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Abstract - Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a connected simple graph. A subset 𝑆 of 𝑉(𝐺) is a dominating set of 𝐺 if for every 𝑢 ∈
 𝑉(𝐺) ∖  𝑆, there exists 𝑣 ∈  𝑆 such that 𝑢, 𝑣 ∈  𝐸(𝐺). A dominating set S is called a fair dominating set if for each distinct 

vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) ∖ 𝑆, |𝑁𝐺(𝑢) ∩  𝑆| = |𝑁𝐺(𝑣) ∩  𝑆|. Further, if 𝐷 is a minimum fair dominating set of 𝐺, then a fair 

dominating set 𝑆 ⊆ 𝑉(𝐺) ∖ 𝐷 is called an inverse fair dominating set of 𝐺 with respect to 𝐷. A disjoint fair dominating set of 𝐺 

is the set 𝐶 = 𝐷 ∪  𝑆 ⊆  𝑉(𝐺). In this paper, we give the characterizations in the join and corona of two graphs. 

 

Keywords - Fair dominating set, Inverse fair dominating set, Disjoint fair dominating set, Join, Corona.  

I. INTRODUCTION  

Suppose that 𝐺 = (𝑉(𝐺), 𝐸(𝐺) is a simple graph with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). In simple graph, we mean, finite 

and undirected graph with neither loops nor multiple edges. For the general graph theoretic terminology, the readers may refer 

to [1]. 
 

A vertex 𝑣 is said to dominate a vertex 𝑢 if 𝑢𝑣 is an edge of 𝐺  or 𝑣 = 𝑢. A set of vertices 𝑆 ⊆  𝑉(𝐺) is called a 

dominating set of 𝐺 if every vertex not in 𝑆 is dominated by at least one member of 𝑆. The size of a set of least cardinality 

among all dominating sets for 𝐺 is called the domination number of 𝐺 and is denoted by 𝛾(𝐺). A dominating set of cardinality 

𝛾(𝐺) is called γ-set of 𝐺. Domination in a graph was introduced by Claude Berge in 1958 and Oystein Ore in 1962 [2]. 

Domination in graphs has been studied in [3 - 15]. 

 

A dominating set 𝑆 is called a fair dominating set [16] of 𝐺 if all the vertices not in 𝑆 are dominated by the same number of 

vertices from 𝑆, that is, |𝑁𝐺(𝑢) ∩  𝑆| = |𝑁𝐺(𝑣) ∩ 𝑆| for every two distinct vertices 𝑢 and 𝑣 from 𝑉(𝐺) ∖  𝑆 and a 

subset 𝑆 of 𝑉(𝐺) is a 𝑘-fair dominating set in 𝐺 if for every vertex 𝑣 ∈  𝑉(𝐺) ∖  𝑆, 𝑁𝐺(𝑣) ∩  𝑆 = 𝑘. The fair domination 

number of 𝐺, is the minimum cardinality of a fair dominating set of 𝐺 and is denoted by 𝛾𝑓𝑑(𝐺).  A fair dominating set of 

cardinality 𝛾𝑓𝑑(𝐺) is called 𝛾𝑓𝑑-𝑠et of 𝐺. Fair domination in graphs has been studied in [17 - 22].  

 

A fair dominating set 𝑆 is called an inverse fair dominating set of 𝐺 if each 𝑆 ⊆  𝑉(𝐺) ∖  𝐷  is a 𝛾𝑓𝑑-set of 𝐺. The inverse 

fair domination number of 𝐺, is the minimum cardinality of an inverse fair dominating set of 𝐺 and is denoted by 𝛾𝑓𝑑
−1(𝐺).  An 

inverse fair dominating set of cardinality 𝛾𝑓𝑑
−1(𝐺) is called 𝛾𝑓𝑑

−1-set of 𝐺. The inverse domination has been studied in [23 - 31]. 

A disjoint dominating set of 𝐺 is the set 𝐶 = 𝐷 ∪  𝑆 ⊆  𝑉(𝐺). The disjoint domination number of 𝐺, is the minimum cardinality 

of a disjoint dominating set of 𝐺 and is denoted by 𝛾𝛾(𝐺).  A disjoint dominating set of cardinality 𝛾𝛾(𝐺) is called 𝛾𝛾-

𝑠𝑒𝑡 𝑜𝑓 𝐺. The idea of disjoint domination in graphs has been studied in [32-34]. 

 

Let 𝐷 be a minimum fair dominating set and 𝑆 be an inverse fair dominating set of 𝐺 with respect to 𝐷. A disjoint fair 

dominating set of 𝐺 is the set 𝐶 = 𝐷 ∪  𝑆 ⊆  𝑉(𝐺). The disjoint fair domination number of 𝐺, is the minimum cardinality of a 

disjoint fair dominating set of 𝐺 and is denoted by 𝛾𝛾𝑓𝑑(𝐺).  A disjoint fair dominating set of cardinality 𝛾𝛾𝑓𝑑(𝐺) is called 

𝛾𝛾𝑓𝑑-set of 𝐺 [35].  In this paper, we extend the concept of disjoint fair dominating set by introducing some of its binary 

operations such as the join and corona of two graphs.   
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II. RESULTS 

 Let a graph 𝐺 = 𝐶5 as shown in Figure 1. This illustrates a graph that is not a disjoint fair dominating set. 

 

 
Fig. 1 A Graph G with 𝜸𝒇𝒅(𝑮) = 𝟑 

 

The set 𝐷 = {𝑣1, 𝑣2, 𝑣4} is a minimum fair dominating set of the graph 𝐺 and 𝑆 ⊆  𝑉(𝐺) ∖  𝐷 = {𝑣3, 𝑣5} is not a fair 

dominating set of 𝐺. Hence, 𝐶 = 𝐷 ∪  𝑆 is not a disjoint fair dominating set of 𝐺. 

   

Since 𝛾𝛾𝑓𝑑(𝐺) does not always exist in a connected nontrivial graph 𝐺, we denote 𝒟ℱ(𝐺), a family of all graphs with 

disjoint fair dominating set of 𝐺. Thus, for the purpose of this study, it is assumed that all connected nontrivial graphs 

considered, belong to the family 𝒟ℱ(𝐺). From the definitions, the following remarks follow. 

 

Remark 2.1 Let 𝐺 be a nontrivial connected graph and 𝑆 ⊂  𝑉(𝐺). If 𝑁𝐺(𝑣) ∩  𝑆 = 𝑆 for every 𝑣 ∈  𝑉(𝐺) ∖  𝑆, then 𝑆 is an |𝑆|-

fair dominating set of 𝐺.  
 

Remark 2.2 Let 𝐺 and 𝐻 be connected graphs of order 𝑚 and 𝑛 respectively. Then 𝑉(𝐺) is an 𝑚-fair dominating set of a 

graph 𝐺 + 𝐻 and 𝑉(𝐻) is an 𝑛-fair dominating set of 𝐺 + 𝐻.  
 

The following lemmas are needed for the characterization of the disjoint fair dominating set in the join of two graphs. 

 

Lemma 2.3 Let 𝐺 and 𝐻 be nontrivial connected graphs. If 𝑆 is an |𝑆|-fair dominating set of 𝐺, then 𝑆 is a fair dominating set 

of 𝐺 + 𝐻.    

 

Proof: Suppose that 𝑆 is an |𝑆|-fair dominating set of 𝐺. Let 𝑢 ∈  𝑉(𝐺) ∖  𝑆. Then 𝑁𝐺(𝑢) ∩  𝑆 = 𝑆. This implies that 𝑢𝑣 ∈
 𝐸(𝐺) for all 𝑣 ∈ 𝑆. Since for every 𝑤 ∈ 𝑉(𝐻), 𝑁𝐺+𝐻𝑤 ∩ 𝑆 = 𝑆, it follows that for all 𝑢 ∈ 𝑉(𝐺 + 𝐻) ∖ 𝑆, 𝑁𝐺+𝐻𝑢 ∩ 𝑆 = 𝑆. 
Hence, 𝑆 is an |𝑆|-fair dominating set of 𝐺 + 𝐻, that is 𝑆 is a fair dominating set of 𝐺 + 𝐻. ∎ 

 

Lemma 2.4 Let 𝐺 and 𝐻 be nontrivial connected graphs. If 𝑆 is an inverse |𝑆|-fair dominating set of 𝐻, then 𝑆 is a fair 

dominating set of 𝐺 + 𝐻.  
 

