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Abstract  — The presence of insignificant predictors in models causes estimation bias and reduces prediction precision. 

Collinearity among predictors is a common problem that renders the design matrix unstable leading to unreliable OLS 

coefficient estimates. Multiple linear regression analysis in a non-regularized routine is unsatisfactory due to poor prediction 

as the inclusion of all variables reduces noise but increases variance and for interpretation, it becomes necessary to identify 
the important predictors that have a high influence on the response variable. The study implements the Bayesian Stochastic 

Search Variable selection (B-SSVS) algorithm in the context of multiple linear regression with the incorporation of a 

correlation factor prior specification to address the correlation problem which reduces the performance of the Markov chain 

Monte Carlo and Gibbs sampling process. Further, comparative analysis on variable selection performance with classical 

penalized methods Elastic Net and Least Absolute Shrinkage Selection Operator (Lasso) is done using simulated data. We 

found that B-SSVS with a correlation factor prior showed good performance, mixing and convergence properties based on the 

diagnostic tests. B-SSVS performed better in variable selection compared to Elastic Net and Lasso shrinkage methods. We also 

found out that Elastic Net outperforms Lasso in detecting the true predictors and has less cross-validation mean squared error. 

 

Keywords — Bayesian theory, Classical penalized methods, Gibbs Sampling, Markov Chain Monte Carlo, Stochastic Search 

Variable selection. 

I. INTRODUCTION  
Multiple linear regression model fitting is a common method used when studying the relationship between continuous 

dependent and independent variables because it is simple and computationally cheap. However, due to the inability to define 

the distribution effects of each variable, redundant variables are included which require model selection to improve the 
accuracy and parsimony of the final model. Finding a parsimonious model is a function of variable selection where there exist 

unknown subsets of predictors that are irrelevant and redundant. According to [1] statistical modeling is aimed at fitting a 

model with a minimized number of variables which gives a better description of the data and also results in numerical stability. 

[2] Terms finding of parsimonious models a variable selection problem that helps identify the explanatory variables of 

important correlation to the dependent variable statistically and in practice.  

 

Reference [3] notes that selected predictors in variable selection should be diverse with minimal collinearity. Common 

subset selection methods are filter types that use the approach of pre-ordering stepwise search and data-driven ranking of 

variables causing competition bias and selecting a single model that underestimates uncertainty about quantities of interest [4]. 

Following [5] the single model approach for variable selection tends to select inflated coefficients and ignore uncertainty. 

Further failure to account for correlation among predictors tends to results in the inclusion of highly correlated redundant 

variables at the cost of omitting the significant ones that can improve the predictive performance [6]. Penalized or shrinkage 
methods such as ridge regression, least absolute shrinkage selection operator (Lasso), Elastic net rely on a parameter which 

there is no consensus on how to determine its suitable value making the methods unstable [7]. 

 

II. LITERATURE REVIEW 

Reference [8] analyzed the use of SSVS as first introduced by George and McCulloh. Their research shows how SSVS 

fused ideas used in hierarchical prior designs and Gibbs sampling under data augmentation to select variables in the case of 

ignorable mechanisms on missing data. They outline how the binary inclusion indicator γ= 1 or 0 allowed the setup of Gibbs 
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based algorithm for searching model space. Their paper outlines how to set up B-SSVS informative priors (2,  βγ, γ)and 

hyper-parameter (2, c2) specification for variable selection where they point out the importance of logical augmentation when 

setting priors and hyper-parameters and their priors depending on the characteristic of the data set. 

 

Reference [9] looked into two variable selection approaches; Imputation Then Select (ITS) and Simultaneously Impute 

And select (SIAS) in the case of incomplete data under the missing mechanisms MCAR and MAR. The proposed Bayesian 

SSVS procedures were done using the Gibbs Sampling algorithm on the linear regression model. In their study out of 13 

available variables only 5 were selected as per the threshold MIP = 0.5 i.e. only those variables in the sample with MIP > 0.5 

were considered. SIAS outperformed ITS as it generated smaller standard errors for all explanatory variables in the final model 

selected and compared to other models from stepwise selection and criterion-based model comparison.  

