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1 Introduction

In Mathematics,the concept of Fuzzy set was introduced by L A Zadeh[2].It
is a new way to repreesent vagueness in our daily life.In 1975 Kramosil and
Michalek[7] introduced the concept of fuzzy metric spaces which opened a new
way for further development of analysis in such spaces.George and Veeramani[1]
modified the concept of fuzzy metric space.After that several fixed point theo-
rems have been proved in fuzzy metric spaces. In 2006, Mustafa.Z and B.Sims|[4]
presented a definition of G-metric space.After that several fixed point results
have been proved in G-metric spaces.

We have defined generalized E-fuzzy metric space[18] and proved common
fixed point theorem for mappings in generalized E-fuzzy metric space [19]. In
this paper we discuss some of the properties of E-fuzzy metric space and prove
contraction theorem in E-fuzzy metric space.

2 Preliminary Notes

Definition 1. [2] A fuzzy set A in X is a function with domain X and
values in [0,1]

Definition 2. [5] A binary operation * :[0,1]x [0,1]—[0,1] is a continuous
t-norm if * satifies the following conditions

e *is commutative and associative
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e *is continuous
e ax1l=uaforall ac|0,]

e axb < cxd whenever a < cand b <d for all a,b,¢,d € [0,1]

Definition 3. [1] A 3-tuple(X,M,*) is said to be a fuzzy metric space if X
is an arbitrary set,* is a continuous t-norm and M is a fuzzy set on X?x[0,00)
satisfying the following conditions ,for all x,y,z € X and s,t > 0

o M(z,y,t) >0
x,y,t) =1, if and only if z = y
x,y,t) = M(y,z,t)
t)
)

*M(yv'zas) SM(IEVZ,t—f—S)

o M(
o M(
o M(z,y,
o M(

x,y,.) : (0,00) = (0,1] is continuous

M(x,y,t) denotes the degree of nearness between = and y with respect to ¢.

Definition 4. [4] Let X be a nonempty set and let G:X xX x X — [0,00)
be a function satisfying the following

e G(z,y,2)=0ifze=y=12

e 0 <G(z,z,y) forall z,y € X with z # y

o G(z,z,y) < G(z,y,2) for all z,y,z € X with z £y

e G(z,y,2) = G(p{x,y, z}) (symmetry) where p is a permutation function

o G(z,y,2) < G(z,a,a) + G(a,y,z) for all x,y,z,a € X (Rectangle in-
equality)

Then the function is called a generalized metric , or, more specifically a G-
metric on X and the pair (X,G) is a G-metric space.

Definition 5. [18] A 3-tuple (X, E, *) is called an E- fuzzy metric space if
X is an arbitrary set, * is a continuous t-norm and E is a fuzzy set on X?x (0, 00)
satisfying the following conditions for each x,y,z,a € X and t,s > 0

1. E(z,y,z,t) > 0 and E(z,z,y,t) > E(x,y,z2,t) for all z,y,z € X with
z#y

2. E(z,y,z,t)=1,forallt >0ifand only if x =y = 2

3. E(z,y,z,t) = E(p(x,y, 2),t) (symmetry), where p is a permutation func-
tion

4. E(z,y,z,t+s) > E(z,a,z,t) * E(a,y, 2, )

5. E(z,y,2,.):(0,00) — [0, 1] is continuous
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This is a generalization of fuzzy metric space called E-fuzzy metric space.

Example 6. Let X = R and G is a G- metric on X. The t- norm is
a*b=ab for all a,b € [0,1]. For each ¢t > 0 and

E(z,y, 2, t) = [eap(EZp2) )1

Then (X, F, %) is an E-fuzzy metric space.

Lemma 7. [18] If (X, E, %) be a E-fuzzy metric space , then E(x,y,z,t) is
non-decreasing with respect to t for all x,y,z € X

Lemma 8. [18] Let (X, E, %) be a generalized E-Fuzzy Metric space. If
there exists, k € (0, 1) such that F(z,y,z,kt) > E(z,y,2,t) for all z,y,z € X
and t > 0 then x =y ==z

3 Properties of E-Fuzzy Metric Space

Definition 9. (X, E,#) be a E-fuzzy metric space. An open ball with
centre xy and radius r is given by
BE(x07r7t) = {33 € X;E(l‘o,l',x,t) >1 _T}

Definition 10. (X, E,x) be a E-fuzzy metric space. A sequence (z,) in
X converges to a point x € X if and only if E(z,,z, ©,t) — 1 as n — oc.

Lemma 11. If (z,) is a sequence in (X, E, %) converges to € X, then
1. E(zp,zp, z,t) > 1 asn — o0

2. E(zn,xm, x,t) — 1 as myn — oo

3. E(xn,Tm,x,t) > 1 —¢, for ¢ >0 and m,n > ng

Definition 12. A sequence (z,) in (X, E, ) is said to be a Cauchy se-
quence if for each 0 < € < 1 and t > 0, there exists ng € N such that
E(@m,Tn,21,t) > 1 — € for each I,m,n > ng.

