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Abstract - In this paper, we introduce the concept of   𝜏∗-generalized 𝛾 continuous multifunctions in topological spaces and 
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I. INTRODUCTION 

In 1996, Andrijevic [4] has introduced a weak form of open sets called b-open sets. This notion was also called 𝛾 -

open set in the sense of El-Atik [10] and called sp-open sets in the sense of Dontchev and przemski [8]. In 1996, El-Atik 

[10] introduced the concept of 𝛾-continous functions as a generalization semi-continous functions due to Levine [14] and 

pre-continuous functions due to Mashhour et al. [15]. A weak  form of continuous multifunctions called upper (lower) 𝛾-

continuous multifunctions was introduced by Abd-El-Monsef and Nasef [2]. Most of these weaker form of continuity, in 

ordinary topology such as                   𝛼-continuity, pre-continuity, quasi-continuity and 𝛽-continuity have been extended 

to multifunctions [16,19-22]. 

 

Dunham [9] introduced the concept of the closure operator  𝐶𝑙∗ and a new topology 𝜏∗ where 𝜏∗={G:𝐶𝑙∗(𝐺𝑐)= 𝐺𝑐} and 

studied some of their properties. Pushpalatha et al., [23] introduced and studied. 𝜏∗-generalized closed sets, Eswaran and 

Pushpalatha [12] introduced and studied. 𝜏∗-generalized continuous functions. Several authors have introduced and studied 
various function in topological spaces. 

 

For a multifunction F: X  Y, we shall denote the upper and lower inverse of a set G of Y  by 𝐹+(G) and 𝐹−(G), 

respectively, that is 𝐹+(G)={𝑥  X:F(𝑥) G} and 𝐹−(G)={𝑥 ∈ X:F(𝑥)⋂ G≠ ∅}. For a multifunction F: X → Y , the 

graph multifunction GF : X → X × Y is defined as follows: GF (x) = {x} × F (x) for every x ∈ X. 

 

II. PREMILINARIES 

Definition: 2.1 

Let X be a topological space and A be a subset of X.  Then A is called 𝛼–open if     A⊂ 𝑐𝑙(int(𝑐𝑙 (A))).[17] 

 

Definition: 2.2 

Let X be a topological space and A be a subset of  X.  Then A is called Semi open if  A⊂cl(int(A)).[18] 

 

Definition: 2.3 

Let X be a topological space and A be a subset of  X.  Then A is called Pre-open if  A⊂ int (cl (A)).[15] 

 

Definition: 2.4 

Let X be a topological space and A be a subset of  X.  Then A is called 𝛽-open [1] or semi pre open if  A⊂ cl (int 

(cl(A)).[3] 

 

Definition: 2.5 

Let X be a topological space and A be a subset of  X.  Then A is called 𝑏-open [4] or 𝛾 open if  A⊂ cl (int (A)∪
int (𝑐𝑙 (A))).[10] 
 

Definition: 2.6 

For the subset A of a topological space X, the generalized closure operator  𝐶𝑙∗ is defined by the intersection of all g-

closed sets containing 𝐴. [9] 
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Definition: 2.7 

For the subset A of a topological space X, the topology 𝜏∗ is defined by  𝜏∗={G:𝐶𝑙∗(𝐺𝑐)= 𝐺𝑐}. [9] 

 

Definition: 2.8 

A subsets A of a topological space (X,𝜏∗) is called 𝜏∗-generalized 𝛾 closed set(briefly  𝜏∗-g 𝛾 closed) if  𝛾 𝐶𝑙∗(A)⊆U 

whenever A⊆U and U is 𝜏∗ open in X. The complement of 𝜏∗-generalized 𝛾 closed set is called the 𝜏∗-generalized 𝛾 open 

set.  

 

Lemma: 2.9   

For a multifunction F : X Y , the following hold: 

( i )  G+(A × B) = A ∩ F +(B) and  

(ii) G−(A × B) = A ∩ F−(B) for any subsets A ⊂ X and B ⊂ Y [19]. 

 

Lemma 2.10: 

Let A and 𝑋0 be subsets of a space (X, 𝜏). If A𝜖𝛾O(X) and 𝑋0 ∈ 𝜏𝛼 , then A⋂𝑋0 ∈ 𝛾O(𝑋0).[4] 

 

Lemma 2.11: 

Let A⊂ 𝑋0 ⊂ 𝑋, 𝑋0𝜖𝛾O(X) and 𝐴𝜖𝛾O(𝑋0), then A𝜖𝛾O(X).[10] 

 

Definition: 2.12 

A function f : X→Y from a topological space X into a topological space Y is called b- continuous if the inverse image 

of an open set in Y is b-open in X. 

