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Abstract  - This paper is concerned with the forth Order mixed neutral delay difference equation of the form 

( )( )( ) ,0
2121 11
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 ypyqycybyda  

we obtain some new oscillation criteria by using riccati transformation technique. Examples are given to illustrate the 

results. 
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I. INTRODUCTION  

Consider the oscillation for certain forth Order neutral delay difference equation 

( )( )( ) ,0
2121 11

2 =++++
++−++−






 ypyqycybyda                (1.1) 

where  ,...1, 000 +=  N  0 - is nonnegative integer. Here 1,21,   and 2  are nonnegative integers and   

is forward difference operator. .1  yyy −= +  Throughout this paper the following conditions are assumed to hold: 

[H1]  a  and  d  are positive nondecreasing sequences and  
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[H2]  b  and  c  are positive real sequences such as bb  0  and cc  0  with .1+ cb  

[H3]  p  and  q  are real positive sequences. 

[H4]  ,  are positive integers. 121 ,,   and 2  are nonnegative integers. For the basic theory of difference 

equations one can refer the monographs by Agarwal, Bohner and Grace [1]. The oscillation solution for third Order and 

higher Order difference equations [2, 3, 4, 5, 6, 8, 9, 10, 11, 12,13] has recaused more attention in the last few years. 

Let  .,max 11  =  A solution of equation (1.1) we mean a real sequence  y  which is defined for all 

 − 0  and satisfying equation (1.1) for all N . A solution  y  is said to be oscillatory. If it is neither 

eventually positive nor eventually negative. Otherwise it is called nonoscillatory. Recently Kaleeswari [7] deals with 

oscillation for third Order difference equation of the form 
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and discussed some oscillatory properties by assuming 
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nn na
 Our aim in this paper is to discuss the oscillatory 

behavior of fourth Order difference equation when 


=
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0
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 and  



=

=
0

.
1

nn nd
 

So, the author is concerned fourth Order mixed neutral delay difference equation of the form  
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where   
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II. OSCILLATION RESULTS 

In this section, we present some new oscillation criteria for equation (1.1) will be established. For simplicity, we use 

the following notations:  

,
21  +− ++= ycybyz

 
, RQP =+   ,,,min

21  +−= qqqQ   
21

,,min  +−= pppP . 

We need the following lemma to prove the main results.  

Lemma 2.1. 

Assume 0A  and ,0B .1  Then  

  ( ) ( )
BABA ++ −12 . 

The proof of lemma is simple and it is omitted. 

Lemma 2.2. Let  y  be a positive solution of equation (1.1). Then there are two cases for N 1  sufficiently 

large n . 

( ) ( ) ( )( ) .0,0,0,0,0)1 22   zdazdzdzz  

( ) ( ) ( )( ) .0,0,0,0,0)2 22   zdazdzdzz  

Proof. 

Let  y  be a positive solution of (1.1). Then there is an integer 01    such that ,0,0
1
 − yy  

0,0
12
 −+  yx and 0

2
+y  for all .1   Then 0z  for all .1   It follows from equation (1.1) that  

( )( ) ;0
21 11

2 −−= ++−+





 ypyqzda  1                   (2.1) 

Therefore ( ) zda 2
 is strictly decreasing for all 1  . We can proved that ( ) 02   zd  for all 1  . If 

not, then there is an integer 12    and 0G  such that 

( ) ( ) ,
222

22 Gzdazda    .2   

Summing the last inequality from 2 to ,1−  we get 
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Letting ,→  then ( ) .−→  zd  Then there exist an integer 23    and 0L  such that 

 

             
;

33
Lzdzd    

 .3 
 

 

Summing the last inequality from 3  to ,1−  we have 
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Letting ,→n  then ,−→z  which is contradiction. Hence ( ) 02   zd  for .1   

Lemma 2.3. 

Let ,0z  ,0 z  ,02  z  03  z  and 04  z  for all .Nmn   Then for any )1,0(k  and for 

some integer .1m  

.
22

1 



 kmn

z

z
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Proof. 

