# On Support Strongly Irregular Interval-valued Fuzzy Graphs 

K. Priyadharshini ${ }^{1}$, N.R. Santhi Maheswari ${ }^{2}$<br>${ }^{1}$ Research Scholar (Reg.No-19212052092007),<br>PG and Research Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti. (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Tamil Nadu, India.<br>${ }^{2}$ Head \& Associate Professor, PG and Research Department of Mathematics, G.Venkataswamy Naidu College, Kovilpatti.

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli) Tamil Nadu, India.


#### Abstract

In this paper, support strongly irregular interval-valued fuzzy graphs and support totally strongly irregular interval-valued fuzzy graphs are defined. A necessary and sufficient condition under which they are equivalent is provided.


Keywords - Support(2-degree) of a vertex in fuzzy graph, Average (pseudo degree of a vertex in fuzzy graph, Support strongly irregular fuzzy graph, Support strongly totally irregular fuzzy graph).

## I. INTRODUCTION

In this paper, we consider only finite, simple, connected graphs. We denote the vertex set and the edge set of a graph $G$ by $V(G)$ and $E(G)$ respectively. The degree of a vertex $v$ is the number of edges incident at $v$, and it is denoted by d(v). A graph $G$ is regular if all its vertices have the same degree. The notion of fuzzy sets was introduced by Zadeh as a way of representing uncertainity and vagueness [26]. The first definition of fuzzy graph was introduced by Haufmann in 1973. In 1975, A. Rosenfeld introduced the concept of fuzzy graphs [8]. The theory of graph is an extremely useful tool for solving combinatorial problems in different areas. Irregular fuzzy graphs play a central role in combinatorics and theoretical computer science.In 1975, Zadeh introduced the notion of interval-valued fuzzy sets as an extension of fuzzy set[27] in which the values of the membership degree are intervals of numbers instead of the numbers. In 2011, Akram and Dudek[1] defined interval-valued fuzzy graphs and give some operations on them.

## II. PRELIMINARIES

Nagoorgani and Radha introduced the concept of degree, total degree, regular fuzzy graphs in 2008 [5]. Nagoorgani and Latha introduced the concept of irregular fuzzy graphs, neighbourly irregular fuzzy graphs and highly irregular fuzzy graphs in 2012 [6]. N.R.Santhi Maheswari and C.Sekar introduced (2, k)-regular fuzzy graphs and totally (2, k)-regular fuzzy graphs, (r,2,k)-regular fuzzy graphs,( $m, k$ )-regular fuzzy graphs and (r, m, k)-regular fuzzy graphs [9,13,14,15]. N.R.Santhi Maheswari and C. Sekar introduced 2-neighbourly irregular fuzzy graphs and m-neighbourly irregular fuzzy graphs [20,12]. N.R.Santhi Maheswari and C.Sekar introduced an edge irregular fuzzy graphs, neighbourly edge irregular fuzzy graphs and strongly edge irregular fuzzy graph [16,10,17]. D.S.Cao, introduced 2-degree of vertex $v$ is the the sum of the degrees of the vertices adjacent to $v$ and it is denoted by $t(v)[3] . A . Y u, M . L u$ and F.Tian, introduced pseudo degree (average degree) of a vertex $v$ is ( $t$ $(v)) / d(v)$, where $d(v)$, is the number of edges incident at the vertex $v$ [2]. N.R.Santhi Maheswari and C.Sekar introduced 2degree of a vertex in fuzzy graphs, pseudo degree of a vertex in fuzzy graph and pseudo regular fuzzy graphs[11]. N.R Santhi Maheswari and M.Sutha introduced concept of pseudo irregular fuzzy graphs and highly pseudo irregular fuzzy graphs[18]. N.R.Santhi Maheswari and M.Rajeswari introduced the concept of strongly pseudo irregular fuzzy graphs [19]. N.R.Santhi Maheswari and V.Jeyapratha introduced the concept of neighbourly pseudo irregular fuzzy graphs[21]. N.R.Santhi Maheswari and K.Amutha introduced support neighbourly edge irregular graphs and 1-neighbourly edge irregular graphs, Pseudo Edge Regular and Pseudo Neighbourly edge irregular graphs [22,23,24]. J.Krishnaveni and N.R.Santhi Maheswari introduced support and total support of a vertex in fuzzy graphs, support neighbourly irregular fuzzy graphs and support neighbourly totally irregular fuzzy graphs[4]. K.Priyadharshini and N.R.Santhi Maheswari introduced support highly irregular graphs[7].N.R.Santhi Maheswari and K.Priyadharshini introduced support highly irregular fuzzy graphs[25]. These ideas
motivate us to introduce support highly irregular interval-valued fuzzy graphs and support totally highly irregular intervalvalued fuzzy graphs and discussed some of its properties.