Proof: The proof is similar to the proofs of Lemma 2.3 ∎ 

 

Lemma 2.5 Let 𝐺 and 𝐻 be nontrivial connected graphs. If 𝑆 = 𝑆𝐺 ∪ 𝑆𝐻  where 𝑆𝐺 is an inverse |𝑆𝐺|-fair dominating set of 𝐺 

and 𝑆𝐻  is an |𝑆𝐻|-fair dominating set of 𝐻, then 𝑆 is an inverse fair dominating set of 𝐺 + 𝐻.  

 

Proof: Since 𝑆𝐺 is an inverse |𝑆𝐺|-fair dominating set of 𝐺 there exists 𝐷 ⊆  𝑉(𝐺) ∖  𝑆 such that 𝐷 is a minimum |𝐷|-fair 

dominating set of 𝐺 + 𝐻 by using the proof of Lemma 2.3. Further, 𝑁𝐺(𝑢) ∩ 𝑆𝐺 = 𝑆𝐺  for all 𝑢 ∈  𝑉(𝐺) ∖  𝑆𝐺. Since 𝑆𝐻  is an 

|𝑆𝐻|-fair dominating set of 𝐻, 𝑁𝐻(𝑣) ∩ 𝑆𝐻 = 𝑆𝐻  for all 𝑣 ∈  𝑉(𝐻) ∖ 𝑆𝐻 . Let 𝑢, 𝑣 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆. If 𝑢, 𝑣 ∈  𝑉(𝐺) ∖  𝑆𝐺 , then 

|𝑁𝐺(𝑢) ∩ 𝑆𝐺| = |𝑁𝐺(𝑣) ∩ 𝑆𝐺 because 𝑆𝐺 is a fair dominating set of 𝐺. Thus   
 

|𝑁𝐺+𝐻(𝑢) ∩  𝑆| = |[(𝑁𝐺(𝑢) ∩ 𝑆𝐺) ∪  𝑉(𝐻)] ∩  𝑆| 
                                                                                        = |[(𝑁𝐺(𝑣) ∩ 𝑆𝐺) ∪  𝑉(𝐻)] ∩  𝑆| 
                                                                                        = |𝑁𝐺+𝐻(𝑣) ∩  𝑆|. 
 

 If 𝑢, 𝑣 ∈  𝑉(𝐻) ∖ 𝑆𝐻 , then |𝑁𝐻(𝑢) ∩ 𝑆𝐻| = |𝑁𝐻(𝑣) ∩ 𝑆𝐻| because 𝑆𝐻  is a fair dominating set of 𝐻. Thus 
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|𝑁𝐺+𝐻(𝑢) ∩  𝑆| = |[(𝑁𝐻(𝑢) ∩ 𝑆𝐻) ∪  𝑉(𝐺)] ∩  𝑆| 
                                                                                        = |[(𝑁𝐻(𝑣) ∩ 𝑆𝐻) ∪  𝑉(𝐺)] ∩  𝑆| 
                                                                                        = |𝑁𝐺+𝐻(𝑣) ∩  𝑆|. 
 

 If 𝑢 ∈  𝑉(𝐺) ∖  𝑆𝐺 and 𝑣 ∈  𝑉(𝐻) ∖  𝑆𝐻 , then 𝑁𝐺(𝑢) ∩ 𝑆𝐺 = 𝑆𝐺  and 𝑁𝐻(𝑣) ∩ 𝑆𝐻 = 𝑆𝐻 . Thus,  

 

 |𝑁𝐺+𝐻(𝑢) ∩  𝑆| = |[(𝑁𝐺(𝑢) ∩ 𝑆𝐺) ∪  𝑉(𝐻)] ∩  𝑆| 
                                                                                        = |(𝑆𝐺 ∪  𝑉(𝐻)) ∩  𝑆| 

                                                                                        = |(𝑆𝐺 ∩  𝑆) ∪ (𝑉(𝐻) ∩  𝑆)] 
                                                                                        = |𝑆𝐺 ∪ 𝑆𝐻|,since 𝑆𝐺 ∩  𝑆 = 𝑆𝐺  and 𝑉(𝐻) ∩  𝑆 = 𝑆𝐻  

                                                                                        = |(𝑉(𝐺) ∩  𝑆) ∪ (𝑆𝐻 ∩  𝑆)| 
                                                                                        = |(𝑉(𝐺) ∪ 𝑆𝐻) ∩  𝑆| 
                                                                                        = |(𝑆𝐻 ∪  𝑉(𝐺)) ∩  𝑆| 

                                                                                        = |[(𝑁𝐻(𝑣) ∩ 𝑆𝐻) ∪  𝑉(𝐺)] ∩  𝑆| 
                                                                                        = |𝑁𝐺+𝐻(𝑣) ∩  𝑆| 
 

Therefore, for any 𝑢, 𝑣 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆, |𝑁𝐺+𝐻(𝑢) ∩  𝑆| = |𝑁𝐺+𝐻(𝑣) ∩  𝑆|, that is, 𝑆 is a fair dominating set of          𝐺 +
𝐻. Since 𝑆 ⊆  𝑉(𝐺 + 𝐻) ∖  𝐷 where 𝐷 is a minimum fair dominating set of 𝐺 + 𝐻, it follows that 𝑆 is an inverse fair 

dominating set of 𝐺 + 𝐻. ∎  

 

Lemma 2.6 Let 𝐺 and 𝐻 be nontrivial connected graphs. If 𝑆 = 𝑆𝐺 ∪ 𝑆𝐻  where 𝑆𝐻  is an inverse |𝑆𝐻|-fair dominating set of 𝐻 

and 𝑆𝐺 is an |𝑆𝐺|-fair dominating set of 𝐺, then 𝑆 is an inverse fair dominating set of 𝐺 + 𝐻.  

 

Proof: The proof is similar to the proofs of Lemma 2.5. ∎ 

       

The following result shows the characterization of disjoint fair dominating set in the join of two graphs. 

 

Theorem 2.7 Let 𝐺 and 𝐻 be nontrivial connected graphs. Then a subset 𝐶 is a disjoint fair dominating set of 𝐺 + 𝐻 if and 

only if 𝐶 = 𝐷 ∪  𝑆 and one of the following statements is satisfied. 

 

(𝑖)   𝑎) 𝑆 is an |𝑆|-fair dominating set of 𝐺 and 𝐷 is a minimum |𝐷|-fair dominating set of 𝐻 where |𝐷| ≤  |𝑆| for all 𝑆; or 

        𝑏) 𝑆 and 𝐷 are |𝑆|-fair and |𝐷|-fair dominating sets of 𝐺 where 𝐷 ⊆ 𝑉(𝐺) ∖  𝑆 and |𝐷| ≤  |𝑆|. 
(𝑖𝑖)  𝑎) 𝑆 is an |𝑆|-fair dominating set of 𝐻 and 𝐷 is a minimum |𝐷|-fair dominating set of 𝐺 where |𝐷| ≤  |𝑆| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑆; or 

        𝑏) 𝑆 and 𝐷 are |𝑆|-fair and |𝐷|-fair dominating sets of 𝐻 where 𝐷 ⊆ 𝑉(𝐻) ∖ 𝑆 and |𝐷| ≤  |𝑆|.  

(𝑖𝑖𝑖) 𝑆 = 𝑆𝐺 ∪ 𝑆𝐻  where 

       𝑎) 𝑆𝐺 is an inverse |𝑆𝐺|-fair dominating set of 𝐺 and 𝑆𝐻  is an |𝑆𝐻|-fair dominating set of 𝐻; or 

       𝑏) 𝑆𝐻  is an inverse |𝑆𝐻|-fair dominating set of 𝐻 and 𝑆𝐺 is an |𝑆𝐺 |-fair dominating set of 𝐺.  

