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Abstract — Let ( , )G V E  be a graph. For each v V , the open support of v  under addition, denoted by ( )supp v , is the 

sum of degrees of vertices adjacent to v . The open support of G  under addition is the sum of supports of all its vertices. In 

this paper, we determined the open support of some special types of graphs. We also defined the open support of an edge 

under addition and showed its connection with the open support of a G .  
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I. INTRODUCTION  
Any mathematical object involving points and connections between them may be called a graph. They may represent 

physical networks, such as transportation networks, electrical circuits, or organic molecules [12-25]. They are also used in 

representing less tangible interactions as might occur in databases, sociological relationships, or in the flow of control in a 

computer program. One of the most basic notation in graph theory is the degree of a vertex, many graph structure properties 

can be characterized by it. For example, the famous Hand Shaking Principle implies that the sum of degrees of the vertices of a 

graph is twice the number of edges.  

 

The graph considered in this paper are finite, undirected and simple. Let ( ( ), ( ))G V G E G  be a graph with n  vertices and 

m  edges. The degree of a vertex v V ,  denoted by ( )Gd v  , is the number of edges of G  incident with v . The maximum 

degree and minimum degree of G  are denoted by ( )G  and ( )G , respectively. A vertex of a degree 0  in G  is called an 

isolated vertex and a vertex of degree 1  is called a pendent vertex or an end vertex of G . The edge incident with a pendent 

vertex is a pendant edge. The neighborhood of a vertex ( )v V G  is ( ) { ( ) ( )}GN v u V G uv E G  ∣ . The open neighbourhood 

of a set ( )X V G  is ( ) : ( )G v X GN X N v  . The vertex delete subgraph G v  is obtained by deleting v  together with all the 

edges incident with v .  The following concepts was introduced by Balamurugan et al. [2,3].  

 

Definition 1.1. Let ( , )G V E  be a graph. An open support of a vertex v  under addition is defined by 
( )

( )
u N v

d u
  and it is 

denoted by ( )supp v . 

 

Definition 1.2. Let ( , )G V E  be a graph. An open support of G  under addition is defined by 
( )

( )
v V G

supp v
  and it is 

denoted by ( )supp G . 

The open support of paths, cycles and complete (bipartite) graphs are easily determined. In [2,3,9], the open support of 

some special types of graphs were studied. Interested readers may also see [4,5] for results concerning closed supports of 

graphs. In this paper, we give the open support of some more graphs. We also define the open support of an edge under 

addition and show a connection to the open support of a graph. 

II. DEFINITIONS 

In this section, we give some definitions and notations which can be found in [1,6,7,8,10,11]. 

Let 1 1 1( , )G V E  and 2 2 2( , )G V E  be two disjoint graphs. We get some larger graphs from them as follows. 
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Cartesian product 
1 2G G with vertex set

11 2 2: {( , ) : ( ) and ( )}V V u v u V G v V G    and edge set 

1 1 2 2 1 2 1 2 2 1 2 1 1 2{( , )( , ) : , ( ) or ( ), }u v u v u u v v E G u u E G v v    . 

Direct (or tensor) product 
1 2G G  with vertex set 

1 2V V  and edge set 
1 1 2 2 1 2 1 1 2 2{( , )( , ) : ( ) and ( )}u v u v u u E G v v E G  . 

Strong (or normal) product 
1 2 1 2 1 2: ( ) ( )G G G G G G  ) . 

A path with n  vertices is denoted by 
nP . 

Definition 2.1. The planar grid 
m nP P  is the cartesian product of paths 

mP  and 
nP . 

Definition 2.2. Möbius ladder is obtained from the planar grid 
2nP P  by joining the opposite endpoints of the two copies of 

nP . 

Definition 2.3. The book graph 
mB  is the  cartesian product  

2mS P , where 
mS  is the star with 1m   vertices. 

Definition 2.4. The helm graph 
nH  is obtained from a wheel 

nW  with center w  by attaching a pendant vertex at each vertex 

except w . The sun graph is obtained by deleting w  from the helm 
nH . 

Definition 2.5. The generalized helm m

nH  is obtained by inserting m  vertices to every pendant edge of the helm 
nH . The 

generalized sun graph is defined as :m m

n nS H w  , where w  is the center of m

nH . 

