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I. INTRODUCTION
It is well known that the nonlinear initial value problems of implicit differential equations create an important branch of
nonlinear analysis and have numerous applications in most fields. For papers studying such kind of equations (see [1]-[2],
[4]-[8], [9][15]and references therein).
In this paper, we are concerned with the initial value problem of the implicit differential equation with parameter

L= Atx(®), ], f(s, 5, wds),t € (0,T] ()
with initial data

x(0) = x,. )

First, we study the existence of at least one solution x € C*[0,T]. The maximal and minimal solution will be proved.
Also, the sufficient conditions for the uniqueness of the solution will be given. The continuous dependence of the unique
solution on the parameter p and the function f, will be studied.

Second, we study the existence of at least one solution x € AC[0, T]. The uniqueness of the solution will be studied.
The continuous dependence of the unique solution on the parameter u and the function £, will be proved.

Il. CONTINUOUS SOLUTIONS
A. Existence of solutions
Consider the following assumptions:

1. fi(t,y,v):[0,T] xR xR — R ismeasurable in t for all y € R and satisfies Lipschitz condition
1Ay, v) = At yLv)l < ki (|y = yil + [v = w4 ).

where k; is a positive constant. From this assumption we can deduce

|fl((it! yI| = 1A 0,0 < Ay, v) = f1(t,0,0)] < ki (ly| +|v]),
an

Ity ) < ki (Iyl +[v]) +1£1(2,0,0)].

2. f,:[0,T]XRXR — R ismeasurablein t € [0,T] V x € R and continuousin x € R foralmostall t € [0,T] and
there exist an integrable function m € L,[0,T] and a positive constant k, such that

12 y(), W < Im(®)] + ka|y(s)] + k2 |ul,
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where
sup fot |m(s)|ds < M.
te[0,T]

3. kT(1+k) <1,k =max{k,, k,}
Theorem 1 Let the assumptions(1)-(3) be satisfied, then problem (1)-(2) has at least one solution x € C*[0,T].

Proof. Let % =y € [0, T], then equation (1) will be given by
(O = filt.xo + i y(s)ds, [} fo(s,¥(s), 1)ds), €)
where
t
x(t) = %o + J; y(s)ds. (4)

Now, define the operator F by

t t
Fy(t) = fi(t,xo + [, ¥(5), J, fo(s,¥(s), w)ds).
Define the set
k|xo|+kM+k2T|u|+A

Q- = [y € CIO,TL: Ny I1< 7}, = Hmlie

where

A = sup |fi(t,0,0)|.
t€[0,T]

Now, let y € Q, , then
IFy(®)] = Ifi(t. %0 + [, y(s)ds, [ fo(s,7(5), w)ds)]
< ky (1% + [ y(S)ds| + 1 [ f(s,y(s)wyds]) + Ifi (£, 0,0)]
< ky|%| + key f 1y($)lds + ky f, (Im()] + ko |y ()] + kalulds + |£; (¢,0,0)]
< klxol + k f 1y($)lds + k J, Im(s)|ds + k2 [ [y(s)lds + k? J |ulds + A
< klxo| + kTr + kM + k?Tr + k*T|u| + A =r.

This proves that F: Q, = Q, and {Fy(t)},t € [0,T] is uniformly bounded on Q,.
Now, let y € Q,.. Let t,t, € [0,T] be such that |t; —t,| < &, then
IFy(t;) — Fy(t,)]
= fi(ts o + [J2 y(9)ds, f,” fo(5,7(5), )ds) — fi(ts, X0 + J, ¥(5)ds, [,* fo(s,¥(s), w)ds)|
< 1fi (%o + Jy” ¥(9)ds, J;? fo(5, () Wds) = fi(ta, %o + J;* ¥(9)ds, [;* fo(s,¥(5), w)ds)|

Hf o xo + Jy ¥(9)ds, [} fo(s,y(),1)ds) = (b, %o + [ y(s)ds, [ fo(s, y(s), 1)ds)|
<k [ 1y@)lds +k [7 |f(s,y(s), i)l ds + 6(5)

<k [ 1y(@)lds + k [ (Im@] + kly(s)] + klul)ds + 6(5)

<kr(t,—t)+ kf:l2 [m()|ds + k2(r + |u))(t, — t;) + 6(5).