 

Proof: Suppose that 𝐶 is a disjoint fair dominating set of 𝐺 + 𝐻. Then there exist a 𝛾𝑓𝑑-set  𝐷 of 𝐺 + 𝐻 and an inverse fair 

dominating set 𝑆  of 𝐺 + 𝐻 such that 𝐶 = 𝐷 ∪  𝑆. Consider the following cases: 

 

Case 1. If 𝑆 ∩  𝑉(𝐻) = ∅, then 𝑆 ⊆  𝑉(𝐺). Suppose that 𝑆 is not an |𝑆|-fair dominating set of 𝐺. Then there exists         

𝑢 ∈ 𝑉(𝐺) ∖ 𝑆 such that 𝑁𝐺(𝑢) ∩  𝑆 ≠ 𝑆 by Remark 2.1. Thus, there exists 𝑢 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆 such that  

 

                                 |𝑁𝐺+𝐻(𝑢) ∩  𝑆| = |(𝑁𝐺(𝑢) ∪  𝑉(𝐻)) ∩  𝑆| 

                                                           = |(𝑁𝐺(𝑢) ∩  𝑆) ∪ (𝑉(𝐻) ∩  𝑆)| 
                                                           ≠ |𝑆 ∪  ∅|  since 𝑁𝐺(𝑢) ∩  𝑆 ≠ 𝑆 and 𝑉(𝐻) ∩  𝑆 = ∅ 

                                                           = |𝑆| = |𝑁𝐺+𝐻(𝑣) ∩  𝑆|for some 𝑣 ∈  𝑉(𝐻).  
 

This contradict to our assumption that 𝑆 is an inverse fair dominating set of 𝐺 + 𝐻. Hence, 𝑆 must be an |𝑆|-fair 

dominating set of 𝐺. Since 𝐷 is a 𝛾𝑓𝑑-set of 𝐺 + 𝐻, if 𝐷 ⊂  𝑉(𝐻), by using the same argument, 𝐷 must be a minimum |𝐷|-fair 

dominating set of 𝐻. This means that |𝐷| ≤  |𝑆| for all 𝑆. This proves statement (𝑖)𝑎). Similarly, if 𝐷 ⊂  𝑉(𝐺), then |𝐷|-fair 

dominating sets of 𝐺 where 𝐷 ⊆  𝑉(𝐺) ∖  𝑆 and |𝐷| ≤  |𝑆|. This proves statement (𝑖)𝑏). 
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Case 2. If 𝑆 ∩  𝑉(𝐻) ≠ ∅, then consider the following. If 𝑆 ∩  𝑉(𝐺) = ∅, then 𝑆 ⊆  𝑉(𝐻). Suppose that 𝑆 is not an     |𝑆|-fair 

dominating set of 𝐻. Then there exists 𝑢 ∈  𝑉(𝐻) ∖  𝑆 such that 𝑁𝐻(𝑢) ∩  𝑆 ≠ 𝑆 by Remark 2.1. Thus, there exists        𝑢 ∈
 𝑉(𝐺 + 𝐻) ∖  𝑆 such that  

 

                                      |𝑁𝐺+𝐻(𝑢) ∩  𝑆| = |(𝑁𝐻(𝑢) ∪  𝑉(𝐺)) ∩  𝑆| 

                                                                = |(𝑁𝐻(𝑢) ∩  𝑆) ∪ (𝑉(𝐺) ∩  𝑆)| 
                                                                ≠ |𝑆 ∪  ∅| since 𝑁𝐻(𝑢) ∩  𝑆 ≠  𝑆 and 𝑉(𝐺) ∩  𝑆 = ∅ 

                                                                = |𝑆| = |𝑁𝐺+𝐻(𝑣) ∩  𝑆|for some 𝑣 ∈  𝑉(𝐺).  
 

This contradicts the assumption that 𝑆 is an inverse fair dominating set of 𝐺 + 𝐻. Hence, 𝑆 must be an |𝑆|-fair dominating 

set of 𝐻. Since 𝐷 is a 𝛾𝑓𝑑-set of 𝐺 + 𝐻, 𝑖𝑓 𝐷 ⊂  𝑉(𝐺), by using the same argument, 𝐷 must be a minimum |𝐷|-fair dominating 

set of 𝐺. This means that |𝐷| ≤  |𝑆| for all 𝑆. This proves statement (𝑖𝑖)𝑎). Similarly, if 𝐷 ⊂  𝑉(𝐻), then |𝐷|-fair dominating 

sets of 𝐻 where 𝐷 ⊆  𝑉(𝐻) ∖  𝑆 and |𝐷| ≤  |𝑆|. This proves statement (𝑖𝑖)𝑏). If 𝑆 ∩  𝑉(𝐺) ≠ ∅, then let                     𝑆𝐺 = 𝑆 ∩
 𝑉(𝐺) and 𝑆𝐻 = 𝑆 ∩  𝑉(𝐻). Now,  

                                                           𝑆 = 𝑆 ∩  𝑉(𝐺 + 𝐻) 

                                                              = 𝑆 ∩ (𝑉(𝐺) ∪  𝑉(𝐻)) 

                                                              = [𝑆 ∩  𝑉(𝐺)] ∪ [𝑆 ∩  𝑉(𝐻)] 
                                                              = 𝑆𝐺 ∪ 𝑆𝐻 .  
 

 Consider first that 𝑆𝐺 is an inverse |𝑆𝐺 |-fair dominating set of 𝐺. Suppose 𝑆𝐻  is not a fair dominating set of 𝐻.  Then there 

exists 𝑢 ∈  𝑉(𝐻) ∖  𝑆𝐻 such that |𝑁𝐻(𝑢) ∩ 𝑆𝐻| ≠ |𝑁𝐻(𝑣) ∩ 𝑆𝐻| for some 𝑆 ∈  𝑉(𝐻) ∖  𝑆𝐻 . Thus, there exist                         

𝑢 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆 such that |𝑁𝐺+𝐻(𝑢) ∩  𝑆| ≠ |𝑁𝐺+𝐻(𝑣) ∩  𝑆| for some 𝑣 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆. This is contrary to our 

assumption that 𝑆 is a fair dominating set of 𝐺 + 𝐻. Thus, 𝑆𝐻  must be a fair dominating set of 𝐻. Suppose 𝑆𝐻  is not an |𝑆𝐻|-fair 

dominating set of 𝐻. Then there exists 𝑢 ∈  𝑉(𝐻) ∖ 𝑆𝐻  such that 𝑁𝐻(𝑢) ∩ 𝑆𝐻 ≠ 𝑆𝐻 . Thus, there exists 𝑢 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆 

such that                        

                                     |𝑁𝐺+𝐻(𝑢) ∩  𝑆| = |𝑁𝐺+𝐻(𝑢) ∩ (𝑆𝐺 ∪ 𝑆𝐻)| 
                                                                = |(𝑁𝐺+𝐻(𝑢) ∩ 𝑆𝐺) ∪ (𝑁𝐺+𝐻(𝑢) ∩ 𝑆𝐻)| 
                                                                = |(∅) ∪ (𝑁𝐻(𝑢) ∩ 𝑆𝐻)| 
                                                                = |𝑁𝐻(𝑢) ∩ 𝑆𝐻| 
                                                                ≠ |𝑆𝐻| 
                                                                = |𝑁𝐺+𝐻(𝑣) ∩ 𝑆𝐻| for all 𝑣 ∈  𝑉(𝐺) 

                                                                ⊂ |𝑁𝐺+𝐻(𝑣) ∩  𝑆| for all 𝑣 ∈  𝑉(𝐺) 

 

Thus, there exists 𝑢 ∈  𝑉(𝐺 + 𝐻) ∖  𝑆 such that |𝑁𝐺+𝐻(𝑢) ∩  𝑆| ≠ |𝑁𝐺+𝐻(𝑣) ∩  𝑆| for all 𝑣 ∈  𝑉(𝐺). This contradict to our 

assumption that 𝑆 is a fair dominating set of 𝐺 + 𝐻. Hence, 𝑆𝐻  must be an |𝑆𝐻|-fair dominating set of 𝐻. This proves statement 

(𝑖𝑖𝑖)𝑎). Similarly, if 𝑆𝐻  is an inverse |𝑆𝐻|-fair dominating set of 𝐻, then  𝑆𝐺 must be an |𝑆𝐺 |-fair dominating set of 𝐺. This 

proves statement (𝑖𝑖𝑖)𝑏). 
 