Definition 2.6. The k -blow up ( )kD G  of G  is obtained by replacing each ( )iv V G  by a k -set 
iV  and add all possible 

edges  between 
iV  and jV  for each ( )i jv v E G .  

III. MAIN RESULTS 

In this section, we are going to obtain the open support of some types of graphs especially those were defined in section 2. 

We begin with the open support of bull graph, which is  a vertex-deleted subgraph of sun graph 
3S . 

Theorem3.1. For the bull graph 3G S v   where v  is a pendent vertex of 3S , we have ( ) 24supp G  . 

Proof: Let the vertex set of G  be 1 2 3 4 5( ) { , , , , }V G v v v v v and the edge set of G  be 1 2 2 3 2 4 3 4 4 5( ) { , , , , }E G v v v v v v v v v v , see 

fig.1  

Note that 1 5( ) ( ) 1d v d v  , 2 4( ) ( ) 3d v d v   and 3( ) 2d v  . It follows that 

 1 2( ) ( ) 3supp v d v  , 

 2 1 3 4( ) ( ) ( ) ( ) 6supp v d v d v d v    , 

 3 2 4( ) ( ) ( ) 6supp v d v d v   , 

 4 2 3 5( ) ( ) ( ) ( ) 6supp v d v d v d v    , 

 5 4( ) ( ) 3supp v d v  . 

Therefore, we conclude that 

1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( )

3 6 6 6 3

24.

supp G supp v supp v supp v supp v supp v    

    



 

 

Fig. 1 Bull graph 
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The following theorem determines the open support of Möbius ladder. 

 

Theorem3.2. For the Möbius ladder 
nG M , we have ( ) 18supp G n . 

Proof: Let the vertex set of G  be ( ) { , :1 }i iV G v u i n    and the edge set of G  be 

1 1 1 1( ) { , :1 1} { :1 } { , }i i i i i i n nE G v v u u i n v u i n v u u v         . See fig 2 for the case 5n  . 

Clearly, for 1 i n   we have ( ) ( ) 3i id v d u  . It follows that 

1 2 1( ) ( ) ( ) ( ) 9nsupp v d v d u d u     

and similarly, 

1( ) ( ) ( ) 9.n nsupp u supp v supp u    

For 2 1i n   , we have 

1 1( ) ( ) ( ) ( ) 9i i i isupp v d v d v d u      

and 

1 1( ) ( ) ( ) ( ) 9.i i i isupp u d u d u d v      

Therefore, we conclude that 

1

( ) ( ( ) ( )) (9 9) 18 .
n

i i

i

supp G supp v supp u n n


      

Example 3.3. For the Möbius ladder 
5M  we have 

5

5

1

( ) ( ( ) ( )) 5(9 9) 90.i i

i

supp M supp v supp u


      

 

 

Fig. 2 5M  graph 

The following two results consider open supports of graphs which are cartesian product or strong product of two paths. 

 

Theorem3.4. For the planar grid m nG P P , we have ( ) 16 14( ) 8supp G mn m n    .  

Proof: Let the vertex set of G  be ,( ) { :1 ,1 }i jV G v i m j n      and the edge set of G  be 

, , 1 , 1,( ) { :1 ,1 1} { :1 1,1 }i j i j i j i jE G v v i m j n v v i m j n             . See fig 3 for the case 5m   and 6n  . 

Clearly, 11 1, ,1 ,( ) ( ) ( ) ( ) 2n m m nd v d v d v d v     and for 2 1,2 1i m j n       we have 1, , ,1( ) ( ) ( )j m j id v d v d v    

,( ) 3i nd v   and ,( ) 4i jd v  . We divide  ( )V G  into six classes according to the valve of open support of each vertex. 

Class 1. 1 11 1, ,1 ,{ , , , }n m m nV v v v v . 

For each 1v V , by symmetry, we have 

11 12 21( ) ( ) ( ) ( ) 3 3 6.supp v supp v d v d v       

Class 2. 2 12 1, 1 21 2, 1,1 1, ,2 , 1{ , , , , , , , }n n m m n m m nV v v v v v v v v    . 

For each 2v V , by symmetry, we have 

12 11 13 22( ) ( ) ( ) ( ) ( ) 2 3 4 9.supp v supp v d v d v d v         
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Class 3. 3 ,1 , 1, ,{ , , , : 3 2,3 2}i i n j m jV v v v v i m j n       . 