## III. PRELIMINARIES

We present some known definitions and results for ready reference to go through the work presented in this paper. By graph, we mean a pair $G^{*}=(\mathrm{V}, \mathrm{E})$, where V is the set and E is a relation on V . The elements of V are vertices of $\mathrm{G}^{*}$ and the elements of $E$ are edges of $G^{*}$.

Definition 3.1 2-degree (support) of $v$ is defined as the sum of the degrees of the vertices adjacent to $v$ and it is denoted by $\mathrm{t}(\mathrm{v})[3]$.

Definition 3.2 Average (pseudo) degree of $v$ is defined as $(t(v)) /(d(v))$, where $t(v)$ is the 2-degree of $v$ and $d(v)$ is the degree of $v$ and it is denoted by da(v)[2].

Definition 3.3 A graph is called pseudo-regular if every vertex of $G$ has equal (pseudo) average-degree [2] .
Definition 3.4 A fuzzy graph $G:(\sigma, \mu)$ is a pair of functions $(\sigma, \mu)$, where $\sigma: V \rightarrow[0,1]$ is a fuzzy subset of a non-empty set V and $\mu: V X V \rightarrow[0,1]$ is a symmetric fuzzy relation on $\sigma$ such that for all $\mathrm{u}, \mathrm{v}$ in V , the relation $\sigma(u v) \leq \sigma(u) \Lambda \sigma(v)$ is satisfied. A fuzzy graph G is called complete fuzzy graph if the relation $\sigma(u v)=\sigma(u) \Lambda \sigma(v)$ is satisfied [5].

Definition 3.5 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. The degree of a vertex u in G is denoted by $\mathrm{d}(\mathrm{u})$ and is defined as $d(u)=\sum \mu(u v)$, for all $u v \in E[5]$.

Definition 3.6 Let $G$ : $(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. The total degree of a vertex u in G is denoted by $\operatorname{td}(\mathrm{u})$ and is defined as $t d(u)=d(u)+\sigma(u)$, for all $u \in V[5]$.

Definition 3.7 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be an irregular fuzzy graph, if there is a vertex which is adjacent to the vertices with distinct degrees[6].

Definition 3.8 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a totally irregular fuzzy graph if there is a vertex which is adjacent to the vertices with distinct total degrees[6].

Definition 3.9 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a neighbourly irregular fuzzy graph if every two adjacent vertices of $G$ have distinct degrees[6].

Definition 3.10 Let $G$ : $(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a neighbourly totally irregular fuzzy graph if every two adjacent vertices have distinct total degrees[6].

Definition 3.11 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a highly irregular fuzzy graph if every vertex of G is adjacent to vertices with distinct degrees[6].

Definition 3.12 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a highly totally irregular fuzzy graph if every vertex of G is adjacent to vertices with distinct total degrees[6].

Definition 3.13 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a regular fuzzy graph if all the vertices of $G$ have same degree[5].

Definition 3.14 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a totally regular fuzzy graph if all the vertices of $G$ have same total degree[5].

Definition 3.15 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. The support (2-degree) of a vertex $v$ in $G$ is defined as the sum of degrees of the vertices adjacent to v and is denoted by $\mathrm{s}(\mathrm{v})$. That is, $s(v)=\sum d G(u)$, where $d G(u)$ is the degree of the vertex $u$ which is adjacent with the vertex $v[4]$.

Definition 3.16 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. The total support of a vertex vin $G$ is denoted by $t s(v)$ and is defined as $t s(v)=s(v)+\sigma(v)$, for all $v \in V[4]$.

Definition 3.17 A graph $G$ is said to be a support neighbourly irregular fuzzy graph if every two adjacent vertices of $G$ have distinct supports[4].

