## Original Article

# Exchange of Message using Fourier Transforms Via Affine Transformation 

C. Manjula ${ }^{1}$, Chaya Kumari Divakarla ${ }^{2}$, Kavya B S ${ }^{3}$<br>${ }^{1,2}$ Associate professor in Mathematics, AMC Engineering college, Bangalore.<br>${ }^{3}$ Assistant professor in Mathematics, AMC Engineering college, Bangalore.

Received Date: 17 February 2022
Revised Date: 25 March 2022
Accepted Date: 27 March 2022


#### Abstract

In this paper, we established an application of Fourier cosine transformation in exchanging the message in a secured channel via affine cryptosystem which is helpful in digital electronics and signal processing.


Keywords - Decryption, Encryption, Fourier cosine transform, Modulo function.

## I. INTRODUCTION

Definition: Fourier cosine transform [7] is an integral transform that are mainly applicable for signal processing or statistics. If $f(x)$ is defined for all positive values of $x$;
$F_{C}[f(x)]=\int_{0}^{\infty} f(x) \cos (u x) d x=F_{c}[u]$
Inverse Fourier cosine transform is given by
$f(x)=\frac{2}{\pi} \int_{0}^{\infty} F_{c}(u) \cos (u x) d u$

## Properties of Fourier Cosine Transforms:

[1] Linearity Property :
$F_{c}\left[C_{1} f_{1}(x)+C_{2} f_{2}(x)+\ldots \ldots \ldots .+C_{n} f_{n}(x)\right]=C_{1} F_{c}\left[f_{1}(x)\right]+C_{2} F_{c}\left[f_{2}(x)\right]+\cdots+C_{n} F_{c}\left[f_{1}(x)\right]$
[2] Change of Scale Property :
If $F_{c}[(x)]=C_{1} F_{c}(u)$ then $F_{c}[f(a x)]=\frac{1}{a} F_{c}\left(\frac{u}{a}\right)$

## [3] Modularity Property Of Fourier Cosine Transforms :

$F_{c}[f(x) \cos a x]=\frac{1}{2}\left[F_{c}(u+a)+F_{c}(u-a)\right]$
$F_{s}[f(x) \cos a x]=\frac{1}{2}\left[F_{s}(u+a)+F_{s}(u-a)\right]$
Cryptography: Cryptography is a technique of sending information and communications through use of codes [2]. It is the science used to try to keep information secret and safe. Modern cryptography is a mix of mathematics, computer science and electrical engineering.

Plaintext: Information that can be directly read
Ciphertext: Encrypted data of plaintext is ciphertext
Encryption: Process of converting plaintext to ciphertext
Decryption: Process of reverting ciphertext to plain text

## Cryptography mainly classified in to 3 types :

1. Symmetric/ private key cryptography uses single key for both encryption and decryption
2. Hash functions: it is one way function which is infeasible practically to reverse the computation. These are the basic tools of modern cryptography [5].
3. Asymmetric/ public key cryptography uses different keys for encryption and decryption

In this paper, we propose a method of exchanging the message with Fourier cosine transform via affine cryptosystem.
The plain text and ciphertext are broken up into message units. A message unit can be a single letter, also called monograph, a pair of letters called digraph, a triple of letters called trigraph or a block of more than 3 letters called multigraph [3].
Affine transformation is one of the types of symmetric key cryptosystems.

## Affine transformation is defined as follows :

$C=f(p)=a p+b(\bmod N)$ where ' P ' is the plaintext and ' C ' is the cipher text respectively. $\mathrm{a}, \mathrm{b}$ and N are positive integers and ' f ' is a mapping from P to C .

The plaintext ' P ' can be recovered from the given cipher text ' C ' i.e.,
$P=a^{-1}(C-b)(\bmod N)$
$P=a^{-1} C-a^{-1} b(\bmod N)$
$P=k_{1} C+k_{2}(\bmod N) \quad$ where $k_{1}=a^{-1}$ and $k_{2}=-a^{-1} b$ and $a^{-1}$ is the inverse of ' $a$ '.
Theorem: Given the affine map $C \equiv a p+b(\bmod N)$ where $a \epsilon(Z / N Z)^{*}, b \epsilon(Z / N Z)$. The transformation gives a unique value of 'p' for a given C iff $\operatorname{gcd}(\mathrm{a}, \mathrm{N})=1$ and that the total number of affine transformations is given by $N . \emptyset(N)$, where $\emptyset$ is Eulerphi function [2].