For the converse, suppose that statement (𝑖)𝑎) is satisfied. Since 𝑆 is an |𝑆|-fair dominating set of 𝐺, 𝑆 is also a fair 

dominating set of 𝐺 + 𝐻 by Lemma 2.3. Similarly, 𝐷 is an |𝐷|-fair dominating set of 𝐻 implies that 𝐷 is also a fair dominating 

set of 𝐺 + 𝐻 by Lemma 2.4. Since 𝐷 is a minimum fair dominating set of 𝐻 and |𝐷| ≤  |𝑆| for all 𝑆, it follows that 𝐷 is a 

minimum fair dominating set of 𝐺 + 𝐻. Since 𝑆 ⊆  𝑉(𝐺 + 𝐻) ∖  𝐷, it follows that 𝑆 is an inverse fair dominating set of 𝐺 + 𝐻 

with respect to 𝐷. Accordingly, 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 𝐺 + 𝐻. 
 

Suppose that statement (𝑖)𝑏) is satisfied. Since 𝑆 is an |𝑆|-fair dominating set of 𝐺 and 𝐷 is an |𝐷|-fair dominating set of 

𝐺, it follows that 𝑆 and 𝐷 are fair dominating set of 𝐺 + 𝐻 by Lemma 2.3. Since  𝐷 ⊆  𝑉(𝐺) ∖  𝑆 and |𝐷| ≤  |𝑆| for all fair 

dominating set 𝑆 and 𝐷, it follows that 𝐷 is a minimum fair dominating set of 𝐺 + 𝐻. Since 𝑆 ⊆  𝑉(𝐺) ∖  𝐷, 𝑆 is an inverse fair 

dominating set of 𝐺 + 𝐻 with respect to 𝐷.  Accordingly, 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 𝐺 + 𝐻. 
 

Suppose that statement (𝑖𝑖)𝑎) is satisfied. Since 𝑆 is an |𝑆|-fair dominating set of 𝐻, 𝑆 is also a fair dominating set of 𝐺 +
𝐻 by Lemma 2.4. Similarly, 𝐷 is an |𝐷|-fair dominating set of 𝐺 implies that 𝐷 is also a fair dominating set of 𝐺 + 𝐻 by 

Lemma 2.3. Since 𝐷 is a minimum fair dominating set of 𝐺 and |𝐷| ≤  |𝑆| for all 𝑆, it follows that 𝐷 𝑖s a minimum fair 

dominating set of 𝐺 + 𝐻. Since 𝑆 ⊆  𝑉(𝐺 + 𝐻) ∖  𝐷, it follows that 𝑆 is an inverse fair dominating set of 𝐺 + 𝐻 with respect to 

𝐷. Accordingly, 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 𝐺 + 𝐻. 
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Suppose that statement (𝑖𝑖)𝑏) is satisfied. Since 𝑆 is an |𝑆|-fair dominating set of 𝐻 and 𝐷 is an |𝐷|-fair dominating set of 

𝐻, it follows that 𝑆 and 𝐷 are fair dominating sets of 𝐺 + 𝐻 by Lemma 2.4. Since  𝐷 ⊆  𝑉(𝐻) ∖  𝑆 and |𝐷| ≤  |𝑆| for all fair 

dominating set 𝑆 and 𝐷, it follows that 𝐷 is a minimum fair dominating set of 𝐺 + 𝐻. Since 𝑆 ⊆  𝑉(𝐺) ∖  𝐷, 𝑆 is an inverse fair 

dominating set of 𝐺 + 𝐻 with respect to 𝐷.  Accordingly, 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 𝐺 + 𝐻. 
 

Suppose that statement (𝑖𝑖𝑖)𝑎) is satisfied, that is, 𝑆 = 𝑆𝐺 ∪ 𝑆𝐻 where 𝑆𝐺 is an inverse |𝑆𝐺|-fair dominating set of 𝐺 and 

𝑆𝐻  is an |𝑆𝐻|-fair dominating set of 𝐻. Then 𝑆 is an inverse fair dominating set of 𝐺 + 𝐻 by Lemma 2.5. Thus, there exists a 

minimum fair dominating set 𝐷 of 𝐺 + 𝐻 such that 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 𝐺 + 𝐻. 

 

Suppose that statement (𝑖𝑖𝑖)𝑏) is satisfied, that is, 𝑆 = 𝑆𝐺 ∪ 𝑆𝐻  where 𝑆𝐻  is an inverse |𝑆𝐻|-fair dominating set of 𝐻 and 

𝑆𝐺  is an |𝑆𝐺|-fair dominating set of 𝐺. By similar arguments used in (𝑖𝑖𝑖(𝑎), and by Lemma 2.6, S is an inverse fair dominating 

set of 𝐺 + 𝐻. Thus, there exists a fair dominating set 𝐷 of 𝐺 + 𝐻 such that  𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 𝐺 +
𝐻. ∎ 
 

The following next result is an immediate consequences of Theorem 2.7. 

 

Corollary 2.8 Let 𝐺 and 𝐻 be nontrivial connected graphs. Then  𝛾𝛾𝑓𝑑(𝐺 +  𝐻) = 2 if and only if one of the following holds. 

 

(i) 𝛾−1(𝐺) = 1. 
(𝑖𝑖) 𝛾−1(𝐻) = 1. 
(𝑖𝑖𝑖) 𝛾(𝐺) = 1 𝑎𝑛𝑑 𝛾(𝐻) = 1. 
 

Proof: Suppose that 𝛾𝛾𝑓𝑑(𝐺 +  𝐻) = 2. Let 𝐷 = {𝑣} be a fair dominating set of 𝐺 + 𝐻 and 𝑆 = {𝑥} be an inverse fair 

dominating set of 𝐺 + 𝐻. Then 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 𝐺 + 𝐻. If 𝑆 and 𝐷 are |𝑆|-fair and |𝐷|-fair 

dominating sets of 𝐺 where 𝐷 ⊆  𝑉(𝐺) ∖  𝑆 and |𝐷| ≤  |𝑆| (by Theorem 2.7 (𝑖)𝑏), then 𝛾−1(𝐺) = 1, proving statement (𝑖). If 
𝑆 and 𝐷 are |𝑆|-fair and |𝐷|-fair dominating sets of 𝐻 where 𝐷 ⊆  𝑉(𝐻) ∖  𝑆 and |𝐷| ≤  |𝑆| (by Theorem 2.7 (𝑖𝑖)𝑏), then 

𝛾−1(𝐻) = 1 proving statement (𝑖𝑖). If  𝑆 is an |𝑆|-fair dominating set of 𝐺 and 𝐷 is a minimum |𝐷|-fair dominating set of 𝐻 

where |𝐷| ≤  |𝑆| for all 𝑆 (by Theorem 2.7 (𝑖)𝑎)), then 𝛾(𝐺) = 1 and 𝛾(𝐻) = 1, proving statement (𝑖𝑖𝑖). 
 

For the converse, suppose that statement (𝑖) is satisfied. Then there exist a minimum fair dominating set 𝐷 = {𝑣} and an 

inverse fair dominating set 𝑆 = {𝑥} of 𝐺 such that 𝐶 = {𝑣, 𝑥} is a disjoint fair dominating set of 𝐺 and hence a minimum 

disjoint fair dominating set of 𝐺 + 𝐻. Thus, 𝛾𝛾𝑓𝑑(𝐺 + 𝐻) = |𝐶| = 2. 

 

Suppose that statement (𝑖𝑖) is satisfied. Then there exist a minimum fair dominating set 𝐷 = {𝑣} and an inverse fair 

dominating set 𝑆 = {𝑥} of 𝐻 such that 𝐶 = {𝑣, 𝑥} is a disjoint fair dominating set of 𝐻 and hence a minimum disjoint fair 

dominating set of 𝐺 + 𝐻. Thus, 𝛾𝛾𝑓𝑑(𝐺 + 𝐻) = |𝐶| = 2. 

 

Suppose that statement (𝑖𝑖𝑖) is satisfied. Let 𝐷 = {𝑣} be a dominating set of 𝐺 and 𝑆 = {𝑥} be a dominating set of 𝐻. 

Clearly, 𝐷 is a fair dominating set of 𝐺 and hence a fair dominating set of 𝐺 + 𝐻. Similarly, 𝑆 is a fair dominating set of 𝐺 +
𝐻. Since 𝑆 ⊆  𝑉(𝐺 + 𝐻) ∖  𝐷, it follows that 𝑆 is a minimum inverse fair dominating set of 𝐺 + 𝐻 with respect to 𝐷. Thus,               

𝐶 = 𝐷 ∪  𝑆 is a minimum disjoint fair dominating set of 𝐺 + 𝐻. Accordingly, 𝛾𝛾𝑓𝑑(𝐺 + 𝐻) = |𝐶| = 2. ∎ 

 

Remark 2.9 For any connected graph 𝐺 and graph 𝐻, 𝑉(𝐺) is a minimum fair dominating set in 𝐺 ∘  𝐻. 
  

