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Abstract - Power series in one variable is an infinite series. It is one of the most useful types of series in analysis; it is work just 

as well as for complex numbers as real numbers. We can use them to define transcendental functions. In this paper, we will 

find the Mahgoub Transformation of some power series. The purpose of paper is to prove the applicability of Mahgoub 

transform to some significant infinite power series. 
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I. INTRODUCTION 

Mahgoub transformation is a mathematical tool used to obtain the solutions of differential equations without finding their 

general solutions. It has applications in nearly all engineering disciplines [1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15]. It also comes 

out to be very effective tool to find the Mahgoub Transformation of some power series [16,17,18,19,20,21,22,23,24,25,26]. In 

this paper, we present a new approach called Mahgoub transform approach to find the Mahgoub Transformation of some 

power series. 

II. DEFINITIONS 

 

A. Mahgoub Transform 
 

If the function 𝑓(x), x ≥ 0 is having an exponential order and is a piecewise continuous function on any interval, then the 

Mahgoub transform of  ɦ(y) is given by  

M{𝑓(x)} = r ∫ 𝑒− 𝑟𝑥
∞

0

𝑓(x)𝑑𝑥 = ɦ̅(𝑟) 

The Mahgoub Transform [1, 2, 3] of some of the functions are given by 

• 𝑀 {𝑥𝑛} =  
𝑛!

𝑟𝑛  , 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,1,2, .. 

• 𝑀 {𝑒𝑎𝑥} =
𝑟

𝑟−𝑎
 ,    

• 𝑀 {𝑠𝑖𝑛𝑎𝑥} =
𝑎𝑟

𝑟2+𝑎2 ,    

• 𝑀 {𝑐𝑜𝑠𝑎𝑥} =
𝑟2

𝑟2+𝑎2 ,  

•  𝑀 {𝑠𝑖𝑛ℎ𝑎𝑥} =
𝑎𝑟

𝑟2−𝑎2 , 

•  𝑀{𝑐𝑜𝑠ℎ𝑎𝑥} =
𝑟2

𝑟2−𝑎2 . 
 

B. Inverse Mahgoub Transform 

The Inverse Mahgoub Transform of some of the functions are given by 

• M-1{
1

𝑟𝑛} = 
𝑥𝑛

𝑛!
  , 𝑛 = 2, 3, 4 … 

• M-1{
𝑟

𝑟−𝑎
} = 𝑒𝑎𝑥 
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• M-1{
𝑟

𝑟+𝑎2}= 
1

𝑎
sin 𝑎𝑥 

• M-1{
𝑟2

𝑟2+𝑎2} =cos 𝑎𝑥 

• M-1{
𝑎𝑟

𝑟2−𝑎2}= 
1

𝑎
sin ℎ𝑎𝑥 

• M-1{
𝑟2

𝑟2−𝑎2 } =
1

𝑎
cos ℎ𝑎𝑥 

C. Mahgoub Transform of Derivatives  

The Mahgoub Transform [1, 2, 3] of some of the Derivatives of h(y) are given by 

•  𝑀{ℎ′(𝑟)} = 𝑟𝑀{ℎ(𝑟)} − r ℎ(0) 

• 𝑀{ɦ′′(𝑦)} = 𝑟2ɦ̅(𝑟) − 𝑟2ɦ(0) − rɦ′(0), 

𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 

Power series [4, 5, 6,]: 

 

∑ bnzn

∞

n=0

= b0 + b1z + b2z2 + ⋯ bnzn 

 

D. Maclaurin series [4, 5, 6,]: 

y = ∑
y(n)

n!
zn = y0

∞

n=0

+
y0

′

1!
z +

y0
′′

2!
z2 +

y0
′′′

2!
z3 … … …. 

 

III. METHODOLOGY 

A. Mahgoub Transformation of Geometric Series later than the expanding to power series appearance [4, 5, 6,]: 

1

1 − x
= ∑ xn

∞

n=0

= f(x) 

M{f(x)} = M {∑ xn

∞

n=0

} 

 = r ∫ e−rx
∞

0

∑ xn

∞

n=0

dx 

 

= ∑ r ∫ e−rx
∞

0

xndx

∞

n=0

 

= ∑ M{xn}

∞

n=0

 

      = ∑
n!

rn

∞

n=0

 

Hence, 

     M{f(x)} = ∑
n!

rn

∞

n=0
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B. Mahgoub Transformation of the Power series expansion of   𝒆𝒙  later than the expanding to power series 

appearance[𝟒, 𝟓, 𝟔, ] 

ex = ∑
xn

n!

∞

n=0

= f(x) 

M {f(x)} = M {∑
xn

n!

∞

n=0

} 

= r ∫ e−rx
∞

0

{∑
xn

n!