 
Reference [10] developed the SSVS algorithm for variable selection in psychology and compared the proposed algorithm 

to frequentist methods such as bivariate correlation and Lasso. SSVS proved to be a more appropriate and useful method as it 

caters for model and parameter uncertainty. SSVS set of selected predictors explain the response variable (pain unpleasantness) 

more by 13% than the models from the other two methods, also SSVS includes a very significant neuron-biological predictor 

of pain unpleasantness consistent with pain literature, unlike the other methods that excluded it. Further, the findings show that 

if a predictor is selected by SSVS then it has a high likelihood of being picked by other methods i.e. SSVS was a subset of 

Bivariate correlation and Lasso with 91% − 99% inclusion in Lasso of predictors from SSVS versus 17% − 43% those chosen 

on Lasso being included in SSVS. The researcher suggests the use of narrower predictor priori if the information is available as 

opposed to flat uninformative priori. 

 

Reference [11] proposed a Bayesian selection procedure for quantile regression using simple and efficient stochastic 
search variables and illustrated the method using simulated Boston Housing data. The approach used asymmetric Laplace 

distribution which allowed the use of conditional conjugacy. The algorithm was computationally fast taking 17 seconds for the 

complete 11, 000 samples of Boston Housing data. The QR- SSVS outperformed the models selected with frequentist methods, 

with frequentist methods having a higher Type 1 error rate while the 95% confidence interval for βγ obtained through QR-

SSVS containing true values in most simulations. 

 

III. DATA AND METHODS. 

A. Data 

To evaluate and compare the variable selection performance of the B-SSVS and other properties, we mimicked and 

simulated data that assumed a scenario where the dependent variable is continuous and depends on a few of the simulated 

predictors in the sample set such that the others are irrelevant and redundant.[15].   
 

1. Simulation 1:  Using 𝑥𝑗~N(0,1); j=1,2,3,.....8 of size n- sim (N)=100 as the predictor variables with exception of 𝑥3= 

𝑥2+0.5Z where Z∼ N(0,1) to yield a strong correlation 𝜌 >0.9 between and to help illustrate how B-SSVS performs in 

case of extreme Collinearity. 𝑦𝑖; i = 1, 2,..., 100 the dependent variable was simulated such that 𝑦𝑖 = 𝑥𝑖1+1.2𝑥𝑖2 +𝜀𝑖 

where is the error term distributed as  𝜀𝑖~𝑁(0, 𝜎2) with  𝜎 = 2.5 

 

2. Simulation 2: For the second simulation sample data, the independent predictors was increased to p=30. For 𝑥𝑗  ; j=1, 

2, 3,.....p =30 of size N=100, the independent variable were generated to have some correlation such that 

 𝑥𝑗= 𝑥𝑗
∗ + 𝑍 where 𝑥𝑗

∗ and Z are from independent normal distribution N (0,1) to yield a correlation  (𝑥𝑗 , 𝑥−𝑗) = 0.5 to 

help also illustrate how B-SSVS and the other two methods to be compared (Lasso and Elastic Net) perform  in case 

of collinearity. We simulated 𝑦𝑖;i = 1,2,....,N = 100  the continuous dependent variable such that 𝑦𝑖 =∑ 𝑥𝑖𝑗𝛽𝑗 + 𝜀𝑖
𝑝
𝑗=1  

where  𝛽𝑗= 2.5 for j = 1,2....6,  𝛽𝑗= 2.0 for j = 7,8,.....,14, 𝛽𝑗  = 1.5 for j = 15,16,....,25 and 𝛽𝑗= 0 for j = 26,27,........30 

also 𝜀𝑖 is the error term distributed as 𝜀𝑖~𝑁(0, 𝜎2)  with  𝜎 = 1.5. 