 

Definition: 2.11 

A function f : X → Y from a topological space X into a topological space Y is called g-continuous if the inverse image 
of a closed set in Y is g-closed in X.[5] 

 

Definition: 2.12 

A function f : X → Y from a topological space X into a topological space Y is called generalized 𝛾-continuous (briefly 

g𝛾 -continuous) if the inverse image of a closed set in Y is g𝛾 -closed in X.  

 

Definition: 2.13 

 A function f : X → Y from a topological space X into a topological space Y is called 𝜏∗-g continuous if the inverse 

image of a g-closed set in Y is 𝜏∗-gclosed in 𝑋. [12] 

 

Definition: 2.14 

 A function f : X  Y from a topological space X into a topological space Y is called 𝜏∗-generalized 𝛾 continuous 

function (briefly 𝜏∗-g𝛾 continuous) if the inverse image of every g𝛾 open set in Y is 𝜏∗-g open in X. 

 

Definition: 2.15  
A of a topological space X is said to be, 

(i) α-paracompact if every cover of A by open sets of X is refined by a cover of A which consists of open sets of  X and 

is locally finite in X; [24] 

(ii) α-regular if for each a ∈ A and each open set U of X containing a there exists an open set G of x such that a ∈ G ⊂ Cl 

(G) ⊂ U. [13] 

 

Definition: 2.16 

A topological space X is said to be 𝛾- compact if every 𝛾-open cover of X has a finity subcover [10]. 

 

Note: 2.17 

(D,>) is a directed set, (𝐹⋋) is a net of multifunction 𝐹⋋:X→Y. ⋋∈ 𝐷 and F is multifunction on X into Y. 

 

Definition: 2.18 

Let (𝐹⋋)⋋∈𝐷  be a net of multifunctions on X into Y. A multifunction 𝐹∗: 𝑋 → 𝑌 is defined as follows: for each 

𝑥𝜖𝑋, 𝐹∗(𝑥) = {𝑦 ∈ 𝑌: for each open neighbourhood of y and each 𝜂 ∈ 𝐷, there exists 𝛾 ∈ 𝐷 such that 𝛾 >  𝜂 and 

V⋂𝐹⋋(x)≠ ∅} is called the upper topological limit of the net 𝐹⋋ . [6] 
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Definition: 2.19 

A net (𝐹⋋)⋋∈𝐷  is said to be equally upper 𝛾- continuous at 𝑥0 ∈ 𝑋 if for every open set 𝑉⋋ containing 𝐹⋋(𝑥0) there 

exists a 𝛾-open set U containing 𝑥0 such that 𝐹⋋(𝑈) ⊂  𝑉⋋  for all ⋋∈ 𝐷.[2] 

 

 

III. ON   𝛕∗-GENERALIZED 𝜸 CONTINUOUS MULTIFUNCTIONS 

Definition 3.1 

A multifunction F : (X,𝜏∗) →( Y,𝜎) is said to be 

(i)  Upper 𝜏∗ -generalized 𝛾 continuous at a point  𝑥 ∈ 𝑋  if for each open set V of Y such that F (x)⊂ V, there exists 

⋃ ∈ 𝜏∗-g 𝛾(X,x) such that F (U)⊂ V; 

(ii) Lower 𝜏∗ -generalized 𝛾 continuous at a po int x ⊂X  if for each open set  V of Y such that F (x)⋂ V≠ ∅, there exists 

⋃ ∈ 𝜏∗g 𝛾(X,x) such that F (u)⋂ V≠ ∅ for every u∈U 

(iii) Upper (lower) 𝜏∗ -generalized 𝛾 continuous if  F  has this property at each point of  X. 