This means that the class functions {Fy(t)},t € [0,T] is equi-continuous on Q,.. Then by Arzela Theorem [6], F is compact
operator.

Now, we prove that F is continuous operator. Let vy, © Q,,y, — y, thus by taking the limit as n — co, we have
. . t t
lim Fy, () = im £, (t, xo + [, yu()ds, [y £2(5,yn (), w)ds)
and from Lebesgue dominated convergence theorem [3], we have
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. [ t .
lim Fy, (6) = 1(t,%0 + J limy,(s)ds, [ fo (s, lim y,(s), ) ds)

= fi(txo + [y y(9)ds, [y fo(s,¥(s), w)ds) = Fy(0).
This means that Fy,, (t) = Fy(t). Hence the operator F is continuous.
Now by Schauder fixed point theorem [6], there exists at least one solution y € C[0,T] of the integral equation (3).
Consequently, there exists at least at least one solution x € C1[0,T] for the problem (1) and (2) given by (4).

B. Maximal and minimal solution

Lemma 1l Letthe assumptions of Theorem 1 be satisfied and y(t) and v(t) are two continuous functions on [0,T]
satisfying

Y(© < fit,xo + [ ¥()ds, f, fo(s,¥(s), w)ds),

t t
v(t) 2 fi(t, %o + [y v(s)ds, [ f(s,v(s), 1)ds)
and one of them is strict. If f; and f, are monotonic nondecreasing, then

y(t) < v(t),t > 0. ®)

proof. Let the conclusion (5) be false, then there exists t, such that
y(t) =v(t), 6, >0
and
y() <v(t),0<t<t.
From the monotonically of f; and f,, we get

Y(t) < fi(tnxo + [)* y(s)ds, [} fo(s,y(s), )ds)

< filtn %o + [y v(s)ds, [} fo(s,v(s), w)ds) = v(ty).
hence y,(t) < v,(t). This contradicts the fact that y(t,) = v(t;), then y(t) < v(t),t € [0,T].

Theorem 2 Let the assumptions (1)-(3) be satisfied. If f;, f, are monotonic nondecreasing, then equations (3) has maximal
and minimal solutions.

proof. Firstly, we prove the existence of maximal solution of (3). Let € > 0, then
t t
Ye(t) = €+ fi(t, %0 + [ ¥e(5)ds, [] o (S, Ve, 1) d5). (6)

It’s easy to show that equation (6) has at least one solution y,. € [0, T].
Now let €;,e, > 0 be such that 0 < €, < €; <€, then

Ve, () = &+ fi(t,xo + [ Ye,(8)ds, [} £o(5,¥e, 10)dS).
Ve, (O) = €1 + fi(t, %o + [, Ye,(5)ds, [ £o(5,¥e, 1) ds)

t t
> e, + fi(t, X0 + f) Ve, (5)ds, [y f2(5, Ve, 1)ds)
and from Lemma 1, we obtain
Ve, () < Ye, (), t € [0,T].

Now the family {y.(t)} is uniformly bounded as follows:

V(O] < € +1fi(t. X0 + [ ¥e($)ds, [ fo(5, e, 1)ds)|
<e+r=r*

Also, the family {y.(t)} is equi-continuous as follows:
e (t2) = ye (t)]
= e+ fi(ts Xo + [,7 Ye(5)ds, [,? f(5, Yo w)ds) — € = fi(t, X0 = [, ¥e($)ds, [, f(S, e, w)ds))]
<filta Xo + [)2 9e(8)ds, [,7 fo(5, Ve AS) fy (tas %o + J, " ¥e($)ds, [ fo(5,Yer 1)d)]|
Hf (X + [} 7e(8)ds, [} fo(5, Ve i)ds) = fi(tr, %o + [, e(8)ds, [}* o(5, Ve, 1)ds))
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< kS 1ye(®)lds +k [,7 1f (s, y(s) wlds +6(5)
< kS 1ye()lds +k [ ()] + kly(s)] + klul)ds + 6(5)
<kr (t,—t))]+k fttlz Im(t)|ds + k[(kr* + k|u])(t; — t1)] + 0(6).