B. Methods 

a) Multiple linear regression review 

Regression analysis aims to explain a response variable Y using a set of covariates/ predictor variables X = x1, … . , xp 

assumed we have a data set (Y, X) where Y is n by 1 vector and X is n by p matrix (n is the number of observations and p is the 

number of predictors). In Multiple Regression it follows that Y ∈  R is a function of variables x1…, x p.  and a parameter 

vector β, modeled as: 
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𝑦𝑖 = 𝛽0 + ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

+ 𝜀𝑖 

i~ N(0,2), iid for  i=1,……n 

The parameter β = (β0 + β1 +…… + βp)′ are the corresponding coefficients of the predictor variable x j; j = 1,……., 

P estimated by Maximum Likelihood, Matrix and Least Square methods. We differentiate the minimization of the residual 

sum of squares, quadratic equation of parameter p+1 with respect to β to get β̂: 

∑ i
2

n

i=1

= RSS() = (Y − X)′(Y − X) 

∂RSS

∂
= 2X′(Y − X) 

X′(Y − X) = 0 

∴ β̂ = (X′X)X′Y 

Ŷ= Xβ̂ = X(X′X)X′Y + ε 

b) B-SSVS 

The study utilizes the stochastic search variable selection (SSVS) a Bayesian approach pioneered by [12] setting the fusion 

idea of using hierarchical prior designs and Gibbs sampling under data augmentation to select variables. The aim is to obtain 

P(γi = 1|Y) which is the weight of covariate xj being included in the model space by considering all 2p possible models. 

 

Let consider a sample of n observations, the data takes the form (Y, X) whose relationship is defined by the normal linear 

model, with n × 1 vector space for Y dependent variable and X = x1, … … . , xpof dimension n× p predictor matrix. 

We denote the canonical model Y = β0 + Xβ + ε with εi~N(0, σ2)β and σ being the model parameters.  Precisely Y~Nn(β0 +
Xβ, σ2I). We index a binary indicator γ = γ1, … … … … , γp taking values 1 or 0 for each predictor. 

                 ; If γj= 1 then variable xj is included in the model otherwise if γj= 0 then variable  xj is excluded 

          We get yi = β0 + γ1β1xi1 + γ2β2xi2 + ⋯ + γpβpxip + εi.  

We assume some coefficients for βj are small likely zero or in the neighborhood of zero  thus can be ignored in the model. 

Hence given γ we obtained the regression of the form; Y = β0+xγβγ+ε that contains predictors xj and coefficients βj whose 

 γ j = 1. 

 

An important component in B-SSVS is the specification of the prior distribution (π) because they impact the estimation of 

the model which also affects the parameters chosen with their bias, standard deviation, coverage rates and mean squared error 

[11]. Bayesian analysis requires specification of prior distributions for each parameter included in the analysis 

i.e.π(β0), π(β |2, γ), π(2), π(γ). 

 

From the canonical model where X′X is the correlation matrix, the B-SSVS prior on the binary variable selection indicator 

(γ = 1 or 0) was not specifically designed to handle correlated predictors in variable selection and in their papers ([8], [11], [12] 

and [13]) they noted that highly correlated predictors tend to reduce MCMC convergence. Following that, we introduce the 

adaptive correlation factor ( X′X)ω . The power ω ∈ ℜ is used to control how the priors will smooth out correlated covariates. 

With ω > 0 and ω < 0 making the collinear predictors smooth towards or away from each other respectively as detailed in 

[14]. 

 

c) Hierarchical Bayesian SSVS Model 

Model selection in Bayesian is based on the posterior probabilities of the model given as the product of the prior 

probabilities of the model parameters π(θ), θ = β,2, γ and the likelihood ∏ 𝖿(yi |β, σ2)n
i=1 . 