 

Theorem 3.2 

The  following  are  equivalent for  a multifunction  F : (X,𝜏∗) →( Y,𝜎); 

(i) F is upper  𝜏∗-g 𝛾 continuous; 

(ii)  𝐹 +(V) ∈ 𝜏∗-g 𝛾O(X) for any open set V of Y; 

(iii) 𝐹 – (𝑉)is   𝜏∗-g 𝛾 closed in X for any closed set V of Y; 

(iv)  𝜏∗-g 𝛾cl(𝐹 –(𝐵)) ⊂ 𝐹 – (𝑐𝑙 (𝐵)) for any B⊂ 𝑌; 
(v) For each point x of X and each neighbourhood V of F(x),  𝐹 +(𝑉) is 𝜏∗-g 𝛾 neighbourhood U of x such that 

F(U)⊂V; 

(vi) For each point x of X and each neighbourhood  V of F(x), there exists an 𝜏∗-g 𝛾 neighbourhood U of x such 

that F(U)⊂V; 

(vii) Cl(int (B))⊂ int (𝐹 –(𝐵))) for every subset B of Y; 

(viii) 𝐹 +(𝑖𝑛𝑡 (𝐵)) ⊂ 𝑖𝑛𝑡(𝑐𝑙(𝐹 –(𝐵)))⋃𝑐𝑙(𝑖𝑛𝑡(𝐹 +(𝐵))) for every subset B of Y 

 

Proof : 

(i)⇒(ii) Let V be any open set of Y and x ∈ 𝐹 +(V). There exists U∈ 𝜏∗-g 𝛾 (X,x) such that F(U) ⊂V. Then, we obtain 

x∈⋃⊂  𝑐𝑙(𝑖𝑛𝑡 (𝑈)) ∪ 𝑖𝑛𝑡(𝑐𝑙(𝑈) ⊂ 𝑐𝑙(𝑖𝑛𝑡(𝐹 +(𝑉))) ∪ 𝑖𝑛𝑡 (𝑐𝑙(𝐹 +(𝑉))). We have 𝐹 +(𝑉)  ⊂

𝑐𝑙(𝑖𝑛𝑡𝐹 +(𝑉))) ⋃𝑖𝑛𝑡 (𝑐𝑙𝐹 +(𝑉))) and hence 𝐹 +(𝑉) ∈ 𝜏∗-g 𝛾 O(X). 

(ii)⇔(iii) In fact that 𝐹 +(𝑌 − 𝐵) = 𝑋 − 𝐹 −(𝐵) for every subset B of Y; 

(iii) ⇒(iv) For any subset B of Y, cl(B) is closed in Y and 𝐹 −(𝑐𝑙(𝐵)) is 𝜏∗-g 𝛾 closed in X.    

        Hence 𝜏∗-g 𝛾cl𝐹 −(𝐵)  ⊂ 𝐹 −(𝑐𝑙(𝐵))). 

(iv) ) ⇒(iii) Let V be any closed set of Y. Then 𝜏∗g 𝛾cl(𝐹 –(𝑉)) ⊂ 𝐹 –(cl(V))= 𝐹 –(𝑉). Hence   𝐹 –(𝑉) is 𝜏∗-g 𝛾 closed in 

Y. 

(ii) ⇒(v) Let x∈ 𝑋 and V be a neighbourhood of F(x). Then, there exists an open set  G of Y such that F(x) ⊂G⊂V. Since 

𝐹 +(𝐺) ∈ 𝜏∗-g 𝛾𝑂(𝑋), 𝐹 +(𝑉) is 𝜏∗-g 𝛾 neighbourhood of x. 

(v) ⇒(vi) Let x∈ 𝑋 and V be a neighbourhood of F(x) put U=𝐹 +(𝑉), then U is an 𝜏∗-g 𝛾 neighbourhood U of x such that 

F(U) ⊂V. 

(vi) ⇒(i) Let x∈ 𝑋 and V be any open set of Y such that F(x) ⊂V. Then exists an 𝜏∗g 𝛾 neighbourhood U of x such that 

F(U) ⊂V. Then A∈ 𝜏∗-g 𝛾 O(X) such that x∈A⊂ ⋃ hence F(A) ⊂V. 

(iii) ⇒(vii) For any subset B of Y, cl(B) is closed in Y by (iii), 𝐹 –(cl(B)) is 𝜏∗-g 𝛾 closed in X. Then 

𝐹 –(cl(B))⊃int(cl(𝐹 –(cl(B)))⋂cl(int(𝐹 –(B))). 

(vii) ⇒(viii) By replacing Y-B instead of B in (vii), we have cl(int𝐹 +(𝑌 − 𝐵))) ⋂ 𝑖𝑛𝑡 (𝑐𝑙 𝐹 +(𝑌 − 𝐵))) ⊂ 𝐹 +(𝑐𝑙(𝑌 −
𝐵))  and 𝐹 +(𝑖𝑛𝑡(𝐵)) ⊂ 𝑖𝑛𝑡(𝑐𝑙(𝐹 +(𝐵)))⋃𝑐𝑙(𝑖𝑛𝑡(𝐹 +(𝐵))). 