The following results are needed for the characterization of disjoint fair dominating set in the corona of two graphs. 

 

Lemma 2.10  Let 𝐺 and 𝐻 be nontrivial connected graphs. If 𝑆 = 𝑉(𝐺) ∪ (⋃ 𝑆𝑣𝑣∈𝑉(𝐺) ) where 𝑆𝑣 is a fair dominating set of 𝐻𝑣 

and  𝐷𝑣 = {𝑥} is a dominating set of 𝐻𝑣 with 𝑆𝑣 ∩ 𝐷𝑣 = ∅ for all 𝑣 ∈  𝑉(𝐺), then 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set 

of 𝐺 ∘  𝐻.  
 

Proof: Since 𝐷𝑣 = {𝑥} is a dominating set of 𝐻𝑣 , 𝐷 = ⋃ 𝐷𝑣𝑣∈𝑉(𝐺)  is a dominating set of 𝐺 ∘  𝐻. Since 𝐻 is a nontrivial 

connected graph, 𝑉(𝐻𝑣) ∖ 𝐷𝑣 ≠ ∅ for each 𝑣 ∈  𝑉(𝐺). Let 𝑦 ∈  𝑉(𝐻𝑣) ∖  𝐷𝑣 . Then 

  

|𝑁𝐺∘𝐻(𝑣) ∩  𝐷| = |𝑁𝑣+𝐻𝑣(𝑣) ∩ 𝐷𝑣| = |𝑁𝑣+𝐻𝑣(𝑦) ∩ 𝐷𝑣| = |𝑁𝐺∘𝐻(𝑦) ∩  𝐷| 



Melodina D. Garol et al. / IJMTT, 68(2), 124-132, 2022 
 

129 

 

 for all 𝑣, 𝑦 ∈  𝑉(𝐺 ∘  𝐻) ∖  𝐷. Hence, 𝐷 is a fair dominating set of 𝐺 ∘  𝐻. Since 𝑉(𝐺) is a minimum fair dominating set of 𝐺 ∘

 𝐻 and |𝐷| = |⋃ 𝐷𝑣𝑣∈𝑉(𝐺) | = ∑ |𝐷𝑣|𝑣∈𝑉(𝐺) = |𝑉(𝐺)||𝐷𝑣| = |𝑉(𝐺)| ⋅  1 = |𝑉(𝐺)|, it follows that 𝐷 is a minimum fair 

dominating set of 𝐺 ∘  𝐻.  Now, 𝑆𝑣 is a fair dominating set of 𝐻𝑣 implies that 𝑉(𝑣 + ⟨ 𝑆𝑣⟩) is a fair dominating set of 𝑣 + 𝐻𝑣 

for all 𝑣 ∈  𝑉(𝐺). Thus, 𝑆 = 𝑉(𝐺) ∪ (⋃ 𝑆𝑣𝑣∈𝑉(𝐺)  ) = ⋃ 𝑉(𝑣 + ⟨ 𝑆𝑣⟩)𝑣𝜖𝑉(𝐺)  is a fair dominating set of 𝐺 ∘  𝐻. Since 𝑆𝑣 ∩ 𝐷𝑣 =

∅ for all 𝑣 ∈  𝑉(𝐺),  

𝑆 ∩  𝐷 = (𝑉(𝐺) ∪ (⋃ 𝑆𝑣
𝑣∈𝑉(𝐺)

)) ∩ (⋃ 𝐷𝑣
𝑣∈𝑉(𝐺)

) 

                                                                      = (𝑉(𝐺) ∩ (⋃ 𝐷𝑣)𝑣∈𝑉(𝐺) ) ∪ ((⋃ 𝑆𝑣)𝑣∈𝑉(𝐺) ∩ (⋃ 𝐷𝑣)𝑣∈𝑉(𝐺) ) 

                                                          = (⋃ (𝑉(𝐺) ∩ 𝐷𝑣)𝑣∈𝑉(𝐺) ) ∪ (⋃ (𝑆𝑣 ∩ 𝐷𝑣)𝑣∈𝑉(𝐺) ) 

                                                                      = (⋃ ∅𝑣∈𝑉(𝐺) ) ∪ (⋃ ∅𝑣∈𝑉(𝐺) ), 𝑠𝑖𝑛𝑐𝑒 𝑉(𝐺) ∩ 𝐷𝑣 = ∅.  

 

Thus, 𝑆 ∩  𝐷 = ∅. Let 𝑆 ⊂  𝑉(𝐺 ∘  𝐻) ∖  𝐷. Since 𝐷 is a minimum fair dominating set and 𝑆 is a fair dominating set of 

𝐺 ∘  𝐻, it follows that 𝑆 is an inverse fair dominating set of 𝐺 ∘  𝐻. Accordingly, 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 

𝐺 ∘  𝐻. ∎ 
 

Lemma 2.11 Let 𝐺 and 𝐻 be nontrivial connected graphs. If 𝑆 = ⋃ 𝑆𝑣𝑣∈𝑉(𝐺)  where 𝑆𝑣 is an |𝑆𝑣|-fair dominating set of 𝑣 + 𝐻𝑣 

and 𝐷𝑣 = {𝑥} is a dominating set of 𝐻𝑣 with 𝑆𝑣 ∩ 𝐷𝑣 = ∅ for all 𝑣 ∈  𝑉(𝐺), then 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set 

of 𝐺 ∘  𝐻. 
 

Proof: Suppose that 𝐷𝑣 = {𝑥} is a dominating set of 𝐻𝑣. Let 𝐷 = ⋃ 𝐷𝑣𝑣∈𝑉(𝐺) . By similar reasoning that is used in the proof of 

Lemma 2.10, 𝐷 is a minimum fair dominating set of 𝐺 ∘  𝐻. Let 𝑥, 𝑣 ∈  𝑉(𝑣 + 𝐻𝑣) ∖ 𝑆𝑣 for each 𝑣 ∈  𝑉(𝐺). Since 𝑆𝑣 is an 

|𝑆𝑣|- 
fair dominating set of 𝑣 + 𝐻𝑣 for each 𝑣 ∈  𝑉(𝐺), |𝑁𝐺∘𝐻(𝑥) ∩  𝑆| = |𝑁𝑣+𝐻𝑣(𝑥) ∩ 𝑆𝑣| = |𝑁𝑣+𝐻𝑣(𝑣) ∩ 𝑆𝑣| = |𝑁𝐺∘ 𝐻(𝑣) ∩  𝑆| 
for all 𝑥, 𝑣 ∈  𝑉(𝐺 ∘  𝐻) ∖  𝑆. Hence, 𝑆 is a fair dominating set of 𝐺 ∘  𝐻.  Since 𝑆𝑣 ∩ 𝐷𝑣 = ∅ for all 𝑣 ∈  𝑉(𝐺),  
      

𝑆 ∩  𝐷 = ( ⋃ 𝑆𝑣

𝑣∈𝑉(𝐺)

) ∩ ( ⋃ 𝐷𝑣

𝑣∈ 𝑉(𝐺)

) = ⋃ (𝑆𝑣 ∩ 𝐷𝑣)

𝑣∈ 𝑉(𝐺)

= ⋃ (∅

𝑣∈𝑉(𝐺)

). 

 

Thus, 𝑆 ∩  𝐷 = ∅. Let 𝑆 ⊂  𝑉(𝐺 ∘  𝐻) ∖  𝐷. Since 𝐷 is a minimum fair dominating set and 𝑆 is a fair dominating set of 

𝐺 ∘  𝐻, it follows that 𝑆 is an inverse fair dominating set of 𝐺 ∘  𝐻. Accordingly, 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 

𝐺 ∘  𝐻. ∎ 
 

Lemma 2.12 Let 𝐺 and 𝐻 be nontrivial connected graphs.  If 𝑆 = ⋃ 𝑉(𝐻𝑣)𝑣∈ 𝑉(𝐺)  and 𝐷 = 𝑉(𝐺), then 𝐶 = 𝐷 ∪  𝑆 is a disjoint 

fair dominating set of 𝐺 ∘  𝐻. 
 