For each 
3v V , by symmetry, we have 

,1 1,1 1,1 ,2( ) ( ) ( ) ( ) ( ) 3 3 4 10.i i i isupp v supp v d v d v d v          

Class 4. 4 22 2, 1 1,2 1, 1{ , , , }n m m nV v v v v    . 

For each 
4v V , by symmetry, we have 

22 12 21 23 32( ) ( ) ( ) ( ) ( ) ( ) 3 3 4 4 14.supp v supp v d v d v d v d v           

Class 5. 5 ,2 , 1 2, 1,{ , , , : 3 2,3 2}i i n j m jV v v v v i m j n        . 

For each 
5v V , by symmetry, we have 

23 22 24 13 33( ) ( ) ( ) ( ) ( ) ( ) 4 4 3 4 15.supp v supp v d v d v d v d v           

Class 6. 6 ,{ : 3 2,3 2}i jV v i m j n       . 

For each 
6v V , by symmetry, we have 

, 1, 1, , 1 , 1( ) ( ) ( ) ( ) ( ) ( ) 4 4 16.i j i j i j i j i jsupp v supp v d v d v d v d v            

In summary, we conclude that 

,

1 1

( ) ( )

6 4 9 8 10[2( 4) 2( 4)] 14 4

15[2( 4) 2( 4)] 16( 4)( 4)

16 14( ) 8.

m n

i j

i j

supp G supp v

n m

n m m n

mn m n

 



         

      

   



 

 

Fig. 3 5 6P P  graph 

 

Example 3.5. 5 6( ) 16(5)(6) 14(5 6) 8 334.supp P P       

Theorem3.6. For the graph m nG P P ) , we have ( ) 64 78( ) 92supp G mn m n    .  

Proof:Let the vertex set of G  be ,( ) { :1 ,1 }i jV G v i m j n      and the edge set of G  be 

, , 1 , 1, , 1, 1 , 1, 1( ) { :1 ,1 1} { :1 1,1 } { :1 1,1 1} { : 2 ,1 1}i j i j i j i j i j i j i j i jE G v v i m j n v v i m j n v v i m j n v v i m j n                             

. See fig 4 for the case 5m  , 6n  . 

Note that 11 1, ,1 ,( ) ( ) ( ) ( ) 3n m m nd v d v d v d v    , and for 2 1,2 1i m j n      , 1, , ,1 ,( ) ( ) ( ) ( ) 5j m j i i nd v d v d v d v     

and ,( ) 8i jd v  . We divide ( )V G  into six classes according to the valve of open support of each vertex under addition. 

Class 1. 1 11 1, ,1 ,{ , , , }n m m nV v v v v . 

For each 1v V , by symmetry, we have 
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11 12 21 22( ) ( ) ( ) ( ) ( ) 5 5 8 18.supp v supp v d v d v d v         

Class 2. 2 12 1, 1 21 2, 1,1 1, ,2 , 1{ , , , , , , , }n n m m n m m nV v v v v v v v v    . 

For each 
2v V , by symmetry, we have 

12 11 13 21 22 23( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 5 5 8 8 29.supp v supp v d v d v d v d v d v             

Class 3. 3 ,1 , 1, ,{ , , , : 3 2,3 2}i i n j m jV v v v v i m j n       . 

For each 
3v V , by symmetry, we have 

,1 1,1 1,1 1,2 ,2 1,2( ) ( ) ( ) ( ) ( ) ( ) ( )

5 5 8 8 8 34.

i i i i i isupp v supp v d v d v d v d v d v        

     
 

Class 4. 4 22 2, 1 1,2 1, 1{ , , , }n m m nV v v v v    . 

For each 
4v V , by symmetry, we have 

3 3

22 , 2,2

1 1

( ) ( ) ( ) ( ) 3 4 5 3 8 47.i j

j i

supp v supp v d v d v
 

          

Class 5. 5 ,2 , 1 2, 1,{ , , , : 3 2,3 2}i i n j m jV v v v v i m j n        . 

For each 
5v V , by symmetry, we have 

23 12 13 14 22 24 32 33 34( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 5 5 8 55.

supp v supp v d v d v d v d v d v d v d v d v        

    
 

Class 6. 6 ,{ : 3 2,3 2}i jV v i m j n       . 