(viii) ⇒(ii) Let V be any open set of Y. Then by using (viii) we have 𝐹 +(𝑉)𝜏∗-g 𝛾 O(X); 

 

Theorem. 3.3 

 The following are equivalent for a multifunction  F : (X,𝜏∗) →( Y,𝜎): 

(i) F is lower 𝜏∗-g 𝛾 continuous; 

(ii) 𝐹 −(𝑉) ∈ 𝜏∗-g 𝛾 O(X) for any open set V of Y; 

(iii) 𝐹 +(𝑉) is 𝜏∗-g 𝛾 closed in X for any closed set V of Y. 

(iv)  𝜏∗-g 𝛾𝑐𝑙(𝐹 +(𝑐𝑙(𝐵)) for any B⊂ Y; 

(v) F(𝜏∗-g 𝛾𝑐𝑙(𝐴)) ⊂ 𝑐𝑙(𝐹(𝐴)) for any A⊂ Y; 

(vi) cl(int𝐹 +(𝑐𝑙(𝐵))) ⋂ 𝑖𝑛𝑡 (𝑐𝑙 𝐹 +(𝑉))) for every subset B of Y; 

(vii) 𝐹 –(𝑖𝑛𝑡 (𝐵)) ⊂ 𝑖𝑛𝑡(𝑐𝑙(𝐹 –(𝐵)))⋃𝑐𝑙(𝑖𝑛𝑡𝐹 –(𝐵))) for every subset B of Y. 

Proof: 
The proof is similar to the theorem 3.2 
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Theorem. 3.4 

Let F : (X,𝜏∗) →( Y,𝜎) be a multifunction such that F(𝑥)  is compact for each 𝑥 ∈X. Then F is upper 𝜏∗-g𝛾 continuous 

if and only if 𝐺𝐹 : X→X × Y is upper 𝜏∗-g𝛾 continuous. 

 

Proof: 

Suppose that F : (X,𝜏∗) →( Y,𝜎) is upper 𝜏∗-g𝛾 continuous. Let 𝑥 ∈X and W be any open set of X × Y containing 

𝐺𝐹(𝑥). For each y∈F(𝑥), there exists open sets U(y)  ⊂X and V(y) ⊂Y such that (𝑥,y) ∈ U(y) × V(y) ⊂W. The family of 

{ V(y): y∈F(𝑥)} is an open cover  of F(𝑥) and F(𝑥) is compact. Then, there exists a finite number of points, 

says,𝑦1,𝑦2,…..𝑦𝑛  in F(𝑥) such that F(𝑥) ⊂∪{V(𝑦𝑖):1≤i≤n}. Set U=∩{U(𝑦𝑖): 1≤i≤n} and V=∪{V(𝑦𝑖):1≤i≤n}. Then U 

and V are open in X and Y,respectively, and {𝑥}× F(𝑥) ⊂U×V⊂W. Since F is upper 𝜏∗-g𝛾 continuous, there exists 𝑈0 ∈
𝜏∗-g𝛾(X,𝑥) such that F(𝑈0) ⊂V. By lemma 2.9, we have U∩ 𝑈0 ⊂U∩ 𝐹 +(𝑉)=𝐺𝐹

+(U×V) ⊂ 𝐺𝐹
+(W). Here, we obtain U∩

𝑈0 ∈ 𝜏∗-g𝛾(X,𝑥) and 𝐺𝐹(U∩ 𝑈0) ⊂W. So that 𝐺𝐹  𝑖𝑠 upper 𝜏∗-g𝛾 continuous.  

 

Assume that 𝐺𝐹 : X→X × Y is upper 𝜏∗-g𝛾 continuous. Let 𝑥 ∈X and V be any open set of  Y containing F(𝑥). 

Since X × V and 𝐺𝐹 ⊂ X × V, there exists U∈ 𝜏∗-g𝛾(X,𝑥)such that 𝐺𝐹(u) ⊂ X × V. By lemma 2.9, we have U⊂
𝐺𝐹

+(X×V)= 𝐹 +(𝑉) and F(U) ⊂V. Hence F is  upper 𝜏∗-g𝛾 continuous. 

 

Theorem. 3.5 

Let F : (X,𝜏∗) →( Y,𝜎) be a multifunction such that F(𝑥)  is compact for each 𝑥 ∈X. Then F is lower 𝜏∗-g𝛾 

continuous if and only if 𝐺𝐹 : X→X × Y is lower 𝜏∗-g𝛾 continuous. 