Proof: Since 𝐷 = 𝑉(𝐺), 𝐷 is a minimum fair dominating set of 𝐺 ∘  𝐻 by Remark 2.9. If 𝑆 = ⋃ 𝑉(𝐻𝑣)𝑣∈𝑉(𝐺) , then 𝑆 =

𝑉(𝐺 ∘  𝐻) ∖  𝐷 is a dominating set of 𝐺 ∘  𝐻 by Theorem 2.11. Let 𝑥, 𝑦 ∈  𝑉(𝐺 ∘  𝐻) ∖  𝑆 = 𝑉(𝐺). Then |𝑁𝐺∘ 𝐻(𝑥) ∩  𝑆| =
|𝑉(𝐻)| = |𝑁𝐺∘ 𝐻(𝑦) ∩  𝑆|. Hence, 𝑆 is a fair dominating set of 𝐺 ∘  𝐻. Since 𝐷 is a minimum fair dominating set of 𝐺 ∘  𝐻 and 

𝑆 = 𝑉(𝐺 ∘  𝐻) ∖  𝐷, it follows that 𝑆 is an inverse fair dominating set of 𝐺 ∘  𝐻. Accordingly, 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair 

dominating set of 𝐺 ∘  𝐻. ∎ 
 

Lemma 2.13 Let 𝐺 and 𝐻 be nontrivial connected graphs.  If 𝑆 = ⋃ 𝑆𝑣𝑣∈ 𝑉(𝐺)  where 𝑆𝑣 is an |𝑆𝑣|-fair dominating set of 𝑣 +

𝐻𝑣 for each 𝑣 ∈  𝑉(𝐺) and 𝐷 = 𝑉(𝐺), then 𝑆 is an inverse fair dominating set of 𝐺 ∘  𝐻. 
 

Proof: Since 𝐷 = 𝑉(𝐺), 𝐷 is a minimum fair dominating set of 𝐺 ∘  𝐻. Let 𝑥, 𝑣 ∈  𝑉(𝑣 + 𝐻 𝑣) ∖  𝑆𝑣 for each 𝑣 ∈  𝑉(𝐺). Since 

𝑆𝑣 is an |𝑆𝑣|-fair dominating set of 𝑣 + 𝐻𝑣 for each 𝑣 ∈  𝑉(𝐺),  
 

|𝑁𝐺∘ 𝐻(𝑥) ∩  𝑆| = |𝑁𝑣+𝐻𝑣(𝑥) ∩ 𝑆𝑣| = |𝑆𝑣| = |𝑁𝑣+𝐻𝑣(𝑣) ∩ 𝑆𝑣𝑣| = |𝑁𝐺∘ 𝐻(𝑣) ∩  𝑆| 
 

 for all 𝑥, 𝑣 ∈  𝑉(𝐺 ∘  𝐻) ∖  𝑆. Hence, 𝑆 is a fair dominating set of 𝐺 ∘  𝐻. Since 𝐷 is a minimum fair dominating set of 𝐺 ∘  𝐻 

and 𝑆 ⊆  𝑉(𝐺 ∘  𝐻) ∖  𝐷, it follows that 𝑆 is an inverse fair dominating set of 𝐺 ∘  𝐻. Accordingly, 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair 

dominating set of 𝐺 ∘  𝐻. ∎ 

The following result, shows the characterization of disjoint fair dominating set in the corona of two graphs 
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Theorem 2.14 Let 𝐺 and 𝐻 be nontrivial connected graphs. A nonempty 𝑠𝑢𝑏𝑠𝑒𝑡 𝐶 = 𝑆 ∪  𝐷 of  𝑉(𝐺 ∘  𝐻) is a disjoint fair 

dominating set of 𝐺 ∘  𝐻 if and only if for each 𝑣 ∈  𝑉(𝐺), one of the following is satisfied. 

 

(i) 𝑆 = 𝑉(𝐺) and 𝛾(𝐻) = 1. 
(ii) 𝐷𝑣 = {𝑥}is a dominating set of 𝐻𝑣 for all 𝑣 ∈  𝑉(𝐺) and 

       a) 𝑆 = 𝑉(𝐺) ∪  (⋃𝑣∈ 𝑉(𝐺)𝑆𝑣) where 𝑆𝑣 is a fair dominating set of 𝐻𝑣 and  𝑆𝑣 ∩ 𝐷𝑣 = ∅; or 

       b) 𝑆 = ⋃ 𝑆𝑣𝑣∈ 𝑉(𝐺)  where 𝑆𝑣 is an |𝑆𝑣|-fair dominating set of 𝑣 + 𝐻𝑣  and  𝑆𝑣 ∩ 𝐷𝑣 = ∅.  

(iii) 𝐷 = 𝑉(𝐺) and 𝑆 = ⋃ 𝑆𝑣𝑣∈ 𝑉(𝐺)  where  

      a) 𝑆𝑣 = 𝑉(𝐻𝑣) for each 𝑣 ∈  𝑉(𝐺); or  

      b) 𝑆𝑣 is an |𝑆𝑣|-fair dominating set of 𝑣 + 𝐻𝑣 for each 𝑣 ∈  𝑉(𝐺).  

 

Proof: Suppose that a nonempty subset 𝐶 = 𝐷 ∪  𝑆 of 𝑉(𝐺 ∘  𝐻) is a disjoint fair dominating set of 𝐺 ∘  𝐻. Let 𝐷 be a 𝛾𝑓𝑑-set 

of 𝐺 ∘  𝐻 such that 𝑆 ∩  𝐷 = ∅. Consider the following cases: 

Case 1. Suppose that 𝐷 ⊆  𝑉(𝐺 ∘  𝐻) ∖  𝑉(𝐺). If 𝐷 = 𝑉(𝐺 ∘  𝐻) ∖  𝑉(𝐺), then 𝐷 = ⋃ 𝑉(𝐻𝑣)𝑣∈ 𝑉(𝐺) . Since 𝐻 is nontrivial, 

|𝑉(𝐻)| ≥  2 𝑎𝑛𝑑 |𝐷| = |⋃ 𝑉(𝐻𝑣)𝑣∈ 𝑉(𝐺) | = ∑ |𝑉(𝐻𝑣)|𝑣∈ 𝑉(𝐺) = |𝑉(𝐺)||𝑉(𝐻)| ≥ |𝑉(𝐺)| ⋅  2 > |𝑉(𝐺)|, that is, |𝐷| > |𝑉(𝐺)|. 

By Remark 2.9, 𝑉(𝐺) is a minimum fair dominating set of 𝐺 ∘  𝐻 contradict to our assumption that 𝐷 is 𝛾𝑓𝑑-set of 𝐺 ∘  𝐻. This 

implies that 𝐷 ≠ 𝑉(𝐺 ∘  𝐻) ∖  𝑉(𝐺). Thus, 𝐷 ⊂  𝑉(𝐺 ∘  𝐻) ∖  𝑉(𝐺). Let 𝐷 = ⋃ 𝑉(𝐷𝑣) 𝑣∈ 𝑉(𝐺)  where 𝐷𝑣 ⊂  𝑉(𝐻𝑣) for all 𝑣 ∈

 𝑉(𝐺). Since 𝐷 and 𝑉(𝐺) are minimum fair dominating sets of 𝐺 ∘  𝐻, |𝐷| = |𝑉(𝐺)|. First, Consider that 𝑆 = 𝑉(𝐺). Then 𝑆 =
𝑉(𝐺) ⊆  𝑉(𝐺 ∘  𝐻) ∖  𝐷. Moreover,   |𝑉(𝐺)| = |𝐷| = | ⋃ 𝐷𝑣𝑣∈ 𝑉(𝐺) | = ∑ |𝐷𝑣|𝑣∈ 𝑉(𝐺 = |𝑉(𝐺)||𝐷𝑣|, where 𝐷𝑣 ⊂  𝑉(𝐻𝑣) for all 

𝑣 ∈  𝑉(𝐺). Thus, |𝐷𝑣| = 1. Since 𝐷 is a dominating set of 𝐺 ∘  𝐻, 𝐷𝑣 must be a dominating set of 𝐻𝑣 for all 𝑣 ∈  𝑉(𝐺). Hence 

𝛾(𝐻) = |𝐷𝑣| = 1 for all 𝑣 ∈  𝑉(𝐺). This proves statement (𝑖).  