To perform variable selection the following hierarchical set up is used: 

Y|  β0,β,  σ2, γ, X~ N(β0, + Xγβγ, σ
2) 

π(β0)~(μ, ϑ)  
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The prior of coefficients βj, j = 1, 2…, p given the latent binary γj takes the mixture of two 

Gaussian distribution with different variances ss presented in [15] George & McCulloch (1997). 

π(βj | γj) ∼ (1 – γj)N (0, τj
2) + γjN (0, cj

2τj
2) 

; γj= 0,  β j ∼ N(0, τj
2), γj = 1,  β j ∼ N (0, cj

2τj
2) 

 

; τj is chosen to be very small and cj
2 large so that if γj = 1,  βj is included in the model and 

γj = 0,  βj tend to the neighborhood of zero thus excluded. 

Model space prior π(γ) ∼ Bernoulli (1,α): 

π(γ) = ∏ αγj

p

j=1

(1 − α)1−γj  

 

For that, we introduced a correlation factor matrix from [14] as  (X′X) ω  and based on [16]  ω =
1

2
 , a penalty factored into the 

prior π(γ) to account correlation between covariates to obtain: 

π(γ| α) ∝  ∏ αγj

p

j=1

(1 − α)1−γj√det(Xγ
′ Xγ) 

 

For 2 a conjugate uniform Jeffrey’s prior on log (2), i.e., π(σ2) = σ−2   is used for this study: 

 

π(2| γ)~ IG(
νγ

2
,
λγνγ

2
) 

 

with νγ > 0 the shape and λγνγ > 0 the scale being parameters of the distribution to be specified. 

 

Parameters in the specification of prior are called hyperparameters and their definition is important in the accurate 

specification of the prior distribution probabilities. These include; cj, τj, λγ, νγμ, ϑ and α. Based on previous research studies 

we utilized the following values for the hyperparameters; (νγ = λγ, νγ ≡ 0) yielding non-informative prior for 2, α = 0.5 = 

0.5 for γ, 
σβj

τj
≈ 1 hence obtainτj, c j ≡ 10 for β and  μ = 0, ϑ = 2 for 

0
. 

The likelihood is the probability density function that is data-driven which for the linear regression model takes the following 

form: 

L(Y|𝛃, 2) =  ∏ 𝖿(yi |β, σ2)n
i=1  

= (
1

2πσ2
)

n
2

 exp {
−1

2σ2
(Y − Xβ)′(Y − Xβ)} 

∝ (
1

σ2
)

n
2

 exp {
−1

2σ2
(Y − Xβ)′(Y − Xβ)} 

 

With observed data let call it D = (X, Y) and by Bayes theorem, the posterior distribution for any parameter θ takes the form; 
 

P( θ |Dn ) =
P(Dn|θ)  π(θ)

P(Dn)
=

L(θ)π(θ)

cn

 

 

 L(θ) = ∏ f(yi|β, σ2) = P(Dn|θ)n
i=1  is the likelihood function, 

π(θ) Is the prior of the parameters. 

Cn= P(Dn) = ∫ P(Dn|θ)  π(θ)dθ = ∫ L(θ) π(θ)dθ  is the normalizing constant. 

 

d) Markov Chain Monte Carlo (MCMC) and Gibbs Sampling 

Markov chain Monte Carlo procedures as outlined in [17] and [18] are a class of algorithms that samples from probability 

distribution in this case the posterior by making iterative steps.  [19] Notes that the MCMC approach aims to create a random 

walk that converges to the target posterior distributions. MCMC via Gibbs sampling algorithm simulates from the target 
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posterior distribution to generate samples of models of higher posterior probabilities. Gibbs sequence takesβ0,
0  β0,  σ0, γ0,  

β0,
1 β1,  σ1, γ1, … … … … … … . . , β0,.