Then{y.(t)} is equi-continuous and uniformly bounded on [0,T], then {y.(t)} is relatively compact (Arzela-Ascoli theorem),
then there exists decreasing sequence €, such that &, — 0, n — oo and lim,,_. Y, (t) exists uniformly on [0, T]. Let

limye, (¢) = q(®).

Now form the continuity of the functions f; and f, and Lebesgue dominated convergence theorem, we have

(t. %0 + [ Ve, ()ds, [ £o(5,9e, (), W)ds) = (£, + [, q(0)ds, [ f,(5,q(t), 1)ds)
and

it %o+ f ¥e,(8)ds, f; (5, Y6, (), 1)dS) = fi(t,xo + f, q(®)ds, [ fo(s,q(®), w)ds),
then

q(t) = limy,, () = fi(t, %o + J; a()ds, [; fo(s,q(0), w)ds).
which implies that g(t) is a solution of equation (3).

Finally, q(t) is the maximal solation of (3). To do this, let y(t) be any solution of (3), then
Y(®) = fi(t.x0 + J§ y($)ds, [§ fo(s,y(s), w)ds)
Ye(®) = € + fi(t, %0 + fy Ye()ds, [ fo(s,Ye(s), w)ds)
> fi(t, %0 + [y e(s)ds, [y fo(s,e(s), 1)ds).
Applying Lemma 1, we get
y(@©) <y(),t €[0,T].

From the uniqueness of the maximal solation, it is clear that y.(t) - q(t) uniformly on [0,T] as € — 0, thus q is the
maximal solation of (3).
By similar wa can prove the existence of the minimal solation.

C. Uniqueness of the solution and continuous dependence

For the uniqueness of the solution of (3) consider the following assumption:
* f:]0,T] X R X R = R ismeasurable in ¢t € [0,T] and satisfies the Lipschitz condition

Ly.w) = Ltv,u") <k (ly —v| + |p—u')).
Theorem 3 Let the assumptions (1),(3) and (4) be satisfied, then the solution of the problem (1) and (2) is unique solution.

Proof. From assumption (4), we have

LG < k(Y] + 1D + £ 0,0)], Im(©)] = 1£(¢,0,0)]. _ o
Thus assumption (2) is satisfied. Then all assumptions of Theorem 1 are satisfied and the solution of the functional integral
equation (3) exists. Let y;,y, be two the solution of (3), then

ly:(t) = 2O < kI [} yi(s)ds — [ y,(s)ds| + k| f; fo(5,y1(5), i)ds — [ fo(5,¥2(S), w)dis|
<k [ 1y1(s) = y2(s)lds + k [ 1f2(5,1(5), 1) = f(5,¥2(5), 1) |ds
<k [ lyy—yalds + k2 [ [y, — y,lds

<kTly,—y, Il +k*T l y; — y, II.
Hence

Ny, =y, IS KT Iy, —y, | +K2T 1l y, — v, Il
Then

Il y; =y, I (1 — (kT + k*T)) < 0.
Since kT (1 + k) < 1, then || y; — y, lI= 0 and this implies that y, = y, and the solution y € [0,T] of (3) is unique.
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Continuous dependence on the parameter u

Definition 1 The solution y € [0, T] of the functional integral (3) depends continuously on the parameter u, if
Ve>0,3 §(€) s.t lu—p|<do=2ly—y l<e
where y* is the unique solution of (3) corresponding to u*

Definition 2 The solution x € [0, T] of the functional integral (4) depends continuously on the parameter u, if
Ve>0,3 6(e) s.t lu—p|<d=allx—x"lI<e
where x* is the solution of (1)-(2) corresponding to u*

Theorem 4 Let the assumptions of Theorem 3 be satisfied, then the solution of the problem (1) and (2) depends continuously
on the parameter u.