 

Next, consider that 𝑆 ≠  𝑉(𝐺). If 𝑉(𝐺) ⊂  𝑆, then for each 𝑣 ∈  𝑉(𝐺), it follows that 𝑆 = 𝑉(𝐺) ∪ (⋃ 𝑆𝑣𝑣∈ 𝑉(𝐺) ), 

where 𝑆𝑣 ⊂  𝑉(𝐻𝑣). Since 𝑆 is a fair dominating set of 𝑉(𝐺 ∘  𝐻), 𝑆𝑣 must be a fair dominating set of 𝐻𝑣 for each 𝑣 ∈  𝑉(𝐺). 
Similarly, because 𝐷 and 𝑉(𝐺) are minimum fair dominating sets of 𝐺 ∘  𝐻, |𝐷| = |𝑉(𝐺)| and so, |𝐷𝑣| = 1 for all 𝑣 ∈  𝑉(𝐺). 

Let 𝐷𝑣 = {𝑥}. Since 𝑆 ∩  𝐷 = ∅ and 𝑉(𝐺) ∩ 𝐷𝑣 = ∅ where 𝐷𝑣 ⊂  𝑉(𝐻𝑣) for all 𝑣 ∈  𝑉(𝐺),  
         

𝑆 ∩  𝐷 = ((𝑉(𝐺) ∪ ( ⋃ 𝑆𝑣

𝑣∈ 𝑉(𝐺)

 )) ∩ ( ⋃ 𝐷𝑣

𝑣∈ 𝑉(𝐺)

) 

                                                                         = ((𝑉(𝐺) ∩ (⋃ 𝐷𝑣𝑣∈𝑉(𝐺)    )) ∪ ((⋃ 𝑆𝑣𝑣∈ 𝑉(𝐺)  ) ∩ (⋃ 𝐷𝑣𝑣∈ 𝑉(𝐺)  )) 

                                                                         = (⋃ (𝑉(𝐺) ∩ 𝐷𝑣)𝑣∈ 𝑉(𝐺) ) ∪ (⋃ (𝑆𝑣 ∩ 𝐷𝑣)𝑣∈ 𝑉(𝐺) ) 

                                                                         = (⋃ ∅𝑣∈ 𝑉(𝐺) ) ∪ (⋃ (𝑆𝑣 ∩ 𝐷𝑣)𝑣∈ 𝑉(𝐺) ) 

                                                                         = ⋃ (𝑆𝑣 ∩ 𝐷𝑣)𝑣∈ 𝑉(𝐺) = ∅ 

 

This implies that 𝑆𝑣 ∩ 𝐷𝑣 = ∅ for all 𝑣 ∈  𝑉(𝐺). This proves statement (𝑖𝑖𝑎).      
 

Now, the fact that 𝑉(𝐺) is a minimum fair dominating set of 𝐺 ∘  𝐻, 𝑆 ⊄  𝑉(𝐺). If 𝑉(𝐺) ⊄  𝑆, then let 𝑆 = ⋃ 𝑆𝑣𝑣∈ 𝑉(𝐺) , 

where 𝑆𝑣 ⊂  𝑉(𝑣 + 𝐻𝑣) ∖  𝐷𝑣 and 𝐷𝑣 = {𝑥} is a dominating set of 𝐻𝑣 for all 𝑣 ∈  𝑉(𝐺). Since 𝑆 is a fair dominating set of      

𝑉(𝐺 ∘  𝐻), 𝑆𝑣 must be a fair dominating set of 𝑣 + 𝐻𝑣 for each 𝑣 ∈  𝑉(𝐺). This means that |𝑁𝑣+𝐻𝑣(𝑣) ∩ 𝑆𝑣| = |𝑁𝑣+𝐻𝑣(𝑥) ∩
 𝑆𝑣| for each 𝑣, 𝑥 ∈  𝑉(𝑣 + 𝐻𝑣) ∖  𝑆𝑣 . Since |𝑁𝑣+𝐻𝑣(𝑣) ∩ 𝑆𝑣| = |𝑆𝑣|, it follows that 𝑆𝑣 is an |𝑆𝑣|-fair dominating set of 𝑣 + 𝐻𝑣 

for each 𝑣 ∈  𝑉(𝐺). Similarly, 𝑆 ∩  𝐷 = ∅ implies that 𝑆𝑣 ∩ 𝐷𝑣 = ∅ This proves statement (𝑖𝑖𝑏).   

 

Case 2. Suppose that 𝐷 ⊈  𝑉(𝐺 ∘  𝐻) ∖  𝑉(𝐺). Then 𝐷 ⊆  𝑉(𝐺). If 𝐷 ≠ 𝑉(𝐺), then 𝐷 ⊂  𝑉(𝐺) contradict to the fact that 𝐷 

and 𝑉(𝐺) are both minimum fair dominating sets of 𝐺 ∘  𝐻. This implies that 𝐷 = 𝑉(𝐺). Since 𝑆 ∩  𝐷 = ∅, let 𝑆 = ⋃ 𝑆𝑣𝑣∈ 𝑉(𝐺) , 

where 𝑆𝑣 ⊆  𝑉(𝐻𝑣) and 𝑆𝑣 ≠ ∅. If 𝑆𝑣 = 𝑉(𝐻𝑣) for each 𝑣 ∈  𝑉(𝐺), then statement (𝑖𝑖𝑖𝑎) is satisfied. Suppose that 𝑆𝑣 ≠
𝑉(𝐻𝑣). Let 𝑥 ∈  𝑉(𝐻𝑣) ∖  𝑆𝑣 for each 𝑣 ∈  𝑉(𝐺). Since 𝑆 is a fair dominating set of 𝑉(𝐺 ∘  𝐻), 𝑆𝑣 must be a fair dominating set 

of           𝑣 + 𝐻𝑣 for each 𝑣 ∈  𝑉(𝐺). This means that |𝑁𝑣+𝐻𝑣(𝑣) ∩ 𝑆𝑣| = |𝑁𝑣+𝐻𝑣(𝑥) ∩ 𝑆𝑣| for each 𝑣 ∈  𝑉(𝐺) and for each                             

𝑣, 𝑥 ∈  𝑉(𝑣 + 𝐻𝑣) ∖  𝑆𝑣. Since |𝑁𝑣+𝐻𝑣(𝑣) ∩ 𝑆𝑣| = |𝑆𝑣|, it follows that 𝑆𝑣 is an |𝑆𝑣|-fair dominating set of 𝑣 + 𝐻𝑣 for each        

𝑣 ∈  𝑉(𝐺). This proves statement (𝑖𝑖𝑖𝑏).  

 

For the converse, suppose that statement (𝑖) is satisfied. In view of Remark 2.10, 𝑆 = 𝑉(𝐺) is a fair dominating set of 𝐺 ∘
 𝐻. For each 𝑣 ∈  𝑉(𝐺), let 𝐷𝑣 = {𝑥} be a dominating set of 𝐻𝑣. Then for each 
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𝑢, 𝑣 ∈  𝑉(𝑣 + 𝐻𝑣) ∖  𝐷𝑣 , |𝑁𝑣+𝐻𝑣(𝑢) ∩ 𝐷𝑣| = 1 = |𝑁𝑣+𝐻𝑣(𝑣) ∩ 𝐷𝑣|. 
 

Hence 𝐷𝑣 is a fair dominating set of 𝑣 + 𝐻𝑣𝑣. Let 𝐷 = ⋃ 𝐷𝑣 𝑣∈ 𝑉(𝐺)  and let 𝑢, 𝑣 ∈  𝑉(𝑣 + 𝐻𝑣) ∖  𝐷𝑣 . Then |𝑁𝐺∘ 𝐻   (𝑢) ∩  𝐷| =

|𝑁𝑣+𝐻𝑣 (𝑢) ∩ 𝐷𝑣| = 1 = |𝑁𝑣+𝐻𝑣(𝑣) ∩ 𝐷𝑣| = |𝑁𝐺∘ 𝐻(𝑣) ∩  𝐷| for all 𝑢, 𝑣 ∈  𝑉(𝐺 ∘  𝐻) ∖  𝐷. Thus, 𝐷 is a fair dominating set 

of 𝐺 ∘  𝐻. Since   |𝐷| = |⋃ 𝐷𝑣𝑣∈ 𝑉(𝐺) | = |∑ 𝐷𝑣𝑣∈ 𝑉(𝐺) | = |𝑉(𝐺)||𝐷𝑣| = |𝑉(𝐺)| ⋅  1 = |𝑉(𝐺)|, it follows that 𝐷 is also a 

minimum fair dominating set of 𝐺 ∘  𝐻. Since 

 

𝑆 ∩  𝐷 = 𝑉(𝐺) ∩ (⋃ 𝐷𝑣𝑣∈ 𝑉(𝐺) ) = ⋃ (𝑉(𝐺) ∩ 𝐷𝑣)𝑣∈ 𝑉(𝐺 = ⋃ (∅)𝑣∈ 𝑉(𝐺) , 𝑆 ∩  𝐷 = ∅. 