 

Proof: 

Suppose that F is lower 𝜏∗-g𝛾 continuous. Let 𝑥 ∈X and W be any open set of X × Y such that 𝑥 ∈ 𝐺𝐹
− (W). 

Since W∩ ({𝑥}× F(𝑥) )≠ ∅,there exists open sets y∈F(𝑥) such that (𝑥,y) ∈ Wand hence(𝑥,y) ∈ U×V⊂W for some open 

sets  U ⊂X and V ⊂Y. Since  F(𝑥) ∩ V≠ ∅ , there exists G∈ 𝜏∗-g𝛾(X,𝑥)such thatG⊂ 𝐹 −(𝑉) . By lemma 2.9, we have ∪
∩ G⊂∪∩ 𝐹 −(𝑉)= 𝐺𝐹

−  (U×V) ⊂ 𝐺𝐹
−  (W). Then𝑥 ∈ ∪∩  G ∈ 𝜏∗-g𝛾𝑂(X) and hence 𝐺𝐹  𝑖𝑠 𝑙𝑜𝑤er 𝜏∗-g𝛾 continuous. 

 

Assume that 𝐺𝐹  is lower 𝜏∗-g𝛾 continuous. Let 𝑥 ∈X and V be any open set of  Y such that  𝑥 ∈ 𝐹 −(𝑉). Then 

X × V  is open in X × Y and 𝐺𝐹(𝑥) ∩ (X × V )= ({𝑥}× F(𝑥) ) ∩ (X × V )={𝑥}× F(𝑥) ∩  V) ≠ ∅ . Since  𝐺𝐹  is lower 

𝜏∗-g𝛾 continuous, there exists  U∈ 𝜏∗-g𝛾(X,𝑥) such that U⊂ 𝐺𝐹
− (U×V). By lemma 2.9, U⊂ 𝐹 −(𝑉) . So that F is lower 

𝜏∗-g𝛾 continuous. 

 

Lemma: 3.6   

 

If A  is an α-regular α-paracompact set of a topological space X and U is an open neighborhood of A, then there exists 

an open set G of X such that A ⊂ G⊂ cl(G)⊂ U. [13]  

For a multifunction F : X →Y , by clF : X → Y  we denote a multifunction defined as follows: (cl F)(x) = cl(F(x)) for 

each x ∈ X. Similarly, we can define 𝛾clF : X→ Y,  βclF : X→ Y , sclF : X → Y , pclF : X → Y or  α clF: X → Y. [7] 

Lemma: 3.7   

If  F: (X,𝜏∗)→( Y,𝜎) is a multifunction such that F (x) is α-paracompact α-regular for each x∈X, then for each 

open set V of Y , G+(V ) = F +(V ), where G denotes 𝛾clF, βclF, sclF, pclF,     αclF or  clF. 

Proof:  

Let V  be any open set of Y .  Let x ∈ G+(V ).  Then G(x)⊂  V and F (x)⊂ G(x) ⊂ V . We have x ∈ F+(V ), and 

hence G+(V )⊂ F+(V). Conversely, let x ∈ F +(V ), then F (x) ⊂ V . By Lemma 3.6, there exists an open set  W of Y such that 

F (x) ⊂ W ⊂ cl(W) ⊂ V ; hence G(x) ⊂ cl(W) ⊂ V . Then, we have x ∈G+(V ) and F +(V ) ⊂ G+(V ).  

Theorem: 3.8 

Let   F: (X,𝜏∗)→( Y,𝜎) be a multifunction such that F (x) is α- paracompact and α-regular for each x ∈ X. Then the 

following are equivalent: 

(i) F is upper 𝜏∗-g𝛾 continuous ; 

(ii) 𝛾clF is upper 𝜏∗-g𝛾 continuous ; 

(iii) βclF is upper 𝜏∗-g𝛾 continuous ; 

(iv) sclF is upper 𝜏∗-g𝛾 continuous ; 

(v) pclF is upper 𝜏∗-g𝛾 continuous ;  

(vi) clF is upper 𝜏∗-g𝛾 continuous . 
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›
→ 

 

(vii) αclF is upper 𝜏∗-g𝛾 continuous. 

Proof:  

By  Lemma 3.6, we put G = 𝛾cl F, βcl F, scl F, pcl F, or clF. Suppose that F is upper 𝜏∗-g𝛾 continuous . Let x∈ X and 

V be any open set of Y containing G(x). 