Definition 3.18 A graph $G$ is said to be a support neighbourly totally irregular graph if every two adjacent vertices of $G$ have distinct total supports[4].

Definition 3.19 A graph $G$ is said to be a support highly irregular fuzzy graph if every vertex of $G$ is adjacent to the vertices having distinct supports[4].

Definition 3.20 A graph $G$ is said to be a support highly totally irregular graph if every vertex of $G$ is adjacent to the vertices having distinct total supports[25].

Definition 3.21 An interval-valued fuzzy graph with an underlying set $V$ is defined to be the pair $(A, B)$, where $A=\left(\mu_{A}^{-}, \mu_{A}^{+}\right)$is an interval-valued fuzzy set on $V$ such that $\mu_{A}^{-}(x) \leq \mu_{A}^{+}(x)$, for all $x \in V$ and $B=\left(\mu_{B}^{-}, \mu_{B}^{+}\right)$is an intervalvalued fuzzy set on $E$ such that $\mu_{B}^{-}(x, y) \leq \min \left(\left(\mu_{A}^{-}(x), \mu_{A}^{-}(y)\right)\right)$ and $\mu_{B}^{+}(x, y) \leq \min \left(\left(\mu_{A}^{+}(x), \mu_{A}^{+}(y)\right)\right)$, for all edge $x y \in E$. Hence $A$ is called an interval-valued fuzzy vertex set on $V$ and $B$ is called an interval-valued fuzzy edge set on $E$.

Definition 3.22 Let $G:(A, B)$ be an interval-valued fuzzy graph. The negative degree of a vertex $u \in G$ is defined as $d_{-G}(u)=\sum \mu_{B}^{-}(u, v)$, for $u v \in E$. The positive degree of a vertex $u \in G$ is defined as $d_{G}^{+}(u)=\sum \mu_{B}^{+}(u, v)$, for $u v \in E$ and $\mu_{B}^{+}(u v)=\mu_{B}^{-}(u v)=0$ if $u v$ not in $E$. The degree of a vertex $u$ is defined as $d_{G}(u)=\left(d_{G}^{-}(u), d_{G}^{+}(u)\right)$.

Definition 3.23 Let $G:(A, B)$ be an interval-valued fuzzy graph on $G^{*}(V, E)$. The total degree of a vertex $u \in V$ is denoted by $t d_{G}(u)$ and is defined as $t d_{G}(u)=\left(t d_{G}^{-}(u), t d_{G}^{+}(u)\right)$, where $t d_{G}^{-}(u)=\sum \mu_{B}^{-}(u, v)+\left(\mu_{A}^{-}(u)\right)$ and $t d_{G}^{+}(u)=\sum \mu_{B}^{+}(u, v)+\left(\mu_{A}^{+}(u)\right)$.

Definition 3.24 Let $G:(A, B)$ be an interval-valued fuzzy graph on $G^{*}(V, E)$, where $A=\left(\mu_{A}^{-}, \mu_{A}^{+}\right)$and $B=\left(\mu_{B}^{-}, \mu_{B}^{+}\right)$be two interval-valued fuzzy sets on a non-empty set $V$ and $E \subseteq V \times V$ respectively. Then $G$ is said to be regular interval-valued fuzzy graph if all the vertices of $G$ has same degree $\left(c_{1}, c_{2}\right)$.

Definition 3.25 Let $G:(A, B)$ be an interval-valued fuzzy graph on $G^{*}(V, E)$, then $G$ is said to be totally regular intervalvalued fuzzy graph if all the vertices of $G$ has same total degree $\left(c_{1}, c_{2}\right)$.

## VI. SUPPORT STRONGLY IRREGULAR INTERVAL-VALUED FUZZY GRAPHS

In this section, we define support strongly irregular interval-valued fuzzy graph and totally support strongly irregular interval-valued fuzzy graph and discussed about its properties.

Definition 4.1 Let $G:(A, B)$ be an interval-valued fuzzy graph on $G^{*}:(V, E)$. Then $G$ is said to be support strongly irregular interval-valued fuzzy graph if every pair of vertices in $G$ have distinct support.

Definition 4.2 Let $G:(A, B)$ be an interval-valued fuzzy graph on $G^{*}:(V, E)$. Then $G$ is said to be totally support strongly irregular interval-valued fuzzy graph if every pair of vertices in $G$ have distinct total support..