M βM,  σM, γM; where M is the total number of iterations. β0,
0 β0 and 𝜎0 was initialized to be the 

least-squares estimates of MLR, and γ0 was initialized as γ0 = (1,1, … ,1 of dimension p), the subsequent values of 𝛽0,
𝑘 ,

𝛽𝑘 ,  𝜎𝑘 , 𝛾𝑘 ; 𝑘 = 1,2, . . , 𝑀 are obtained by successively simulating values from the stationary posterior distribution. 

 

e) Lasso 

Using the linear model Y = β0 + Xβ + ε where Y is the response variable, X is the input variables, and ε is the error term. The 

Lasso minimizes the residual sum of squares based on the L1 norm: 

 

(∑ yi −  β0 − β1xi1 − β2xi2 − ⋯ −  βpxip

n

i=1

)

2

 

 

Subject to  λ (∑ |βj|
p
j=1

2
)

1

2
 < s 

which is the penalized sum of the absolute value of the coefficients being less than a constant.  λ ≥ 0 controls the amount of 

shrinkage with some coefficients tending towards zero i.e  βj → 0 [20]. β0 is excluded from penalty implying that ;  

 

β0 = Y̅ =
∑ yn

i=1
n⁄  

 

β̂ = argminβ (||Y − Xβ||2 + λ ∑ |βj|
j

 ) 

 

β̂ = (X′X − λI)(X′Y 

 

1. Elastic Net: The method combines the L1 penalty and L2 penalty on coefficients [21]. The ridge L2 encourages the 

grouping effect by averaging the correlated variables and the L1 penalty promotes sparsity. It follows that the ’Elastic Net’ 
minimizes the residual sum of squares: 

(∑ yi − β0 − β1xi1 − β2xi2 − ⋯ −  βpxip

n

i=1

)

2

 

 

Subject to λ1 ∑ |βj|
p
j=1 < t  and λ2 ∑ βj

2p
j=1 < t 

 

Letting α =
λ2

λ1+λ2
 

 

β̂ =  argminβ|Y − Xβ|2 s. t (1 − α)|β|1 + α|β|2  < t 

 

where   λ1, λ2 ≥ 0  controls the amount of shrinkage.  

 

IV. RESULTS AND DISCUSSION 

We assessed the performance of the BSSVS with the incorporated correlation factor prior for the latent binary parameter =
1 𝑜𝑟 0 . The summary results from simulation 1 will aid in evaluating the B-SSVS ability to select true predictors associated 

with the outcome and the fit of the process in the variable selection process under the defined priors, likelihood and parameters 

defined in the previous chapter.  

 

The main objective in statistics is to extract information from available data while ensuring high accuracy of the parameter 
estimators [22]. From Table 1 below the B-SSVS has high accuracy in estimating the posterior coefficient parameter mean 

values at a low standard error as evident in the 𝛽1 , 𝛽2 coefficients whose simulation and B-SSVS estimated values are (1, 1.2) 

and (0.9479,1.1023) respectively. Figure 1 and Table 1  contains posterior marginal inclusion probabilities (MIP)  which shows 

the ability of the B-SSVS technique to detect the relevant variable, based on the MIP median rule to include variables whose 

P(𝛾𝑗 = 1 | X,Y) > 0.5 only the relevant and significant predictor coefficients were selected. The MIP for 𝛽3  is tending towards 
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the selection criteria but these can be attributed to its high correlation to the relevant variable X2. Further, the ability of B-

SSVS not to include the false positive parameter β3 signifies its power to phase out irrelevant variables that are highly 

correlated to outcome associated covariates similar to findings of ([23] and [24]). 