## Encryption Algorithm:

Step 1: Consider the plain text KNOWLEDGE and write the numerical equivalents
Step 2: Choose ' a ' and ' b ' in affine transformation $a x+b(\bmod N)$ such that $(a, N)=1$ and $(b, N)=1$
Step 3: Now consider Fourier cosine transformation and substitute the obtained numerical value of cipher text for " $a$ " in the Fourier cosine transform $\int_{0}^{\infty} e^{-a x} \cos (s x) d x$ and sender sends this ciphered message to receiver.

## Decryption Algorithm:

Step 1: Reciever receives the cipher text and first decrypt by using inverse Fourier cosine transformation.
Step 2: By the obtained text from step 1 receiver again decrypts the cipher text using inverse affine transformation and with suitable decryption key.

Step 3 : Receiver can retrieve the plain text.

## Example:

Consider the plain text "KNOWLEDGE" write the numerical equivalent of each alphabet by taking $a=5, b=8$ in affine transformation ("ax+b"), we get

| K | N | O | W | L | E | D | G | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 13 | 14 | 22 | 11 | 4 | 3 | 6 | 4 |
| $(5 x+8) \bmod 26$ |  |  |  |  |  |  |  |  |
| 6 | 21 | 0 | 14 | 11 | 2 | 23 | 12 | 2 |

Calculations of $(5 x+8) \bmod 26$ :

| Alphabet | Numerical <br> equivalent | $(5 x+8) \bmod 26$ | Value |
| :---: | :---: | :--- | :--- |
| K | 10 | $5(10)+8 \bmod 26$ | 6 |
| N | 13 | $5(13)+8 \bmod 26$ | 21 |
| O | 14 | $5(14)+8 \bmod 26$ | 0 |
| W | 22 | $5(22)+8 \bmod 26$ | 14 |
| L | 11 | $5(11)+8 \bmod 26$ | 11 |
| E | 4 | $5(4)+8 \bmod 26$ | 2 |
| D | 3 | $5(3)+8 \bmod 26$ | 23 |
| G | 6 | $5(6)+8 \bmod 26$ | 12 |
| E | 4 | $5(4)+8 \bmod 26$ | 2 |

Again by using Fourier cosine transform encrypt the obtained numerical values as ' $a$ ' in the Fourier cosine transform $\int_{0}^{\infty} e^{-a x} \cos (s x) d x$
i.e., $\frac{\pi}{2} \int_{0}^{\infty} e^{-6 x} \cos (s x) d x, \frac{\pi}{2} \int_{0}^{\infty} e^{-21 x} \cos (s x) d x, \frac{\pi}{2} \int_{0}^{\infty} e^{-0 x} \cos (s x) d x, \frac{\pi}{2} \int_{0}^{\infty} e^{-14 x} \cos (s x) d x, \frac{\pi}{2} \int_{0}^{\infty} e^{-11 x} \cos (s x) d x$, $\frac{\pi}{2} \int_{0}^{\infty} e^{-2 x} \cos (s x) d x, \frac{\pi}{2} \int_{0}^{\infty} e^{-23 x} \cos (s x) d x, \frac{\pi}{2} \int_{0}^{\infty} e^{-12 x} \cos (s x) d x, \frac{\pi}{2} \int_{0}^{\infty} e^{-2 x} \cos (s x) d x$ and sender sends cipher text as

$$
\left[\frac{6 \pi}{2\left(s^{2}+36\right)}, \frac{21 \pi}{2\left(s^{2}+36\right)}, \frac{0 . \pi}{2\left(s^{2}+36\right)}, \frac{14 \pi}{2\left(s^{2}+36\right)}, \frac{11 \pi}{2\left(s^{2}+36\right)}, \frac{2 \pi}{2\left(s^{2}+36\right)}, \frac{23 \pi}{2\left(s^{2}+36\right)}, \frac{12 \pi}{2\left(s^{2}+36\right)}, \frac{2 \pi}{2\left(s^{2}+36\right)}\right]
$$

We made Fourier cosine transformation as public key and affine transformation as private key to decrypt the message.

## Decryption:

Recipient receives the message from the sender and first decrypt by using inverse Fourier cosine transformation and get decrypts as
$\left[e^{-6 x}, e^{-21 x}, e^{-0 x}, e^{-11 x}, e^{-2 x}, e^{-23 x}, e^{-12 x}, e^{-2 x}\right]$
Again by using private key as affine transformation with $E^{-1}(y)=21(y-8) \bmod 26$

| y | 6 | 21 | 0 | 14 | 11 | 2 | 23 | 12 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{y}-8$ | -2 | 13 | -8 | 6 | 3 | -6 | 15 | 4 | -6 |
| $21(\mathrm{y}-8)$ | -42 | 273 | 168 | 126 | 63 | -126 | 315 | 84 | -126 |
| Mod26 | 10 | 13 | 14 | 22 | 11 | 4 | 3 | 6 | 4 |

In this manner, we can exchange the message in a secured channel, which is more secure than the symmetric key cryptosystem.