Remark 4.3 A support strongly irregular interval-valued fuzzy graph need not be support strongly totally irregular intervalvalued fuzzy graph.

Example 4.4 Consider an interval-valued fuzzy graph $G:(A, B)$ on graph $G^{*}(V, E)$.

$$
\begin{aligned}
& u(0.4,0.4) \quad x(0.3,0.3) \quad z(0.7,0.7) \\
& \underbrace{\bullet(0.4,0.4)}_{v(0.5,0.5)}(0.4,0.4) \overbrace{w(0.5,0.5)}^{\bullet(0.3,0.3)(0.2,0.2)} \underbrace{\bullet}_{y(0.9,0.9)}(0.2,0.4)
\end{aligned}
$$

Here,
$s_{G}(u)=(0.8,0.8), s_{G}(v)=(1.3,1.3), s_{G}(w)=(1.7,1.7), s_{G}(x)=(0.9,0.9), s_{G}(y)=(1.1,1.3), s(z)=(0.4,0.6)$.
Also
$t s_{G}(u)=(1.2,1.2), t s_{G}(v)=(1.8,1.8), t s_{G}(w)=(1.2,1.2), t s_{G}(x)=(1.2,1.2), t s_{G}(y)=(2,1.2), t s_{G}(z)=$ (1.1,1.3)
. Here, every pair of vertices of $G$ have distinct support, but $u$ and $x$ have same total support. Therefore $G$ is support strongly irregular interval-valued fuzzy graph but not totally support strongly irregular interval-valued fuzzy graph.

Remark 4.5 A totally support strongly irregular interval-valued fuzzy graph need not be support strongly irregular intervalvalued fuzzy graph.

Example 4.6 Consider an interval-valued fuzzy graph $G:(A, B)$ on graph $G^{*}(V, E)$.


Here, $s_{G}(u)=(0.9,0.9), s_{G}(v)=(2.1,2.1), s_{G}(w)=(2.1,2.1), s_{G}(x)=(2.2,2.2), s_{G}(y)=(1.1,1.1)$. Also, $t s_{G}(u)=(1.6,1.6), t s_{G}(v)=(2.7,2.7), t s_{G}(w)=(2.9,2.9), t s_{G}(x)=(3.1,3.1), t s_{G}(y)=(1.6,1.6)$. Here, every pair of vertices have distinct total support but $v$ and $w$ have same support. Therefore $G$ is totally support strongly irregular but not support strongly irregular interval-valued fuzzy graph.

Theorem 4.7 Let $G:(A, B)$ be an interval-valued fuzzy graph on $G^{*}(V, E)$. Then $A(u)=\left(\mu_{A}^{-}(u), \mu_{A}^{+}(u)\right)$, for all $u \in V$ is a constant function then the following are equivalent.

- $G$ is a support strongly irregular interval-valued fuzzy graph.
- G is a totally support strongly irregular interval-valued fuzzy graph.

Proof. Assume that $A(u)=\left(\mu_{A}^{-}(u), \mu_{A}^{+}(u)\right)=\left(c_{1}, c_{2}\right)$, for all $u \in V$, where $c_{1}$ and $c_{2}$ are constant. Suppose G is a support strongly irregular interval-valued fuzzy graph. Then, every pair of vertices in G have distinct support. Let $v_{1}$ and $v_{2}$ be any pair of vertices with distinct supports $\left(l_{1}, l_{1}\right)$ and $\left(m_{1}, m_{2}\right)$ respectively. Then $\left(l_{1}, l_{1}\right) \neq\left(m_{1}, m_{2}\right)$. Suppose $G$ is not a totally support strongly irregular interval-valued fuzzy graph. Then, at least one pair of vertices in $G$ have distinct total support $\Rightarrow t s_{G}\left(v_{1}\right)=t s_{G}\left(v_{2}\right) \quad \Rightarrow d_{G}\left(v_{1}\right)+A\left(v_{1}\right)=d_{G}\left(v_{2}\right)+A\left(v_{2}\right) \quad \Rightarrow\left(l_{1}, l_{2}\right)+\left(c_{1}, c_{2}\right)=\left(m_{1}, m_{2}\right)+\left(c_{1}, c_{2}\right)$ $\Rightarrow\left(l_{1}, l_{2}\right)=\left(m_{1}, m_{2}\right)$, which is a contradiction to $\left(l_{1}, l_{2}\right) \neq\left(m_{1}, m_{2}\right)$. Hence $G$ is totally support strongly irregular interval-valued fuzzy graph. Thus $(i i) \Rightarrow$ (i) is proved. Hence (i) and (ii) are equivalent.