For each 6v V , by symmetry, we have 

11

, , ,

1 1

( ) ( ) ( ) ( ) 8 8 64.
ji

i j s t i j

s i t j

supp v supp v d v d v


   

        

In summary, we conclude that 

,

1 1

( ) ( )

18 4 29 8 34[2( 4) 2( 4)] 47 4

55[2( 4) 2( 4)] 64( 4)( 4)

64 78( ) 92.

m n

i j

i j

supp G supp v

n m

n m m n

mn m n

 



         

      

   



 

Example 3.7. 

5

5 6 ,

1 1

6

( ) ( )

18 4 29 8 34 6 47 4 55 6 64 2

64(5)(6) 78(5 6) 92

1154.

i j

i j

supp P P supp v
 



           

   



)
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Fig. 4 
5 6P P)  graph 

 

We determine the open support of book graphs  as follows. 

Theorem3.8. For the book graph 
mG B , we have 2( ) 2 12 2supp G m m   . 

Proof: Let the vertex set of G  be ( ) { , , , :1 }i iV G v u v u i m    and the edge set of G  be ( ) { , , , :1 }i i i iE G uv u v vv uu i m   . 

See fig 5 for the case 6m  . 

Note that ( ) ( ) 1d v d u m    and for 1 i m  , we have ( ) ( ) 2i id v d u  . It follows that 

1

( ) ( ) ( ) 1 2 3 1.
m

i

i

supp v d u d v m m m


         

Similarly,  ( ) 3 1supp u m  . 

For 1 i m  , 

( ) ( ) ( ) 1 2 3.i isupp v d v d u m m        

Similarly, ( ) 3isupp u m   for 1 i m  . 

Thus, we conclude that 

2 2

1 1

2

( ) ( ) ( ) ( ) ( )

3 1 3 1 2 ( 3)

2 12 2.

m m

i i

i i

supp G supp v supp u supp v supp u

m m m m

m m

 

   

       

  

 

 

Example 3.9. 
2

6( ) 19 2 9 12 2(6) 12(6) 2 146.supp B          

 

Fig. 5 Book graph 6B  

In the following, we consider (generalized) helm and (generalized) sun graphs with some cycle-subgraph nC ,  we denote the 

edge set of nC  by 1( ) { :1 }n i iE C v v i n   , where 1 1nv v  . 
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Theorem3.10. For the helm graph 
nG H , we have 2( ) 17supp G n n  . 

Proof: Let the vertex set of G  be ( ) { } { , :1 }i iV G w u v i n     and the edge set of G  be 
1( ) { , , :1 }i i i i iE G wv v u v v i n   . 

See fig 6 for the case 7n  . 

Note that ( )d w n  and for 1 i n  , ( ) 4id v   and ( ) 1id u  . It follows that 

1

( ) ( ) 4
n

i

i

supp w d v n


  . 

For 1 i n  , 

1 1( ) ( ) ( ) ( ) ( ) 4 4 1 9i i i isupp v d w d u d v d v n n            

and 

( ) ( ) 4.i isupp u d v   

Thus, we conclude that 

1

2

( ) ( ) ( ) ( )

4 ( 9 4)

17 .

( )
n

i i

i

supp G supp w supp v supp u

n n n

n n



  

   

 



 

Example 3.11. 2

7( ) 28 7(16 4) (7) 17(7) 168.supp H        

 

Fig. 6 Helm graph 7H  

Theorem3.12. For the generalized helm graph 
m

nG H , we have 
2( ) 4 17supp G n mn n   . 

Proof: Let the vertex set of G  be ,( ) { } { :1 } { :1 ,1 1}i i jV G w v i n v i n j m           and the edge set of G  be 

, 1 1 , , 1( ) { , , :1 } { :1 ,1 }i i i m i i i j i jE G wv v v v v i n v v i n j m          .  

Note that ( )d w n , and for 1 i n  , 1 j m   we have ( ) 4id v  , ,1( ) 1id v   and , 1( ) 2i jd v   . It follows that   

1

( ) ( ) 4
n

i

i

supp w d v n


  , 

and for 1 i n  , 3 j m  , 

 1 1 , 1( ) ( ) ( ) ( ) ( ) 4 4 2 10,i i i i msupp v d w d v d v d v n n             

 ,1 ,2( ) ( ) 2i isupp v d v  , 

 ,2 ,1 ,3( ) ( ) ( ) 3i i isupp v d v d v   , 

 , 1 ,( ) ( ) ( ) 2 4 6i m i m isupp v d v d v      , 

 , , 1 , 1( ) ( ) ( ) 4i j i j i jsupp v d v d v    . 