Proof. Let y and y* be the two solutions of equations (3) correspondingto 4 and u*, then
ly(®) =y (1) < klxo + [, y(s)ds — xo = [, y*(s)ds]
t t * *
+k| [y f2(5,7(s), w)ds = [ fo(s,y7(s), u")ds|
t * t * *
<kf, ly—y'lds+k* [ (Iy(s) —y* ()| + |u—u*Dds
t * t * *
<k/J, sup |y—y*lds+k* [ (sup |y(s)—y"(s)lds) + k*T|u — ']
te[0,T] te[0,T]
<kTlly—y* I +k*T |y —y* | +k2T6
Hence

k21§
-V I< — =
Iy =y"li< (1—(kT+k?T)) €

This proves that the solution of Eq (3) depends continuously on the parameter u. Now
* t t *
lx — x| =xo + J; ¥(s)ds —xo + J; ¥*(s)ds
t *
<Jy ly=y*lds
<ly—-y"IT, s
. k2128

Ix=x" < gt = €
This proves that the solution of (1)-(2) depends continuously on the parameter u.
Continuous dependence on the function f,

Definition 3 The solution y € [0, T] of (3) depends continuously on the function £, if
Ve>0,3 6(e) s.t |Li—Ffl1<é=ly—y l<e
where y* is the unique solution of the functional integral equation (3) corresponding to £

Theorem 5 Let the assumptions of theorem (3) be satisfied, then the solution of problem (1) and (2) depends continuously on
the function f,.

Proof. Let y and y* be the two solutions of (3), then

ly(®) —=y*(©) <k [ [y(s) = y*(&)lds +k f 1f(s,y(), 1) = f5 (5, ¥"(s), wlds
<k [ y(s) =y $)lds +k [ 1f(s,y(5), 1) — f5 (5, (5), 1)

5 (5, () 1) = £ (5, ¥ (s), w)|ds

<k [} ly(s) =y $)lds + k f, 1f(s,y(5), 1) — f5 (5,7(s), ) |ds

+h [ 15 (5, 9(5) 1) = £5' (5, 7" (5), i) | ds

<k [} 1y(s) =y $)lds +k [ 1f,(s,y(5) 1) = f5 (5, 7(5), )

t *
+k? fo ly(s) —y*(s)|ds
<kly—y* Il +kTS + K*T Iy —y* I
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Hence
kTS
v << ——
Iy -y ”—(1—(kT+k2T))'

Definition 4 The solution x € [0, T] of (4) depends continuously on the function £, if
Ve>0,3 8(e) s.t |L—fr]<d=lx—x"1<E,
where x* is the solution of (1)-(2) corresponding to £

Theorem 6 Let the assumptions of Theorem 3 be satisfied, then the solution of the problem (1) and (2) depends continuously
on the parameter f,.
Now
* t t *
|x = x*| = xo + [ ¥(8)ds — xo + [ y*(s)ds

< Jy ly(s)—y'lds
<ly—-y*IT
kT28 _
= (A-(KT+k2T)) €
This proves that the solution of equation (3) depends continuously on function f, consequently the solution of problem (1)
and (2) depends continuously on the f,.

I1l. INTEGRABLE SOLUTION

A. Existence of solutions

Consider the following initial value problem
Z = Atx®), ], f(s. 55, wds), a.e.t€(0,T] )
with initial data
x(0) = x,. (8)
under the following assumptions:
* f1:[0,T] X R X R = R is measurable in t € [0,T] for every y,v € R and continuous in y,v for almost all t €

[0,T] and there exist a function m, (t) € L*[0,T] and constant N; > 0 such that

ity V)| < Imi (O] + N (y| + [v]).

* f1:[0,T] X R X R = R is measurable in t € [0,T] for every y,u € R and continuous in y,u for almost all ¢t €
[0,T] and there exist a function m,(t) € L*[0,T] and constant N, > 0 such that

If2(t,y, W] < [ma (O] + No(ly] + |uD).
* 2NT < 1,N = max{N,, N,}

Theorem 7 Let the assumptions (i) — (iii) be satisfied, then equation (3) has at least one solution y € L,[0, T], hence the
initial value problem (7)-(8) has at least one solution x € AC[0, T].