Now, suppose $G$ is a support strongly irregular interval-valued fuzzy graph. Then, every pair of vertices in $G$ have distinct total support. Let $u_{1}$ and $u_{2}$ be any pair of vertices in $G$ with distinct total support $\left(g_{1}, g_{2}\right)$ and ( $h_{1}, h_{2}$ ) respectively. Now, $\left(g_{1}, g_{2}\right) \neq\left(h_{1}, h_{2}\right) \Rightarrow t_{G}\left(u_{1}\right) \neq t_{G}\left(u_{2}\right) \Rightarrow d_{G}\left(u_{1}\right)+A\left(u_{1}\right) \neq d_{G}\left(u_{2}\right)+A\left(u_{2}\right)$
$\Rightarrow d_{G}\left(u_{1}\right)+\left(c_{1}, c_{2}\right) \neq d_{G}\left(u_{2}\right)+\left(c_{1}, c_{2}\right) \Rightarrow d_{G}\left(u_{1}\right) \neq d_{G}\left(u_{2}\right)$. Hence $G$ is support strongly irregular interval-valued fuzzy graph. Thus $(i i) \Rightarrow(i)$ is proved. Hence $(i)$ and (ii) are equivalent.

Remark 4.8 Converse of above theorem need not be true.
Example 4.9 Consider an interval-valued fuzzy graph $G:(A, B)$ on graph $G^{*}(V, E)$.


Here,
$s_{G}(u)=(0.9,0.9), s_{G}(v)=(2,2), s_{G}(w)=(2.2,2.2), s_{G}(x)=(1.1,1.1), s_{G}(y)=(1.5,1.5), s(z)=(0.6,0.6)$. Also
$t s_{G}(u)=(1.8,1.8), t s_{G}(v)=(2.9,2.9), t s_{G}(w)=(2.8,2.8), t s_{G}(x)=(1.6,1.6), t s_{G}(y)=(2.4,2.4), t s_{G}(z)=$ $(1.3,1.3)$
.Here, every pair of vertices have distinct support and total support. Therefore $G$ is both support irregular and totally support irregular interval-valued fuzzy graph but $A$ is not constant.

Theorem 4.10 Let $G$ : $(A, B)$ be an interval-valued fuzzy graph on $G^{*}(V, E)$.If $G$ is support strongly irregular interval-valued fuzzy graph, then $G$ is both support neighbourly and support highly irregular interval-valued fuzzy graph.

Proof. Let $G$ be a support strongly irregular interval-valued fuzzy graph. Then by definition, all the vertices of $G$ have distinct support which means every adjacent vertices have distinct support and neighbours of every vertex have distinct support. Hence $G$ is support neighbourly irregular interval-valued fuzzy graph and support highly irregular interval-valued fuzzy graph.

Remark 4.11 Converse of above theorem need not be true.

## V. CONCLUSION

In this paper, support strongly irregular and totally support strongly irregular fuzzy graphs have been introduced and discussed some of its properties.