Thus, we conclude that 
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,1 ,2 , 1

1

,

1 3

2

( ) ( ) ( ) ( ) ( ) ( )

( )

4 (10 2 3 6) 4 ( 2)

4 17 .

( )
n

i i i i m

i

n m

i j

i j

supp G supp w supp v supp v supp v supp v

supp v

n n n n m

n mn n





 

    



       

  



  

Theorem3.13. For the sun graph 
nG S , we have ( ) 10supp G n . 

Proof: Let the vertex set of G  be ( ) { , :1 }i iV G u v i n    and the edge set of G  be 
1( ) { , :1 }i i i iE G v u v v i n   . See fig 7 

for the case 7n  . 

For 1 i n  , it follows from the fact ( ) 3id v   and ( ) 1id u   we have that 

1 1( ) ( ) ( ) ( ) 3 3 1 7i i i isupp v d u d v d v         

and 

( ) ( ) 3.i isupp u d v   

Thus, we conclude that 

( ) 1

( ) ( ) ( ) ( ) (3 7) 10 .( )
n

i i

v V G i

supp G supp v supp v supp u n n
 

        

Example 3.14. 7( ) 7(7 3) 7(10) 70.supp S      

 

Fig. 7 Sun graph 7S  

Theorem3.15. For the generalized sun graph 
m

nG S , we have ( ) 10 4 .supp G n mn   

Proof: Let the vertex set of G  be ,( ) { :1 ,1 1},i i jV G v v i n j m       and the edge set of G  be 

, 1 1 , , 1( ) { , :1 } { :1 ,1 }i i m i i i j i jE G v v v v i n v v i n j m          .  

For 1 i n  , 1 j m  , we have ( ) 3id v  , ,1( ) 1id v   and , 1( ) 2i jd v   . It follows that 

 1 1 , 1( ) ( ) ( ) ( ) 3 3 2 8i i i i msupp v d v d v d v         , 

 ,1 ,2( ) ( ) 2i isupp v d v  , 

 ,2 ,1 ,3( ) ( ) ( ) 3i i isupp v d v d v   , 

 , 1 ,( ) ( ) ( ) 2 3 5i m i m isupp v d v d v      , 

 , , 1 , 1( ) ( ) ( ) 4i j i j i jsupp v d v d v    . 

Thus, we conclude that 
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,1 ,2 , 1

1

,

1 3

( ) ( ) ( ) ( ) ( )

( )

(8 2 3 5) 4 ( 2)

10 4 .

( )
n

i i i i m

i

n m

i j

i j

supp G supp v supp v supp v supp v

supp v

n n m

n mn





 

   



     

 



  

Next, we consider the open support of blow up graphs of paths and cycles. 

Theorem3.16. For the graph ( )k nG D P , we have 3( ) 2 (2 3)supp G k n  . 

Proof: Let the vertex set of G  be ,

1

( ) { :1 ,1 }
n

i j j

j

V G v i k j n V


       where ,{ :1 }j i jV v i k   . Let the edge set of G  

be 
1 1

1 , , 1

1 1

( ) ( , ) { :1 ,1 }
n n

j j s j t j

j j

E G E V V v v s k t k
 

 

 

      . See fig 8 for the case 3k  , 4n  . 

Note that for 1 ,2 1i k j n     , ,( ) 2i jd v k  and ,1 ,( ) ( )i i nd v d v k  . It follows that for 1 i k   and 3 2j n   , 

 
2

,1 ,2

1

( ) ( ) 2
k

i r

r

supp v d v k


  , 

 
2

,2 ,1 ,3

1

( ) ( ) ( ) ( 2 ) 3( )
k

i r r

r

supp v d v d v k k k k


     , 

 
2

, , 1 , 1

1

( ) ( ) ( ) (2 2 ) 4( )
k

i j r j r j

r

supp v d v d v k k k k 



     , 

 
2

, 1 , 2 ,

1

( ) ( ) ( ) 3( )
k

i n r n r n

r

supp v d v d v k 



  , 

 
2

, , 1

1

( ) ( ) 2
k

i n r n

r

supp v d v k



  . 