By Lemma 3.7 x∈ G+(V ) = F +(V ) and there exists U∈ 𝜏∗-g𝛾 (X, x) such that F (U )⊂ V . Since F (u) is α-paracompact 

and α-regular for each u∈ U , by Lemma 3.7, there exists an open set W such that F(u) ⊂ W ⊂ cl(W) ⊂ V ; hence G(u) 

⊂ cl(W) ⊂ V  for each u ∈ U . So that  G(U) ⊂ V . Hence G is upper 𝜏∗-g𝛾 continuous . 

 

Conversely, suppose that G is upper 𝜏∗-g𝛾 continuous . Let x ∈ X and V be any open set of Y containing F (x). By 

Lemma 3.7, x ∈ F +(V ) = G+(V ) and hence G(x) ⊂ V . There exists U ∈ 𝜏∗-g𝛾 (X, x) such that G(U ) ⊂ V . Thus U ⊂ 

G+(V) = F +(V), and hence F (U)⊂ V.  So that F is upper 𝜏∗-g𝛾 continuous . 

 

Lemma: 3.9 

 

 If F:(X,𝜏∗)→( Y,𝜎) is a multifunction, then for each open set V of Y , G−(V ) =  F−(V ), where G denotes 𝛾clF, 

βclF,  sclF,  pclF , 𝛼clF or clF. 

Proof:  

Let V be any open set of Y and x ∈G−(V ). Then G(x) ∩ V ≠ ∅, and hence F(x)∩V≠ ∅.  𝑆ince V  is open.  Thus, x ∈  

F−(V ) and hence G−(V )⊂ F−(V ) .   Conversely, assume that x ∈ F− (V ). Then we have  ∅ ≠  =F(x) ∩V ⊂ G(x) ∩V and 

hence x ∈ G−(V ). Thus, we have F−(V )⊂ G−(V ). Then G−(V ) = F−(V ). 

 

Theorem: 3.10  

Let   F: (X,𝜏∗)→( Y,𝜎) be a multifunction then the following are equivalent: 

(i) F is lower 𝜏∗-g𝛾 continuous ; 

(ii) 𝛾clF is lower 𝜏∗-g𝛾 continuous ; 

(iii) βclF is lower 𝜏∗-g𝛾 continuous ; 

(iv) sclF is lower 𝜏∗-g𝛾 continuous ; 

(v) pclF is lower 𝜏∗-g𝛾 continuous ;  

(vi) αclF is lower 𝜏∗-g𝛾 continuous. 

(vii) lF is lower 𝜏∗-g𝛾 continuous ; 

 

Theorem: 3.11 

Let{𝑈⋋:⋋∈ Λ} be an 𝛼-open cover of a space X. A multifunction   F: (X,𝜏∗)→( Y,𝜎) upper 𝜏∗-g𝛾 continuous(resp. 

lower 𝜏∗-g𝛾 continuous) if and only if  restriction F\𝑈⋋:𝑈⋋ →(Y,𝜎)  upper 𝜏∗-g𝛾 continuous(resp. lower 𝜏∗-g𝛾 continuous)  for 

each ⋋∈ Λ. 

 

Proof: 

Suppose that let⋋∈ Λ and 𝑥 ∈ 𝑈⋋ . Let V be a n open set of Y such that (F\𝑈⋋)(𝑥)⊂V. Since F is   upper 𝜏∗-g𝛾 

continuous ,and F(𝑥)= (F\𝑈⋋)(𝑥)⊂V, there exists G∈ 𝛾 (X, x ) such that F(G) )⊂V . Put U=G∩ 𝑈⋋, then by lemma 2.10, 

we have U∈ 𝜏∗-g𝛾 (𝑈𝜆 , x ) and (F\𝑈⋋)(U)=F(U)⊂V. Then F\𝑈⋋ is upper 𝜏∗-g𝛾 continuous .  

 

Assume that 𝑥 ∈X and V be any open setY such that F(𝑥)⊂V , there exists ⋋∈ Λ such that 𝑥 ∈ 𝑈𝜆 . Since f\𝑈𝜆  is 

upper 𝜏∗-g𝛾 continuous  and (F\𝑈⋋)(𝑥)= F(𝑥) ⊂V , there exists U∈ 𝜏∗-g𝛾 (𝑈𝜆 , x )  such that (F\𝑈⋋)(U) ⊂V. Then by 

lemma 2.11, we have U∈ 𝜏∗-g𝛾 (X, x ) and F(U)= (F\𝑈⋋)(U) ⊂V. Hence F is upper 𝜏∗-g𝛾 continuous. 