∞

n=0

} dx 

= ∑ r ∫ e−rx
∞

0

xn

n!
dx

∞

n=0

 

= ∑
1

n! 
[r ∫ e−rx

∞

0

xndx]

∞

n=0

 

= ∑
1

n!
E{xn} = ∑

1

n!
.
n!

rn

∞

n=0

∞

n=0

 

Hence, E{f(x)} = ∑
1

rn

∞

n=0

 

C. Mahgoub Transformation of the Power series expansion of 𝒍𝒐𝒈(𝟏 + 𝒙)later than the expanding to power series 

appearance [𝟒, 𝟓, 𝟔, ]  

 

log(1 + x) = ∑
(−1)n+1

n
xn

∞

n=1

= f(x) 

M {f(x)} = M {∑
(−1)n+1

n
zn

∞

n=1

} 

= r ∫ e−rx
∞

0

{∑
(−1)n+1

n
xn

∞

n=1

} dx 

= ∑ r ∫ e−rx
∞

0

(−1)n+1

n
xndx

∞

n=1

 

= ∑
(−1)n+1

n
[r ∫ e−rx

∞

0

xndx]

∞

n=1

 

= ∑
(−1)n+1

n

∞

n=1

 M{xn} 

= ∑
(−1)n+1

n

∞

n=1

 
n!

rn
 

= ∑(−1)n+1

∞

n=1

(n − 1)! 

rn
 

Hence ,  

M {f(x)} = ∑(−1)n+1

∞

n=1

(n − 1)! 

rn
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D. Mahgogub Transformation of the Power series expansion of 𝒍𝒐𝒈(𝟏 − 𝒙) later than the expanding to power series 

appearance[𝟒, 𝟓, 𝟔, ] 

log(1 − x) = ∑
(−1)2n−1

n
xn

∞

n=1

= f(x) 

M {f(x)} = M {∑
(−1)2n−1

n
xn

∞

n=1

} 

= r ∫ e−rx
∞

0

{∑
(−1)2n−1

n
xn

∞

n=1

} dx 

= ∑ r ∫ e−rx
∞

0

(−1)2n−1

n
xndz

∞

n=1

 

= ∑
(−1)2n−1

n
r ∫ e−rx

∞

0

xndx

∞

n=1

 

= ∑
(−1)2n−1

n

∞

n=1

 M{xn} 

= ∑
(−1)2n−1

n

∞

n=1

 
n!

rn
 

= ∑(−1)2n−1

∞

n=1

 
(n − 1)! 

rn
 

Hence ,  

M{f(z)} = ∑(−1)2n−1

∞

n=1

 
(n − 1)! 

rn
 

E. Mahgogub Transformation of the Power series expansion of 𝒍𝒐𝒈
(𝟏+𝑿) 

(𝟏−𝑿)
 later than the expanding to power series 

appearance[𝟒, 𝟓, 𝟔, ] 

log
(1 + x)

(1 − x)
= ∑

2

2n − 1
X2n−1

∞

n=1

= f(x) 

M {f(z)} = M {∑
2

2n − 1
x2n−1

∞

n=1

} 

 

= r ∫ e−rx
∞

0

{∑
2

2n − 1
x2n−1

∞

n=1

} dx 

= ∑ r ∫ e−rx
∞

0

2

2n − 1
x2n−1dx

∞

n=1

 

= ∑
2

2n − 1
[r ∫ e−rx

∞

0

x2n−1dx]

∞

n=1

 

= ∑
2

2n − 1
M{x2n−1}

∞

n=1

 

= ∑
2

2n − 1

(2n − 1)!

r2n−1

∞

n=1
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= ∑ 2

∞

n=1

(2n − 2)!

r2n−1
 

Hence,    

M {f(z)} = ∑ 4

∞

n=1

(n − 1)!

r2n−1
 

 

F. Mahgogub Transformation of the Power series expansion of 𝑪𝒐𝒔𝒙  later than the expanding to power series appearance 

[4, 5, 6,] 

cosx = ∑
(−1)n

2n!
x2n

∞

n=0

= f(x) 

M{F(z)} = M {∑
(−1)n

2n!
x2n

∞

n=0

} 

= r ∫ e−rx
∞

0

{∑
(−1)n

2n!
x2n

∞

n=0

} dx 

= ∑ p ∫ e−rx
∞

0

(−1)n

2n!
x2ndx

∞

n=0

 

= ∑
(−1)n

2n!
[r ∫ e−rx

∞

0

x2ndx]

∞

n=0

 

let 2n = u 

= ∑
(−1)n

2n!
M {zu}

∞

n=0

 

= ∑
(−1)n

2n!

∞

n=0

u!

pu
 

= ∑
(−1)n

2n!