Since 
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1
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we have  ( ) .2
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Summing the last inequality 
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The proof is now complete. 
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Theorem 2.4.  

Assume that there exist a positive real sequence    and  ,11       and 1,   holds. If 
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holds, then every solution  y  of equation (1.1) oscillates or .0lim =
→




y   

Proof.  

Let  y  be a nonoscillatory solution of equation (1.1). Without loss of generality, we may assume that there exists an 

integer 0N  such that ,0y  ,0
1
−y  ,0

2
+y  0

1
−y  and 0

2
+y  for all .N  Then we have  

0z  and (2.1) for all .N  From (1.1) for all N  we have 

( )( ) ( )( ) ( )









 11111121 1
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Using lemma 2.1 in (2.5), we have 

( )( ) ( )( ) ( )( )( )
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z
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                    (2.6) 

By lemma 2.2, there are two cases for .z  First assume that case 1 holds for all .1 NN   It follows from 

0 z  that 01 −+  zz  then .
12  −+  zz  Thus, by (2.6) we obtain 
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Then ( ) 01 w  for .1N  Then from (2.8) we obtain 
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By equation (2.1), we have ( ) ( ).11

2

1

2

111 +++−−−   zdazda  Thus from (2.8), we obtain 
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Next we define 
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Then ( ) 02 w  for .1N  Then from (2.10), we obtain 
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By equation (2.1) and 11    we have 
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Thus from (2.10), we get 
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In the following we define 
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By equation (2.1), we obtain ( ) ( ).
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Therefore (2.9), (2.11) and (2.13),  we obtain 
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On the other hand  a  and  d  nondecreasing 03  z  for 1m  we have 04  z  for .1m  Then by  

lemma 2.3 for any ( )1,0k  and   is sufficiently large 
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Due to (2.2) . Since ,0z ,0 z 02  z  and 03  z  for 1m  we have 
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for some 0h  and   is sufficiently large. From (2.15) and (2.16) and 1,   we have 
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By using completing the square in the right hand side of the above inequality, we get 
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Summing the last inequality from 12 NN   to ,1−  we obtain 
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Taking limsup in the last inequality, we get a contradiction to (2.3). Assume that lemma 2.2(2) holds. Let  y  be a 

positive solution of equation (1.1). Since 0z  and ,0 z  then 0lim =
→

lz


 exists. We shall prove that 
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.0=l  Assume 0l  then for any ,0  we have  zl +  eventually. Choose 
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This contradicts to (2.4).  So the proof is complete. 

III. APPLICATIONS 

Example 3.1.  

Consider the forth Order mixed neutral type difference equation of the form  

( ) .0222
2

1
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1
11
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21

32 =+++















++ +−+−   yyyyy           (3.1) 

Let .1,2,1,2,22,2,1,
2

1
,

4

1
, 21

3

21

2 =====+=======   qpdcba  Take 

.1=  Then condition (2.3) holds. On the other hand, condition (2.4) also holds. We can easily see that the 

conditions of Theorem 2.4 are satisfied. Hence all the solutions of equation (3.1) are oscillatory. In fact 

  ( ) 1−=y  is one such a solution of equation (3.1).  
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Example 3.2.  

Consider the forth Order mixed neutral type difference equation of the form 
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Let .1,2,1,2,2,3,2,2,
4

1
,

3

2
,

2
1

32

21 ===+======== 


 qpdcba  Take 

condition (2.3) holds. On the other hand condition (2.4) also holds. We can easily see that the conditions of 

Theorem 2.4 are satisfied. Hence all the solutions of equation (3.2) are oscillatory.  

In fact   ( ) 1−=y  is one such a solution of equation (3.2). 

       CONCLUSION 

In this paper, by using Ricatti type transformation and the summing averaging technique, the oscillatory 

behavior of every solution of the equation (1.1) are discussed in Theorem 2.4. Here some sufficient conditions are 

proved. These sufficient conditions which are new, extend and complement some of the known results in the 

literature. Also the example reveals the illustration of the proved results. 
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