IV. SOME PROPERTIES 

Definition: 4.1 

 The 𝜏∗-g𝛾-frontier of a subset A of X, denoted by 𝜏∗-g𝛾Fr(A), is defined by 𝜏∗-g𝛾Fr(A) = 𝜏∗-g𝛾cl(A) ∩ 𝜏∗-g𝛾cl(X 

\ A) = 𝜏∗-g𝛾Cl(A) −𝜏∗- g𝛾int(A). 

 

Theorem: 4.2 

The set of all points x of X at which is a multifunction F: (X,𝜏∗)→( Y,𝜎) is not upper    𝜏∗- g𝛾 continuous is 

identical with the union of 𝜏∗-g𝛾 frontier of the upper  inverse  images  of  open   sets  containing F (x).  
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Proof:  

Let x be a point of X at which F is not upper 𝜏∗-g𝛾 continuous. Then there exists an open set V of Y  containing F 

(x) such that U ∩(X−F +(V )) ≠ ∅  for every U ∈ 𝜏∗-g𝛾 (X, x). Therefore, x ∈ 𝜏∗-g𝛾Cl(X − F +(V )) = X−𝜏∗-

g𝛾int(F+(V )) and  x ∈ F+(V). Then, x ∈ 𝜏∗-g𝛾Fr(F +(V)). Conversely, suppose that V is an open set containing F (x) and 

that x∈ 𝜏∗-g𝛾Fr(F +(V )). If  F is upper 𝜏∗-g𝛾 continuous at x, then there exists U ∈ 𝜏∗-g𝛾 (X, x) such that U⊂F +(V ); 

hence x ∈ 𝜏∗-g𝛾 int(F +(V)). Which is a contradiction, hence F is not upper 𝜏∗-g𝛾 continuous at x.  
 

Theorem: 4.3 

The set of all points x of X at which is a multifunction F: (X,𝜏∗)→( Y,𝜎) is not lower    𝜏∗- g𝛾 continuous is 

identical with the union of 𝜏∗-g𝛾 frontier of the lower inverse  images  of  open  sets  containing  F(x).  

Proof: 

Let x be a point of X at which F is not lower  𝜏∗-g𝛾 continuous. Then there exists an open set V of Y containing F 

(x) such that U ∩(X−𝐹−(V)) ≠ ∅  for every U ∈ 𝜏∗-g𝛾 (X, x). Therefore, we have x ∈ 𝜏∗-g𝛾Cl(X− 𝐹−(V)) = X−𝜏∗-

g𝛾int(F -(V )) and x∈ F -(V ). Then, x ∈ 𝜏∗-g𝛾Fr(𝐹−(V)). Conversely, suppose that V is an open set containing F (x) and 

that x ∈ 𝜏∗-g𝛾Fr(𝐹−(V )). If F is lower 𝜏∗-g𝛾 continuous, at x, then there exists U ∈ 𝜏∗-g𝛾 (X, x) such that U⊂ 𝐹−(V ); 

hence x ∈ 𝜏∗-g𝛾 int(𝐹−(V )). Which is a contradiction, hence F is not lower 𝜏∗-g𝛾 continuous at x.  
 

Definition: 4.4 

A net (𝐹⋋)⋋∈𝐷  is said to be equally upper 𝜏∗-g𝛾 continuous at 𝑥0 ∈ 𝑋 if for every open set 𝑉⋋  containing 𝐹⋋(𝑥0) 

there exists a 𝜏∗-g𝛾 open set U containing 𝑥0 such that 𝐹⋋(𝑈) ⊂  𝑉⋋ for all ⋋∈ 𝐷. 

 

Theorem: 4.5 

 Let (𝐹⋋)⋋∈𝐷be a net of multifunctions from a topological space  (X,𝜏∗) into a compact topological space ( Y,𝜎) . If 

the following are satisfied. 

(i) ⋂{𝑌 − 𝐹𝜂(x):𝜂 > 𝜆}∈ 𝜎 for each 𝜆 ∈ D and each x∈X, 

(ii) (𝐹⋋) is equally upper 𝜏∗-g𝛾 continuous on X, then 𝐹∗ is upper𝜏∗-g𝛾 continuous on X. 