 

Table 1. Estimation results for β from the posterior sample of the BSSVS 

 Mean Std. Err Cred.Interval at 95% P(𝛾𝑗  = 1 | X,Y) Distribution 

Intercept (β0) 

β1 

β2 

β3 

β4 

β5 

β6 

β7 

β8 

σ 2 

0.6389 0.0242 [0.591, 0.686] 1.000 Empirical 

0.9479 0.0356 [ 0.941, 1.022] 1.000 Empirical 

1.1023 0.0208 [ 1.041, 1.222] 1.000 Empirical 

0.4389 0.0242 [ 0.391, 0.486] 0.474 Empirical 

0.3389 0.0242 [ 0.311, 0.386] 0.014 Empirical 

-0.0321 0.0320 [-0.061, 0.057] 0.354 Empirical 

0.4310 0.0538 [ 0.446, 0.657] 0.237 Empirical 

-0.0021 0.0300 [-0.011, 0.037] 0.174 Empirical 

1.5410 0.0538 [ 1.446, 1.657] 0.384 Empirical 

0.8151 0.0811 [ 0.672, 0.988] 1.000 Empirical 

 

Fig. 1 Graphical presentation of marginal inclusion probability (MIP) of each β 

 

The output for Table 2, 3 and 4 are summaries after the autocorrelations, Raftery-Lewis Diagnostics (q=0.025000, 

r=0.010000, s=0.950000), Geweke Diagnostics, Heidelberg Welch Diagnostics and Gelman Rubin Diagnostics met the required 
properties for convergence, stable and efficient MCMC sampling process. 
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                                    Table 2. Estimation results for covariates from the posterior sample 

Covariate Mean Std.dev NSE RNE 

X1 0.993971 0.027528 0.001376 1.000000 

X2 1.309894 0.070228 0.003511 1.000000 

X3 -0.105704 0.055540 0.002777 1.000000 

X4 -0.025452 0.030501 0.001525 1.000000 

X5 0.053792 0.027939 0.001397 1.000000 

X6 -0.110794 0.029613 0.001481 1.000000 

X7 -0.015487 0.022197 0.001110 1.000000 

X8 -0.005907 0.032155 0.001608 1.000000 

 

Table 3. Progress summary of NSE and RNE across the Gibbs Sampling 
  

MCMC relative numerical efficiency (RNE) and numerical standard error (NSE) show the computation efficiency for the 

number of draws that are effective for posterior inference. Table 2 shows the mean estimates of the sampled X values with their 

respective NSE and RNE, across each row we see that each predictor was sampled and estimated at a very low near zero NSE 
and high RNE. Table 3 depicts the trend of the NSE and RNE at different % of the iteration process which clearly shows a 

decrease for NSE and an increase for RNE signifying an improving sampling chain as it converges to the required stationery 

distribution hence giving better posterior samples. 

       Table 4. Autocorrelation for covariates at different lags 

Covariate lag 1 lag 20 lag 50 lag 100 

X1 0.494 -0.075 0.011 -0.011 

X2 0.581 -0.008 -0.063 -0.014 

X3 0.518 -0.094 -0.048 -0.047 

X4 0.484 -0.091 -0.013 -0.116 

X5 0.377 -0.080 0.024 -0.004 

X6 0.425 0.097 -0.089 -0.089 

X7 0.349 -0.148 -0.051 -0.018 

X8 0.524 -0.082 -0.030 -0.105 

 

Table 4 tells how much correlation exists between the MCMC draws. Autocorrelation should drop relatively quickly and 

decay to zero as the chain progresses. The lag k autocorrelation ρk is the correlation between every draw and its kth lag: 
 

ρk =
∑ (xi − x̅)(xi+k − x̅)n−k

i=1

∑ (xi − x̅)2n
i=1

 

 

The results, therefore, show that the B-SVS performed well as kth lag autocorrelation was smaller ask increased indicating 

a low degree of correlation between our draws and fast mixing. The chain requires thinning according to the lag to get 

independent samples applicable for posterior statistics inference. 

