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I. INTRODUCTION  
Lothar Collatz was a mathematician from Germany that worked in the mathematical field of numerical analysis, and is 

known for the “3x + 1 problem” that was first proposed by him in 1937.  For many students such as Lothar Collatz, it was 

common to study at several universities.  In 1928, Collatz studied at the University of Greifswald, moved to Munich, and then 

went to Göttingen before finally ending up in Berlin to pursue doctoral work under the guidance of Alfred Klose.  In 1935, 

Collatz completed his doctorate for his paper on Das Differenzenverfahren mit höherer Approximation für lineare 

Differentialgleichurnge (Difference methods with higher approximation for linear differential equations).  The name of Collatz 

will be known by many people because of his famous “Collatz problem”.  For a mathematician who produced so much 

important and fundamental work in the field of mathematics, the legacy of his work is summed up by the famous problem that 
bares his name.  Yet, it is this very problem that has captured the imagination of so many people because of how novel, and 

simple the problem appears to be.  An appearance that hides the complicated nature of the inner workings of the natural 

numbers [1]. 

II. PRELIMINARIES 
Definition 2.1. Hailstone sequence 

A hailstone sequence is generated through positive integers of x in the sequence defined by {an} where an is found as a 

value applied to x through recursion n times an = f n(x), x ∈ {1, 2, 3, 4, …} and n = 0,1,2,… where f0(x) = x and for n > 0,  

f
n
(x)= {

3x+1if xmod2= 1(odd)
x

2
if xmod2(even)= 0  [2]. 

Definition 2.2. Collatz Conjecture 

Statement: Any positive integer x∈ℤ+, a Hailstone sequence that starts with an initial value of x will eventually reduce to 1. 

III. DISCUSSION OF PROBLEM IN THIS ARTICLE AND SOLUTION 
Let {an} be a hailstone sequence, and x∈ℤ +.  Also let {2n + 1} define the sequence of odd numbers, and {2n + 2} define 

the sequence of even numbers.  For all values of x, a Hailstone sequence that starts with an initial value of x will eventually 

reduce to 1.  
 

Solution to the Problem-Mathematical derivation of Collatz Theorem 
Theorem Number 1. ∀ x∈ℤ+ An exists where the set An is made up of numbers in Hailstone sequences starting with x. 

Theorem Number 2. ∃ x∈  {2n + 1} ∋ 3x + 1 = {22n+2}∈  {2n}.  3x + 1 = {22n+2} → An = {1}. 
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IV. PROOF OF THE THEOREMS 
Theorem Number 1. ∀ x∈ℤ+ An exists.   

 Proof. The set An is made up of numbers an where an is found as a value applied to x through recursion n times  

an = f n(x), x∈ℤ+.  According to Definition 2.1, f0(x) = x and for n > 0,  

f
n
(x)= {

3x+1if xmod2= 1(odd)
x

2
if xmod2(even)= 0 . 

This means that ∀x∈ℤ+ f n(x) is a natural number.  So if an exists, then An exists ∀ x∈ℤ+. 

 

Remark 1: In the proof given above, there is no implication that the set An has to contain 1 or that the set An has to be a finite 

value.  This proof is presenting the fact if the terms an do exist, then the set An must also exist as a set of positive integers. 

 

Theorem Number 2. ∃ x∈ {2n + 1}∋ 3x + 1 = {22n+2}∈  {2n}.  (3x + 1 = {22n+2} → An = {1}). 

Proof. According to Definition 2.1 if x∈ {2n + 1} then f n(x) = 3x + 1.  The function f n(x) = 3x + 1 turns any odd value into an 

even value {2n + 2}, thus forcing even values to have to be evaluated by the function  f n(x) = x/2.   

For the subset of even values{2n} where n = 0, 1, 2, 3, … 2n = 1, 2, 4, 8, 16, 32, 64, …  

 
Case 1. Say that 3x + 1 = 2n. For the case where n = 0 we get 3x + 1 = 1 → 3x =  0 → x = 0. 

Case 2. For the case where n = 1, 3x + 1 = 2 → 3x = 1 → x = 1/3.  

 

This means that 3x + 1 cannot be equal to the set{2n} because x∈ℤ+ (x > 0). However, there are values on the set {2n} that 

can be described by the set {22n+2} for n = 0, 1, 2, 3, … where  22n+2 = 4, 16, 64, 256, … 

 

Case 3. Say that 3x + 1 =  22n+2. For the case where n = 0 we get 3x + 1 = 4 → 3x = 3 → x = 1. 

Case 4. For the case where n = 1, 3x + 1 = 16 → 3x = 15 → x = 5. 