 

Let 𝑆 ⊆  𝑉(𝐺 ∘  𝐻) ∖  𝐷. Since 𝐷 is a minimum fair dominating set of 𝐺 ∘  𝐻 and 𝑆 is a fair dominating set of 𝐺 ∘  𝐻, it 
follows that 𝑆 is an inverse fair dominating set of 𝐺 ∘  𝐻 with respect to 𝐷. Thus, 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 

𝐺 ∘  𝐻. Next, if statement (𝑖𝑖𝑎) is satisfied, then by Lemma 2.11, 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 𝐺 ∘  𝐻. 
Similarly, if statement (𝑖𝑖𝑏) is satisfied, then 𝐶 = 𝐷 ∪  𝑆 is a disjoint fair dominating set of 𝐺 ∘  𝐻 by Lemma 2.11. Finally, if 

statement (𝑖𝑖𝑖𝑎) (or statement (𝑖𝑖𝑖𝑏)) is satisfied, then 𝐶 = 𝐷 ∪  𝑆 is an inverse fair dominating set of 𝐺 ∘  𝐻 by Lemma 2.12 

(or Lemma 2.13). This completes the proofs.∎ 

 

The following result is an immediate consequence of Theorem 2.14. 

 

Corollary 2.15 Let 𝐺 and 𝐻 be nontrivial connected graphs with |𝑉(𝐺)| = 𝑚 𝑎𝑛𝑑 |𝑉(𝐻)| = 𝑛, and 𝑘 = |𝑆𝑣| where 𝑆𝑣 is a 

𝛾𝑓𝑑-set of 𝑣 + 𝐻𝑣 for all 𝑣 ∈  𝑉(𝐺). Then 

𝛾𝛾𝑓𝑑(𝐺 ∘  𝐻) =  {
2𝑚,   𝑖𝑓   𝛾(𝐻) = 1

(𝑘 + 1)𝑚, 𝑖𝑓   𝛾(𝐻) ≥ 2
  

 
Proof:  Suppose that a nonempty subset 𝐶 = 𝐷 ∪  𝑆 of 𝑉(𝐺 ∘  𝐻) is a disjoint fair dominating set of 𝐺 ∘  𝐻. Then       𝛾𝛾𝑓𝑑(𝐺 ∘

 𝐻) ≤ |𝐶|. Consider the following cases.  

 

Case 1. Suppose that 𝛾(𝐻) = 1. Then 𝑆 = 𝑉(𝐺), by Theorem 2.14i). This implies that 𝛾𝑓𝑑
−1 (𝐺 ∘  𝐻) ≤  |𝑆| = |𝑉(𝐺)|.  

Further, for each 𝑣 ∈  𝑉(𝐺), let 𝑆𝑣 be a 𝛾-set of 𝐻𝑣 . Then |𝑆𝑣| = 𝛾(𝐻𝑣) = 1. Let 𝐷 = ⋃ 𝑆𝑣𝑣∈ 𝑉(𝐺) . Then 

             

|𝐷| = | ⋃ 𝑆𝑣

{𝑣∈ 𝑉(𝐺)}

| = ∑ |𝑆𝑣|

𝑣∈ 𝑉(𝐺)

= |𝑉(𝐺)| ⋅  1 = |𝑉(𝐺)|. 

 

That is, 𝐷 is also a 𝛾𝑓𝑑-set of 𝐺 ∘  𝐻 by Remark 2.10. Thus, 

 

𝑚 = |𝑉(𝐺)| = |𝐷| = 𝛾𝑓𝑑(𝐺 ∘ 𝐻) ≤ 𝛾𝑓𝑑
−1(𝐺 ∘ 𝐻) ≤ |𝑆| = |𝑉(𝐺)| = 𝑚. 

 

This implies that 𝛾𝛾𝑓𝑑(𝐺 ∘  𝐻) ≤  |𝐶| = |𝐷 ∪  𝑆| = |𝐷| + |𝑆| = 𝑚 + 𝑚 = 2𝑚. Since, 𝛾𝑓𝑑(𝐺 ∘  𝐻) = 𝛾𝑓𝑑
−1(𝐺 ∘  𝐻) = 𝑚, it 

follows that  2𝑚 = 𝛾𝑓𝑑(𝐺 ∘  𝐻) + 𝛾𝑓𝑑
−1(𝐺 ∘  𝐻) ≤ 𝛾𝛾𝑓𝑑(𝐺 ∘  𝐻) ≤  |𝐶| = 2𝑚.  Hence, 𝛾𝛾𝑓𝑑(𝐺 ∘  𝐻) = 2𝑚.  

 

Case 2. Suppose that 𝛾(𝐻) ≠ 1. Then 𝛾(𝐻) ≥  2. Let 𝑆𝑣 be a minimum 𝑘-fair dominating set of 𝐻𝑣 for all 𝑣 ∈  𝑉(𝐺) 

where 𝑘 = |𝑆𝑣|. Then 𝑘 = |𝑆𝑣| ≥  2 (since 𝛾(𝐻) ≥  2). Let 𝐷 = 𝑉(𝐺) and 𝑆 = ⋃ 𝑆𝑣𝑣∈ 𝑉(𝐺)  (by Theorem 2.14iii)). Then,  

 

|𝑆| = | ⋃ 𝑆𝑣

𝑣∈ 𝑉(𝐺)

| = ∑ |𝑆𝑣|

𝑣∈ 𝑉(𝐺)

= |𝑉(𝐺)||𝑆𝑣| = 𝑚𝑘 >  𝑚 = |𝑉(𝐺)| = |𝐷|. 

 

Thus, 𝑚𝑘 = |𝑆| > |𝐷| = 𝑚.  Hence, 𝛾𝛾𝑓𝑑(𝐺 ∘  𝐻) ≤  |𝐶| = |𝐷 ∪  𝑆| = |𝐷| + |𝑆| = 𝑚 + 𝑚𝑘.  

Since 𝑘 = |𝑆𝑣| where  𝑆𝑣 is a minimum 𝑘-fair dominating set of 𝐻𝑣 for all 𝑣 ∈  𝑉(𝐺), it follows that, 𝑆 is a 𝛾𝑓𝑑
−1-set of 𝐺 ∘  𝐻. 

Thus, |𝑆| = 𝛾𝑓𝑑
−1(𝐺 ∘  𝐻)and |𝐷| = |𝑉(𝐺)| = 𝛾𝑓𝑑(𝐺 ∘  𝐻), that is ,  

 

𝑚 + 𝑚𝑘 = 𝛾𝑓𝑑(𝐺 ∘  𝐻) + 𝛾𝑓𝑑
−1(𝐺 ∘  𝐻) ≤ 𝛾𝛾𝑓𝑑(𝐺 ∘  𝐻) ≤  |𝐶| = 𝑚 + 𝑚𝑘.  Hence, 𝛾𝛾𝑓𝑑(𝐺 ∘  𝐻) = (𝑘 + 1)𝑚. ∎ 
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III. CONCLUSION 
In this paper, we extend the concept of disjoint fair domination in graphs by characterizing the join and corona of two 

connected nontrivial graphs. We further give the disjoint fair domination number of the join and corona of two graphs. It is 

interesting to note that some related problems on disjoint fair domination in graphs are still open for research. We can extend 

further the study to the following: 
 

1. Characterize the disjoint fair dominating sets of the Cartesian product and lexicographic product of two graphs. 

2. Find the disjoint fair domination number of the Cartesian product and lexicographic product of two graphs.   
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