Thus, we conclude that 

,1 , ,2 , 1

1

2

,

1 3

2 2 2 2 2

3

( ) ( ( ) ( ) ( ) ( ))

( )

(2 2 3 3 ) 4 ( 4)

2 (2 3).

k

i i n i i n

i

k n

i j

i j

supp G supp v supp v supp v supp v

supp v

k k k k k k k n

k n







 

   



      

 



  

Example 3.17. 
3

3 4( ( )) 2(3) (2 4 3) 270.supp D P      

 

Fig. 8 3 4( )D P  graph  
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Theorem3.18. For the graph ( )k nG D C , we have 3( ) 4 .supp G k n  

Proof: Let the vertex set of G  be ,( ) { :1 ,1 }i jV G v i k j n      and the edge set of G  be 

1 , , 1

1 1

( ) ( , ) { :1 ,1 }
n n

j j s j t j

j j

E G E V V v v s k t k 

 

      .  See fig 9 for the case  3k  , 4n  . 

For1 ,1i k j n    , note that ,( ) 2i jd v k , we have 

,

2

, , 1 , 1

( ) 1

( ) ( ) ( ) ( ) (2 2 ) 4 .( )
i j

k

i j r j r j

v N v r

supp v d v d v d v k k k k 

 

        

Thus, we conclude that 

,

1 1

2

3

( ) ( )

4

4 .

k n

i j

i j

supp G supp v

kn k

k n

 



 





 

Example 3.19. 3

3 4( ( )) 36 3 4 4(3) (4) 432.supp D C       

 

Fig. 9 3 4( )D C  graph 

The following result, which was essentially proved in [3], is a general result of open support of graphs. We give a new proof 

through using the algebraic methods. 

Theorem3.20. For any graph G , we have 2

( )

( ) ( ).
v V G

supp G d v


   

Proof: Let ( , )G V E  be a graph with n  vertices and m  edges. Let ( )G  be the adjacency matrix of G . We define a 

“degree-adjacency matrix” DΑ( )G which is obtained by multiplying each v -row (the row corresponding to vertex v ) of 

( )G  the degree  ( )d v . 

We count the sum of entries of DΑ( )G  in two ways and the equating the two counts. On the one hand, the sum of the 

entries in the column corresponding to vertex v  is 
( )

( )
u N v

d u


 , therefore the sum of all the entries in DΑ( )G  

is
( ) ( )

( ) ( )
v V G u N v

d u supp G
 

  . On the other hand, since the sum of the entries in the row corresponding to vertex v  is 
2 ( )d v , 

the sum of all the entries in DΑ( )G  also equals 
2

( )

( )
v V G

d v


 . Thus, we have 
2

( )

( ) ( )
v V G

supp G d v


  . 

It follows from Theorem 3.20 immediately that 
 

Corollary 3.21. The open support of each d -regular graph G  is 
2( ) | |supp G d G . 

 

VI. CONCLUSION 

To study the open support of graphs from other perspectives, in this section we define the open support of an edge under 

addition and use this to get the open support of a graph. 

Definition 4.1. Let ( , )G V E  be a graph. The open support of an edge e uv  under addition is defined by ( ) ( )d u d v  and 

it is denoted by ( )supp e . 
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Now we prove 2

( ) ( )

( ) ( )
e E G v V G

supp e d v
 

  . This gives a new understanding for ( )supp G : The open support of a graph G  

under addition equals the sum of its edges’ open support, namely 

( ) ( )

( ) ( ) ( ).
v V G e E G

supp G supp v supp e
 

    

Theorem4.2. For any graph G , we have 2

( ) ( )

( ) ( ).
e E G v V G

supp e d v
 

   

Proof: Let ( , )G V E  be a graph with n  vertices and m  edges. Let ( )G  be the incidence matrix of G . We define a 

“degree-incidence matrix” D ( )G , which is obtained by multiplying each v -row (the row corresponding to vertex v ) of 

( )G  the degree  ( )d v . 

We count the sum of matrix D ( )G  in two ways and the equating the two counts. On the one hand, the sum of the entries 

in the row corresponding to vertex v  is 2( )d v , therefore 2

( )

( )
v V G

d v


  is just the sum of all the entries in D ( )G . On the other 

hand, the sum of the entries in the column corresponding to edge e  is ( )supp e , the sum of entries in D ( )G  is also equals 

( )

( )
e E G

supp e


 . Thus, we have 2

( ) ( )

( ) ( )
e E G v V G

supp e d v
 

  . 
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