## CONCLUSION

We can extend this encryption scheme by using Fourier sine transformation also and by using any symmetric key cryptosystem like vignere cipher etc; as private key.

## REFERENCES

[1] A.K. Bhandari, The public key cryptography. Proceedings of the Advanced Instructional Workshop on Algebraic Number Theory HBA (2003) 287-301.
[2] Neil Koblitz, A Course in Number Theory and Cryptography ISBN 3-578071-8 SPIN 10893308.
[3] G.P. Tolstov, Fourier Series, Dover, (1972).
[4] T.W. Korner, Fourier Analysis, Cambridge University Press, (1988).
[5] J.Buchmann, Introduction to Cryptography, Springer verlag (2001).
[6] Alfred J. Menezes, Paul C.Van Oorschot and Scott A.Vanstone,Handbook of Applied Cryptography $1^{\text {st }}$ edition. CRC Press
[7] Ronald newbold bracewell, Fourier transform and its applications, $3^{\text {rd }}$ edition, Mcgraw Hill, (2000).
[8] A.P.Stakhov, The Golden section and Modern Harmony Mathematics, Applications of Fibonacci numbers, kluwer Academic publishers (1998) 393-399
[9] Tom M .Apostol, Introduction to Analytic Number Theory, Spriger-Verlag, Newyork.
[10] Thomas Khoshy, Fibonacci, Lucas and Pell Numbers and Pascal's triangle, Applied Probability Trust, 125-132.
[11] Thomas Khoshy, Fibonacci and Lucas numbers with Applications, John Wiley and Sons,NY,(2001).ISBN: 978-0-471-39939-8.
[12] A. Terras, Fourier Analysis on Finite Groups and Applications, Cambridge University Press, (1999).
[13] Chaya Kumari. D and S. Ashok Kumar, Redei Rational Functions as Permutation Functions and an Algorithm to Compute Redei Rational Functions IJESM , 8(2) (2019).
[14] E.H.Lock Wood, A single-light on pascal's triangle, Math, Gazette, 51(1967) 243-244.
[15] A.Chandra Sekhar, D. Chaya Kumari, S.Ashok Kumar, Symmetric Key Cryptosystem for Multiple Encryptions, International Journal of Mathematics Trends and Technology (IJMTT)., 29(2) (2016) 140-144 . ISSN:2231-5373.
[16] A.Chandra Sekhar, D. Chaya Kumari, Ch.Pragathi, S. Ashok Kumar, Multiple Encryptions of Fibonacci Lucas Transformations, International Organization of Scientific Research (IOST)e-ISSN: 2278-5728,. 12(2) (2016) 66-72.
[17] K.R.Sudha, A. Chandra Sekhar, P.V.G.D, Prasad Reddy, Cryptographic Protection Of Digital Signal Using some Recurrence Relations, IJCNS, (2007) 203-207.
[18] A. Chandra Sekhar, V. Anusha, B. Ravi Kumar and S. Ashok Kumar, Linear independent spanning sets and Linear Transformations for multi-level encryption, 36(4) (2015) 385.
[19] Tianping Zhang and Yuankui Ma, On Generalized Fibonacci Polynomials and Bernouli Numbers Journal of Integer sequence, 8 (2015) 1-6.
[20] A.Chandra Sekhar, D. Chaya Kumari, Ch.Pragathi, S. Ashok Kumar, Multiple Encryption of Independent Ciphers, International Journal of Mathematical Archive (IJMA) , 7(2) (2016) 103-110.
[21] P.A. Kameswari, R.C. Kumari, Cryptosystem with Redei rational functions via pellconics IJCA(0975-8887) , 54(15).
[22] Chaya Kumari. D, Triveni. D and S. Ashok Kumar, Super encryption method of Laplace transformations using Fibonacci numbers. Journal of Hauzhong University of Science and Technology, 50(7).
[23] James L. Massey, The Discrete Fourier Transform in Coding and Cryptography, ITW 1998, San Diego, CA. (2011).
[24] J.M. Ash(ed.), Studies in Mathematical Association of America, (1976).
[25] D Boneh, X Boyen, and H Shacham, Short group Signatures, Annual International Cryptology Conference , (2004).