 

Proof: 

It is well known that 𝐹∗(𝑥)= ⋂{𝑐𝑙 (∪ 𝐹𝜂(x):𝜂 > 𝜆}: 𝜆 ∈ D} from(i),we have 𝐹∗(𝑥)= ⋂{[ ∪ {𝐹𝜂(x):𝜂 > 𝜆}]: 𝜆 ∈ D}, 

since the net (∪ {𝐹𝜂(x):𝜂 > 𝜆})⋋∈𝐷  is a family of closed sets having the finite intersection property and Y is compact, 

it follows that 𝐹∗(𝑥)≠ ∅ for each x∈X. Now, let 𝑥0 ∈ 𝑋 and let V∈ 𝜎 such that V≠Y and 𝐹∗(𝑥0)⊂V. Then 

𝐹∗(𝑥0)∩(Y−V) ≠ ∅. Then ⋂{[ ∪ {𝐹𝜂(x):𝜂 > 𝜆}]: 𝜆 ∈ D})∩(Y−V)= ∅ and hence ⋂{[ ∪ {𝐹𝜂(x):𝜂 > 𝜆}]: 𝜆 ∈ D}=∅. 

Since Y is compact and the family {[∪ {𝐹𝜂(𝑥0)∩(Y−V): 𝜂 > 𝜆}: 𝜆 ∈ D] is a family of closed sets with the empty 

intersection, there exists 𝜆 ∈ D such that for each 𝜂 ∈D with 𝜂 > 𝜆 we have 𝐹𝜂(𝑥0)∩(Y−V) )= ∅; hence 𝐹𝜂(𝑥0) ⊂V. 

Since the net (𝐹⋋)⋋∈𝐷  is equally upper 𝜏∗-g𝛾 continuous on X, when the results that there exists a 𝜏∗-g𝛾 open set U 

containing 𝑥0 such that 𝐹𝜂(U) ⊂V for each 𝜂 > 𝜆, hence 𝐹𝜂(x) ∩(Y−V) = ∅ for each x∈ 𝑈. Then, we have ∪ {𝐹𝜂(x) 

∩(Y−V) : 𝜂 > 𝜆 }= ∅; hence ⋂{[ ∪ {𝐹𝜂(x):𝜂 > 𝜆}]: 𝜆 ∈ D}∩(Y−V)=∅ which implies that 𝐹∗(U)⊂V. If V=Y, then it 

is clear that for each 𝜏∗-g𝛾 open set U containing 𝑥0 we have 𝐹∗(U)⊂V. Since 𝑥0 is arbitrary, hence 𝐹∗ is upper 𝜏∗-g𝛾 

continuous on 𝑥0. 

 

Definition: 4.6 

 A topological space X is said to be τ∗-gγ compact if every 𝜏∗-g𝛾 open cover of X has a finite subcover. 
 

Theorem: 4.7 

Let F: (X,𝜏∗)→( Y,𝜎) be an upper 𝜏∗-g𝛾 continuous surjective multifunction such that F(𝑥) is compact for each 

x∈X. If X is  τ∗-gγ compact, then Y is  compact. 
 

Proof: 

Let  {𝑉𝜆 :𝜆 ∈ ∇} be an open cover Y. For each x∈X, F(𝑥) is compact and there exists a finite subset ∇ (𝑥) of ∇ such 

that F(𝑥) ⊂∪{𝑉𝜆 :𝜆 ∈ ∇(𝑥) }. Set V(𝑥)=∪{𝑉𝜆 \𝜆 ∈ ∇(𝑥)}. Since F is upper 𝜏∗-g𝛾 continuous, there exists U(𝑥) ⊂ 𝜏∗-

g𝛾O(X) containing 𝑥 such that F(U(𝑥) ⊂ V(𝑥) ). The family { U(𝑥): x∈X} is an τ∗-gγ open cover of X and there 

exists a finite number of points, say 𝑥1,𝑥2,……,𝑥𝑛  in X such that X=∪{U(𝑥𝑖):1≤i≤n}. Then,we have 

Y=F(X)=F(⋃ 𝑈(𝑥𝑖
𝑛
𝑖=1 ))=⋃ 𝐹𝑛

𝑖=1  (U(𝑥𝑖))⊂ ⋃ 𝑉𝑛
𝑖=1 (𝑥𝑖)= ⋃ ⋃ 𝑉𝜆𝜆∈∇(𝑥𝑖)

𝑛
𝑖=1 .  

Hence Y is compact. 

 

V. CONCLUSION 

The  τ∗-generalized 𝛾 continuous multifunctions can be used to open map, closed map and then new separation 

axioms. 
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