b) Necessity: Let (X, \mathfrak{I}) be $\pi J^*-T_{1/2}$ space. Let A be πJ^* -open. Then X – A is πJ^* -closed. By hypothesis, X – A is η^* -closed. Thus A is η^* -open. Therefore $\eta^*-O(X) = \pi J^*-O(X)$.

Sufficiency: Let $\eta^*-O(X) = \pi J^*-O(X)$. Let A be πJ^* -closed. Then X – A is πJ^* -open. X – A is η^* -open. Hence A is η^* -closed. This implies (X, \Im) is $\pi J^*-T_{1/2}$ space.

Lemma 5.9. Let A be a subset of X and $x \in X$. Then $x \in \eta^*$ -cl(A) iff $V \cap \{x\} \neq \phi$ for every η^* -open set V containing x.

Theorem 5.10. For a topological space X the following are equivalent:

(a) X is $\pi J^*-T_{1/2}$ space.

(b) Every singleton set is either π -closed or η^* -open.

Proof. (a) \Rightarrow (b): Let X be a $\pi J^*-T_{1/2}$ space. Let $x \in X$ and assuming that $\{x\}$ is not π -closed. Then clearly $X - \{x\}$ is not π -open. Hence $X - \{x\}$ is trivially a πJ^* -closed. Since X is $\pi J^*-T_{1/2}$ space, $X - \{x\}$ is η^* -closed. Therefore $\{x\}$ is η^* -open.

(b) \Rightarrow (a): Assume every singleton set of X is either π -closed or η^* -open. Let A be a πJ^* -closed set. Let $x \in \eta^*$ -cl(A).

Case I: Let $\{x\}$ be π -closed. Suppose x does not belong to A. Then $x \in \eta^*$ -cl(A) – A. By **Theorem 4.3**, $x \in A$. Hence η^* -cl(A) $\subset A$.

Case II: Let $\{x\}$ be η^* -open. Since $x \in \eta^*$ -cl(A), we have $A \cap \{x\} \neq \phi$ implies $x \in A$. Therefore η^* -cl(A) $\subset A$. Therefore A is η^* -closed.

VI. CONCLUSION

The concept of new closed set namely πJ^* -closed set using η^* -open sets is introduced and studied. The relationship of πJ^* closed sets using existing closed sets is established. Finally, some of their fundamental properties are studied. The πJ^* -closed set can be used to derive a new concepts such as πJ^* -closed map and πJ^* -open map, πJ^* -continuous, πJ^* -homeomorphism, πJ^* -closure and πJ^* -interior and πJ^* -separation axioms. This idea can be extended to bitopological and fuzzy topological spaces.

REFERENCES

- [1] M. E. Abd EI-Monsef, S. N. EI-Deeb and R. A. Mahamoud, β-open and β-continuous mappings, Bull. Fac. Assut Univ. Sci. 12 (1983) 77.
- [2] Arockiarani and C. Janaki, πgα-closed set and Quasi α-normal spaces, Acta Ciencia Indica. 33(2) (2007) 657-666.
- [3] A. Aslim, A. Caksu Guler and T. Noiri, On πgs-closed sets in topological spaces, Acta Math. Hungar. 112 (2006) 275-283.
- [4] J. Dontchev and M. Ganster., On δ generalized closed sets and T3/4 spaces, Mem. Fac. Sci. Kochi. Univ.math. 17 (1996) 15-31.
- [5] J. Dontchev and T. Noiri, Quasi-normal spaces and πg -closed sets, Acta Math. Hungar. 89(3) (2000) 211-219.

- [6] H. Kumar, πgη-closed sets and some related topics, Jour. of Emerging Tech. and Innov. Res. 8(6) (2021) 367-374.
- [7] N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly. 70 (1963) 36-41.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo.19(2) (1970) 89-96.
- [9] A. S. Mashour, On pre continuous and weak pre continuous functions, Pro.Math. Phys.Soc. Egypt, 53 (1982) 47-53.
- [10] P. L. Meenakshi and K. Sivakamasundari, Unification of regular star open sets, International Journal of research and analytical reviews, Special Issue. 6 (2019) 20-23.
- [11] P. L. Meenakshi and K. Sivakamasundari, J-closed sets in topological spaces, JETIR. 6 (2019) 193-201.
- [12] P. L. Meenakshi and K. Sivakamasundari, J**-closed sets in topological spaces, Malaya Journal of Matematik, S(1) (2020) 206-213.
- [13] O. Njastad, On some class of nearly open sets, Pacific. J. Math., 15 (1965) 961-970.
- [14] J. H. Park, On πgp-closed sets in topological spaces, Indian Journal of Pure and Appl. Math., 112 (2006) 257-283.
- [15] S. Pious Missier and M. Annalakshmi, Between Regular Open Sets and Open Sets, IJMA.7(5) (2016) 128-133.
- [16] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968) 103-118.
- [17] M. S. Sarsak and N. Rajesh, π-generalized semi-preclosed sets, International Mathematical Forum. 5(12) (2010) 573-578.
- [18] M. H. Stone, Application of the theory of boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937) 375-481.
- [19] R. Sudha and K. Sivakamasundari, δg^* -closed sets in topological spaces, International Journal of Mathematical Archive, 3(3) (2012) 1222-1230.
- [20] V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR. 178 (1968) 778-779.