Definition 13. An E- fuzzy metric space in which every Cauchy sequence
is convergent is said to be a complete E- fuzzy metric space.

Definition 14. (X3, E;,*) and (Xa, Eg,*) be two generalized E- fuzzy
metric spaces. A function f : X; — X5 is said to be continuous at a point
a € X1 if V e > 0 there exists § > 0 such that Es(f(z), f(a), f(a),s) > 1 —¢
whenever Ey(x,a,a,t) >1—4§,t> 0.
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Definition 15. (X3, Ey,*) and (X, E2,*) be two generalized E- fuzzy
metric spaces. A function f : X; — Xj is said to be uniformly continuous if
V € > 0 there exists § > 0 such that Es(f(z), f(v), f(2),s) > 1 — ¢ whenever
Ei(x,y,z,t) >1—94.

Definition 16. Let (X, E,x) be a E-fuzzy metric space. A mapping
f X — X is said to be a contraction on X if there exists some a with
0 < a < 1 such that
—1<almrtrs—1)

1
E(fz,fy,fzt) E(z,y,2,t)

Lemma 17. A contraction map f on (X, E,x) is both continuous and
uniformly continuous.

Proof. Let f is a contraction on (X, F, x).
Then for some o with 0 < o« < 1 we have
1 < a(gtasm—1)

1 _
E(fz,fy,fzt) E(z,y,2,t)

1 1—E(z,y,2,t)
BGwreren L S o )

E(z,y,z,t)
ahrg — L < o)
m_l < e
m < 14 ae

E(fz, fy, fzt) > ﬁ

E(f‘rafya fZ,t) Z ]‘_ 11;2-:0

E(fx,fy,fz,t) Z 1*6

Hence f is uniformly continuous. O

4 Banach Contraction Theorem

Theorem 18. Let (X, E,*) be a complete generalized E-fuzzy metric
space. Let f be a contraction on X.
Zem_léa(m_l) fOrSOmeOéthhO<a<1
Then f has a unique fixed point.

Proof. Let xg € X, consider a sequence in X such as
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T = fxo

T2 = Vg = fzfﬂo
T3 = VEZS = fRag
Tn = fxn—l = f”IO

First we assert that (z,) is cauchy.
By the definition of contraction, we have

S s Rl B € ¢ e ermmres ey B
< a(E(mT,,_l,z,,lL_l,zl,l,t) - 1)
< gmmamaaress b
< 0‘2(E(xn,2,xi,2,xl,2,t) -1
< Emmaans Y
— 0,as n — o0
= ——=——=—-1-0

E(xn,Tm,z,t)
=  E(xp,xm,x,t) =1

Hence (x,,) is cauchy. Also X is complete
Hence there exists an « such that (z,) — =
Now we will prove that f(z,) — f(z)

1 1
(E(f:v,fmn,fzm,t) - ]‘) S a(E(z,mn,xm,t) - 1)
— 0,as n — o0
1
= EGafengenn 170
= f(za) = f(2)

Now we establish that f(z) =z
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1 1):

1
(E(Inafl'nvfmm»t) - (E(fl'n—hfwnyfzmat) B 1)

1
< Agemenn Y
2 1
< a (E(En_z,mn_l,zm_l,t) - 1)
—1 1
< " Ugmmesg — Y

Taking limit n — oo, we have

1
=  Eefefen 170

=  FE(x, fz, fo,t) =1
= f(z)==

Hence z is a fixed point.
To prove uniqueness, let z be another fixed point.

7

Then fz' =z
S A R
(z,z",,t) E(fz,fz’, fa,t)
1

< Ol( E(x,x ,x,t) o 1)
. 1 _
e E(x,x x,t) -1=0
ie E(x,x/,x,t)zl
ie r=2x

O

Corollary 19. Let f be a mapping of a complete E-fuzzy metric space X
to itself. If f is a contraction on a closed ball Bg(x,,t), then there exists a
unique fixed point of f in Bg(xg,r,t).

Proof. Consider a sequence (z,,) such that

x1 = f(=o)
z2 = f(x1) :fQ(IO)
t = flen) = [ (0)

Put n =0 and | = m in the inequality of above theorem, then
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(sots — ) < olpmatag — 1)
T (l—®) < (1-aq)
E(zo, Tm, Tm, 1) > 1>1-r0<r<l1

Hence z,, € Bg(xo,7,1)

ie (z,,) is a sequence in Bg(xq,r,1)

Now using above theorem we can prove that z,, — .

since Bg(xo,r,t) is closed, x € Bg(xq,r,t).

Hence this result follows from Banach Contraction Theorem.

Then by Banach Contraction Theorem f has a unique fixed point in Bg(xq, 7, t).
O

5 Conclusion

Fixed point theory has many applications in several branches of science such
as game theory, nonlinear programming,economics,theory of differential equa-
tions, etc. In this paper we discussed some of the properties of generalized
E-fuzzy metric space. Also we proved contraction theorem in generalized E-
fuzzy metric space. Our results presented in this paper generalize and improve
some known results in fuzzy metric space.
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