 

Covariate NSE 4% RNE 4% NSE 8% RNE 8% NSE 15% RNE 15% 

X1 0.000991 0.399020 0.000995 0.396237 0.000808 0.599878 

X2 0.002778 0.396206 0.003355 0.271634 0.003086 0.321174 

X3 0.003720 0.221012 0.003421 0.261266 0.003355 0.271634 

X4 0.001314 0.227047 0.001116 0.314648 0.000995 0.396237 

X5 0.003706 0.222615 0.003618 0.233605 0.003373 0.268729 

X6 0.001272 0.242412 0.001317 0.225890 0.001201 0.271902 

X7 0.002991 0.299020 0.002895 0.395237 0.002808 0.399878 

X8 0.001891 0.229020 0.001095 0.266237 0.001008 0.279670 
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In simulation 2, we ran an analysis using our different techniques (B-SSVS, Lasso, and Elastic Net). We looked into how 

the different techniques were performing in selecting relevant and active predictors that influence the dependent variable. The 

comparison result entails average predictors, selection power as per the true positive predictor and the tendency to type I error 

as per the false-positive predictor values.  

Table 5. True positives (TPs) and False Positives (FPs) Predictors for each method 

Method Avg. no. of predictors No. of TPs No. of FPs 

B-SSVS P(𝛾𝑗  = 1 | X,Y ) > 0.5 

Lasso 

26.86 

28.44 

25.22 

22.34 

1.64 

6.10 

Elastic Net 28.30 24.24 4.06 

 

Fig. 2 Plots showing the number of average, TPs and FPs predictors selected by each method 
 

True positive predictors are those predictors in the model that have an actual and statistically significant effect on the 

outcome while False-positive predictors are the redundant and irrelevant ones included in the model. The value of true 

positives shows the selection power of a technique while the value for the false positives shows how the techniques can control 

false discovery rate and type I error [23]. From the simulation, 25 predictors are influencing the outcome. From Table 5 and 

Figure 2 B-SSVS (25.22, 1.64) can select near to accuracy the true positive predictors with minimal inclusion of the false-
positive predictor followed by Elastic Net (24.34, 4.06) and lastly Lasso (22.34, 6.1) 

 

V. CONCLUSION 

With developments in technology and tools for data collection getting big data with many predictors is common and in 

research analysis, there is usually information asymmetry on which predictors to consider in modeling. Finding a technique 
that performs variable selection simultaneously rather than on individual cases was the baseline for the study to look into  

 

B-SSVS which was compared to Elastic Net and Lasso methods. B-SSVS technique caters for correlation and uncertainty 

in variable selection as presence of collinearity yield ‘poor’ OLS estimates of the regression parameters [25]. The study has 

shown that B- SSVS with incorporated correlation factor prior that ensures Markov Chain is irreducible exhibits good mixing, 

convergence and high accuracy in selecting relevant predictors. Secondly, B-SSVS outperforms Elastic Net and Lasso, this is 

attributable to higher true positive predictor detection power augmented with lower false discovery hence reduced type I error, 

low numerical standard error with high relative numerical efficiency. On the Shrinkage methods; Elastic Net performed better 

than Lasso.  

 



Christabel Nyanchama Bisonga et al. / IJMTT, 68(2), 19-27, 2022 
 

27 

Due to the problems and limitations encountered in multiple regression and common classical subset selection techniques 

like R2, AIC, BIC, t-statistic, stepwise, forward and backward regression improvements are desirable. [26] Notes that even 

two-stage least squares method is less sensitive to both specification error and multiple co-linearity. B-SSVS has shown good 

performance in variable selection which helps improve prediction accuracy, interpretability in analysis and modeling. Elastic 

Net and Lasso are also averagely effective for the variable selection but do not distinctively identify true predictors related to 
the outcome as they tend to have a higher false-positive predictor inclusion (type I error) than the Bayesian approach. The B-

SSVS with correlation prior can be extended to generalized methods where the outcome takes other forms, like binary, ordinal 

and count. Although, the study was based on scenarios where p < n other researchers especially in genes selection studies have 

shown viable extension to p > n scenarios. 
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