## REFERENCES

[1] Akram, M. and W.A.Dudek Interval-Valued Fuzzy Graphs, Computers Math Appl.,61 (2011) 289-299.
[2] A.Yu, M.Lu and F.Tian, On the Spectral Radius of Graphs, Linear Algebra and its Applications, 387 (2004) 41-49.
[3] Dasong Cao, Bounds On Eigen Values and Chromatic Numbers, Linear Algebra and its Applications,270 (1998) 1-13.
[4] J.Krishnaveni and N.R.Santhi Maheswari, Support Neighbourly Irregular Fuzzy Graphs,International Journal of Advanced Research in Engineering and Technology, 11(1) (2020) 147-154.
[5] A.Nagoor Gani and K.Radha, On Regular Fuzzy Graphs, Journal of Physical Sciences, 12 (2008) 33-40.
[6] A.Nagoor Gani and S.R.Latha, On Irregular Fuzzy Graphs, Applied Mathematical Sciences, 6 (2012) 517-523.
[7] K.Priyadharshini and N.R.Santhi Maheswari, A Study on Support Highly Irregular Graphs,South East Asian Journal of Mathematics, (Communicated).
[8] A.Rosenfeld, Fuzzy Graphs, In: L.A.Zadeh,K.S.Fu, M.Shimura, Eds., Fuzzy Sets and Their Applications, Academic Press (1975) 77-95.
[9] N.R.Santhi Maheswari and C.Sekar, On (2, K)- Regular Fuzzy Graph and Totally (2,k)-Regular Fuzzy Graph, International Journal of Mathematics and Soft Computing, 4(2)(2014) 59-69.
[10] N.R.Santhi Maheswari and C.Sekar,On Neighbourly Edge Irregular Fuzzy Graphs,International Journal of Mathematical Archive, 6(10) (2015) 224-231.
[11] N.R.Santhi Maheswari and C.Sekar,On Pseudo Regular Fuzzy Graphs,Annals of Pure and Applied Mathematics, 11(1) (2016) 105-113.
[12] N.R.Santhi Maheswari and C.Sekar,On M-Neighbourly Irregular Fuzzy Graphs, International Journal of Mathematics And Soft Computing, 5(2) (2015) 145-153.
[13] N. R. Santhi Maheswari and C. Sekar,On ( $r, 2, k$ )- Regular Fuzzy Graphs,Journal of Combinatorial Mathematics and Combinatorial Computing, 97(2016) 11-21.
[14] N. R. Santhi Maheswari and C. Sekar,On ( $m, k$ ) -Regular Fuzzy Graphs, International Journal of Mathematical Archieve, 7(1) (2016) 1-7.
[15] N. R. Santhi Maheswari and C. Sekar,On (r,m,k) - Regular Fuzzy Graphs,International J.Math.Combin, 1 (2016) 18-26.
[16] N. R. Santhi Maheswari and C. Sekar,On Edge Irregular Fuzzy Graphs ,International Journal of Mathematics And Soft Computing ,6(2) (2016) 131143.
[17] N. R. Santhimaheswari and C. Sekar,On Strongly Edge Irregular Fuzzy Graphs, Kragujevac Journal of Mathematics, 40(1) (2016) 125-135.
[18] N. R. Santhimaheswari and M.Sudha, Pseudo Irregular Fuzzy Graphs and Highly Pseudo Irregular Fuzzy Graphs, International Journal of Mathematical Archieve, 7(4) (2016) 99-106.
[19] N.R.Santhimaheswari And M.Rajeswari, On Strongly Pseudo Irregular Fuzzy Graphs, International Journal Of Mathemaical Archive, 7(6)(2016)145151.
[20] N.R.Santhimaheswari And C.Sekar,On 2-Neighbourly Irregular Fuzzy Graphs,Utilitas Mathematica, June 2018.
[21] N.R.Santhi Maheswari And V.Jeyapratha,On Neighbourly Pseudo Irregular Fuzzy Graphs, International Journal Of Mathematical Combinatorics,Vol.4(2018)45-52.
[22] N. R. Santhi Maheswari And K. Amutha,Support Neighbourly Edge Irregular Graphs, International Journal Of Recent Technology And Engineering(IJRTE). Vol 8, Issue 3,(2019)Pp. 5329-5332..
[23] N.R.Santhi Maheswari And K.Amutha 1- Neighbourly Edge Irregular Graphs, Advances In Mathematics:Scientific Journal,Special Issueno.3, (2019) Pp. 200-207.
[24] N.R.Santhi Maheswari And K.Amutha, Pseudo Edge Regular And Neighbourly Pseudo Edge Irregular Graphs, Advances And Applications In Mathematical Sciences(Communicated).
[25] N.R.Santhi Maheswari And K.Priyadharshini, Support Highly Irregular Fuzzy Graphs, Advances And Applications In Mathematical Sciences(Communicated).
[26] L.A. Zadeh, Fuzzy Sets, Information And Control, 8 (1965) 338-353.
[27] L.A. Zadeh, The Concept Of A Linguistic And Application To Approximate Reasoning., Information Science, 8 (1975) 199-249.