Proof. Define the operator F by
t t
Fy(t) = fi(t,xo + [y y(8)ds, [, f2(s,¥(s),i)ds),  t€[0,T].

1
llmqllp, +NT|xo|+NTlimyllL, +ENT2 |ul

Definetheset Q. ={y € R: Il y I< r}, where r =
Let x € Q,, then
IFy(®)] < [my(t)] + Nixo| + N [ [y(s)lds + N J, 1o(s,y(s), )\ ds
< [my (O] + Nlxol + N [ [y(s)lds + N[5 (Imy(6)| + N|y| + Nlul)ds
< [my (O + Nlxol + N [ [y(s)lds + N [ [my(t)|ds + N [ |ylds + N J, |ul)ds.

1-2NT

Then
T T T
I Fy ll,,= [, [Fy®)ldt < [ |my(®)|dt + N [ |x,|dt
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T t T ot
+N [, f, ly(s)ldsdt + N [, [, Im,(s)|dsdt

T rt T ~t
+N [ [, [y()ldsdt + N [, [ |uldsdt
Il my ll,,+ NT|zetag| + NT Iy ll,,+ NT | my ll,,+ NT Il y "L1+§NT2|‘M| -

This prove that F: Q, — Q, and {Fy} is uniformly bounded in Q,..
Now let y € Q,, then

I FY)n = FY) Iy = Jy 1(Fy(s)n — (Fy(s))lds

= Jy 21" (Fy(0))do - (Fy(s))\ds

< Jy L5 1(Fy(9)) - (Fy(s))|deds

< Jy 21T ARG X + [y y@dr f) £y (@), wdo)
~fi(s, %0 + [y y(@dz, [] (7, y(x), w)d7)|d6ds.

Since f; € L0, T], it follows that
~LTAG X+ [y Y@ f) £ Y@ wdD) = fi(5,x0 + [y ¥(DT, [ f,(@y(1), g)dr)|dods

Hence, Fy(t);, — (Fy) uniformly in L;[0,T]. Thus the class {Fy},y € Q, is relatively compact. Hence F is compact

operator.
Now, let y,, € Q,,y,, = v, then by taking the limitas n — oo, then

. . t t

lim Fy,, (€) = lim £, (£, %0 + [, yu()ds, [y f2(5,yn(s), w)ds)
since f;, f, are continuous in y, then

. . t . t

lim Fy (6) = £,(6, %0 + lim [§ ya(s)ds, lim [ fo(5,(5), 1))

Now, from assumptions (i), (i) and Lebesgue dominated convergence theorem, we have
lim Fy, (8) = /it + Jy y($)ds, [y fo(s,¥(s), wds) = Fy(®).

Hence the operator F is continuous. Now all the conditions of Schauder fixed point theorem are satisfied. Then the functional
integral equation (3) has at least one solution y € L,[0,T]. Consequently, there exists at least one solution x for the problem
(7) and (8) and this solution given by

X(t) =xo + [, y(s)ds  t€[0,T]. 9)

B. Unique integrable solution and continuous dependence

Consider following assumption:

* f1:[0,T] X R x R — R ismeasurable in t € [0, T] and satisfies the Lipschitz condition

/1t y1,v1) = 16, y2,v2)| < Ni(lyy — Yol + [v1 — v2]).
with Lipschitz condition N; > 0

* f5:]0,T] X R X R — R is measurable inthe t € [0,T] and satisfies the Lipschitz condition

1f2(t,y1() 1) = f2(6,y2(8), )| < Np(Iy1 = ya| + |l — ™))
with Lipschitz condition N, > 0.

* f1(t,0,0), f,(t,0,0) € L,[0,T].

e N;(1+ N)T < 1.
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Theorem 8 Let the assumptions (i*) — (iv*) and (iii) be satisfied, then (3), has a unique solution y € L, [0, T].
Consequently, the solution x of the problem (7) and (8) is unique.