Case 5. For the case where n = 2, 3x + 1 = 64 → 3x = 63 → x = 21. 

Case 6. For the case where n = 3, 3x + 1 = 256 → 3x = 255 → x = 85.   

 

Postulate 1: The choice of odd value{2n + 1} or even value {2n + 2} can be described by p for choosing an odd value, 
and 1 – p for choosing an even value. From Postulate 1, it is understood that the choice to start with an odd value or an even 

value is describing a binomial experiment because the choice of choosing an integer for x > 0 can only have two possible 

outcomes.  Also, since the choice for choosing to start off with an odd value or an even value is completely random this means 

that x can be described as a binomial random variable.  Finally, all sequences generated by the rules of the Collatz Conjecture 

can be described in terms of a binomial experiment because: 

1. Each sequence that has been tested up to 268 has consisted of n identical trials [4]. 

2. Each trial (rules of the Collatz Conjecture) results in one of two outcomes (odd-value or even value) [4]. 

3. The probability of success denoted by p is always the same from trial to trial [4]. 

4. Each trial is independent because the outcome of one trial does not determine the outcome of other trials [4]. 

This means that it is possible to start describing experimental outcomes of the Collatz Conjecture in terms of the Binomial 

Expansion Theorem given by Equation 1 in the form provided below. 
 

Equation 1: (x+ y)
n
=∑

k= 0

n

( n!

k ! (n− k )!)x
k y(n− k)

 [5]. 

 

From Definition 2.1 if x∈ {2n + 1} then f n(x) = 3x + 1.  The function f n(x) = 3x + 1 turns any odd value into an even 

value {2n + 2}, thus forcing even values to have to be evaluated by the function  f n(x) = x/2.  This means that when n is 

mapped to 2n +2, Equation 1 turns into the form given below as described by Equation 2. 

 

Equation 2:  (x+ y)
(2n+2)

= ∑
k= 0

2n+2

( (2n+2)!

k ! (2n+2− k)!)xk y(2n+2−k )
for n = 0, 1, 2, 3,… 
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Where the quantity 
(2n+2)!

k ! (2n+2− k)!
 generates all of the coefficients on the sequence {22n+2}. And from Postulate 1, the 

choice of choosing an odd value, or an even value can be described by p, and 1 – p respectively.  Now set x = p, and y = 1 – 

p, and put into Equation 2 to get Equation 3 below. 

 

Equation 3:  (p+1− p)
(2n+2)

= ∑
k= 0

2n+ 2

( (2n+2)!

k ! (2n+2− k)!)pk (1− p)
(2n+2− k)

for n = 0, 1, 2, 3,… 

 

Notice from Equation 3 that (p+1− p)(2n+2)= (1)(2n+2)= 12n∗ 12= 12n
for n = 0, 1, 2, 3,… 

Which converges to 1 for all powers of 2n.  This means that no matter what integer of x > 0 you choose  from the beginning, 

any sequence generated by the rules of the Collatz Conjecture will eventually converge to 1 as shown by Equation 4 below. 

 

Equation 4:  (p+1− p)
(2n+2)

= ∑
k= 0

2n+ 2

( (2n+2)!

k ! (2n+2− k)!)pk (1− p)
(2n+2− k)

= 12n∗ 12= 12n∗ 1= 12n= 1 

for n = 0, 1, 2, 3,… 
 

V. CONCLUSION  
The Collatz Conjecture was first introduced by Lothar Collatz in the year 1937.  In this article the Collatz Conjecture is 

shown to be correct for a Hailstone sequence that becomes stable for specific odd values that set the function f n (x) = 3x + 1 = 

{22n+2}.  All sequences used in writing this paper were generated through the use of a computer program I wrote written in the 

C language.  The source code that I wrote is included in the appendix at the end of this paper. 
 

 

APPENDIX A 
#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

// Typecasting the function 
int syracuse(int x); 

int main()  

{ 

 int x; 

 printf("Please enter a whole value greater than zero: ");  // Asking for input 

 scanf("%d", &x); 

 syracuse(x);  // Calling the function 

 return (0); 

} 

int syracuse(int x) 

{ 
 printf("%d\n", x);  // Print the generated values 

 int y = x; 

 //base cases 

 if (x <= 0) 

 { 

  printf("You have entered an invalid number.\n"); 

  sleep(10); 

  system("clear"); 

  return (0); 

 } 

 else if(x == 1) 
 { 

  return 1; 

 } 

 //Conditions of the Syracuse conjecture 
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 if (x % 2 != 0) 

 { 

  y = (3 * x) + 1; 

 } 

 else if(x % 2 == 0) 
 { 

  y = x/2; 

 } 

 //Recursive Case 

 return syracuse(y); 

} 
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