Proof. From assumption i*, we obtain
Ifi(t,y, v)| < Ny(lyl + [vD) + 1/1(€, 0,00 = N1 (ly] + [v]) +my (£), m, (1) = |£f1(£,0,0)].

12ty )] < Na(ly| + [ul) +my(t), my(t) = |£2(,0,0)].
Then all assumptions of Theorem(7) are satisfied. Then the solution of (3) exists. Now let y,v be two solutions of equation
(3), then

Similarly,

ly(t) = v(®)] < Nil(xo + f ¥(5) = xo — J v(s)ds)
N, () fo(5,y(S) i)ds — f fo(5,v(s), w)ds)|
< N, () y(s) = v()|ds) + Ny (J, 1 (5, ¥(5), 1) = fo (5, v(s), )] ds)
< (Ny + Ny ) ) [y(s) — v(s)lds.
Thus, we obtain
<NQA+N)H)TIly—-v ”L1'

Since N,(1+ N,)T < 1, this implies that y = v, i.e. the solution of (3) is unique. Consequently, the solution of the problem
(7) and (8) is unique.

Continuous dependence on the parameter u

Definition 5 The solution y € L;[0, T] of (3) depends continuously on the parameter u, if
Ve>0,3 6(e) s.t [u—w|<é=ly—y l,<e
where y* € L,[0,T] is the unique solution of (3) corresponding to p*.

Theorem 9 Let the assumptions of Theorem 8 be satisfied, then the solution of (3) depends continuously on the parameter u.

proof. Let y,y* be the two solutions of (3) corresponding to u and u* respectively, then
ly(t) = y" (O] < Nylxo + J; ¥(s) —xo — J y"(s)ds|
+Ny | J £ (s, y(8),w)ds — [ f(s,y7(s), 1) ds]
<N, J, 1y(s) = y*(S)lds + Ny f, 1f(5,9(5), 1) — fo (5,77 (), 1) dls
<N, J 1y(s) = y*(S)lds + NN, f ([y(s) =y ()] + | — w[)ds.
Hence
Ly =y I, < Ny [ 1y(s) = y* (s)ldsdt + NyNy f) [ (ly(s) = v ()| + | — u* )dsde

* * « T2

SNTIHYy =y ¥ NiN(Tlly =y Nl + lp—p |(?)).

thus
1 2
- SN1NT?8

ly—=y*ll., < PR <e

This proves the continuous dependence of the solution y € L,[0,T] of the functional integral equation (3) on the parameter
u.

Corollary 1 The solution x € AC[0,T] of the problem (7)-(8) depends continuously on the parameter u.
Continuous dependence on the parameter f,
Definition 6 The solution y € L,[0,T] of the functional integral equation (3) depends continuously on the function f,, if

Ve>0,3 §(e),s.t |f—n3l<d=ly—y"l,<e
where y* is the unique solution y* € L,[0,T] of the functional integral equation(3) corresponding to f
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Theorem 10 Let the assumptions of Theorem 8 be satisfied, then the solution of the integral equation(3) depends
continuously on the function f,.

Proof. Let y,y* be the solution of the functional integral equation(3) corresponding to f, and f,° respectively, then

ly(t) = ¥* ()] < Nilxo + J, ¥(s) =% — [, y"(s)ds]|

+Ny| f, fo(s,y(s),w)ds — [ 5 (s,y" (), w)ds|

<N, [ [y(s) =y (S)lds + Ny [ 1f,(5,9(5), 1) = £ (5, ¥(5), 1)
~f5 (5, 7(5), 1) — £ (5, ¥" (5), plds

Ny [ [y(s) =y (S)lds + Ny [ 1f5 (5, (), 1) — 5 (5, y" (), i) | ds
<N, [ [y(s) =y (S)lds + Ny [ 1f,(5,9(5), 1) — £ (5, ¥(), i) |ds
NN, [ [y (s) — y* (s)lds.

Hence

IniT2s
2 —¢
(1-(N1(1+N2)T))

ly—y*ll,,<

This proves the continuous dependence of the solution of the functional integral equation (3) on the function f;.

Corollary 2 The solution x of the problem (7)-(8) depends continuously on the function f,.
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