∞

n=0

2n!

p2n
 

Hence, M{f(t)} = ∑
(−1)n

r2n

∞

n=0

 

 

G. Mahgoub Transformation of the Power series expansion of 𝑺𝒊𝒏𝒙  later than the expanding to power series 

appearance [𝟒, 𝟓, 𝟔, ] 

Sinx = ∑
(−1)n

(2n + 1)!
x2n+1

∞

n=0

= f(x) 

M{f(x)} = M {∑
(−1)n

(2n + 1)!
X2n+1

∞

n=0

} 

= r ∫ e−rx
∞

0

{∑
(−1)n

(2n + 1)!
x2n+1

∞

n=0

} dx 

= ∑ r ∫ e−rx
∞

0

(−1)n

(2n + 1)!
x2n+1dx

∞

n=0
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= ∑
(−1)n

(2n + 1)!
[r ∫ e−rx

∞

0

x2n+1dx]

∞

n=0

 

= ∑
(−1)n

(2n + 1)!
M {z2n+1}

∞

n=0

 

= ∑
(−1)n

(2n + 1)!

∞

n=0

(2n + 1)!

r2n+1
 

Hence, M{f(t)} = ∑
(−1)n

r2n+1

∞

n=0

 

H. Mahgoub Transformation of the Power series expansion of 𝑪𝒐𝒔𝒉𝒙  later than the expanding to power series 

appearance [𝟒, 𝟓, 𝟔, ] 

 

Coshx = ∑
1

2n!
x2n

∞

n=0

= f(x) 

M{f(z)} = M {∑
1

2n!
x2n

∞

n=0

} 

= r ∫ e−rx
∞

0

{∑
1

2n!
x2n

∞

n=0

} dx 

= ∑ p ∫ e−rx
∞

0

1

2n!
x2ndx

∞

n=0

 

= ∑
1

2n!
[r ∫ e−rx

∞

0

x2ndx]

∞

n=0

 

let 2n = u 

= ∑
1

2n!
M {xu}

∞

n=0

 

= ∑
1

2n!

∞

n=0

u!

pu
 

= ∑
1

2n!

∞

n=0

2n!

r2n
 

Hence, M{f(x)} = ∑
2n − 1!

r2n

∞

n=0

 

I. Mahgoub Transformation of the Power series expansion of 𝑺𝒊𝒏𝒙 later than the expanding to power series appearance [4, 

5, 6,] 

Sinhx = ∑
1

(2n + 1)!
x2n+1

∞

n=0

= f(x) 

M{f(z)} = M {∑
1

(2n + 1)!
x2n+1

∞

n=0

} 

= p ∫ e−rx
∞

0

{∑
1

(2n + 1)!
x2n+1

∞

n=0

} dx 
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= ∑ p ∫ e−rx
∞

0

1

(2n + 1)!
x2n+1dx

∞

n=0

 

= ∑
1

(2n + 1)!
r ∫ e−rx

∞

0

x2n+1dx

∞

n=0

 

= ∑
1

(2n + 1)!
M {x2n+1}

∞

n=0

 

= ∑
1

r2n+1

∞

n=0

 

Hence, M{f(t)} = ∑
1

r2n+1

∞

n=0

 

 

J. If f(x) is a Power Series Expansion at the Point b, where b is any Constant, b ∈ R, Its Taylor’s Series Expansion [5,6] is 

𝐟(𝐳) = ∑ 𝐛𝐧

∞

𝐧=𝟎

(𝐳 − 𝐛)𝐧 

Then, The Mahgoub transformation of f(x) is given in the form of power series as 

M{f(x)} = M [∑ bn

∞

n=0

(x − b)n] 

= r ∫ e−rx
∞

0

{∑ bn

∞

n=0

(x − b)n} dx 

= r ∑ bn

∞

n=0

∫ e−rx
∞

0

{(x − b)n}dx 

= r ∑ bn

∞

n=0

∫ e−(u+b)r
∞

0

{(u)n}dx 

= r ∑ bn

∞

n=0

e−br ∫ e−ur
∞

0

{(u)n}du 

= ∑ bn

∞

n=0

e−br [r ∫ e−ur
∞

0

{(u)n}du] 

= ∑ bn

∞

n=0

e−br M(u)n 

M ∑ bn

∞

n=0

(z − b)n = ∑ bn

∞

n=0

e−br  
n!

rn
 

 

K. If f(x) is a Power Series Expansion at the Point 0, where 0, Its Power Series Expansion is [5,6,7,8,9,10,11,12,13] 

𝐟(𝐱) = ∑ 𝐛𝐧

∞

𝐧=𝟎

(𝐱)𝐧 

Then, TheMahgoub transformation of f(x) is given in the form of power series as 

M{f(x)} = M [∑ bn

∞

n=0

(x)n] 
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= r ∫ e−rx
∞

0

{∑ bn

∞

n=0

(x)n} dx 

= r ∑ bn

∞

n=0

∫ e−rx
∞

0

{(x)n}dx 

= ∑ bn

∞

n=0

r ∫ e−rx
∞

0

{(x)n}dx 

= ∑ bn

∞

n=0

 M(x)n 

= ∑ bn

∞

n=0

 
n!

pn
 

 

L. Mahgoub Transformation of the Power series expansion of 𝒆𝒙𝟐
 later than the expanding to power series 

appearance[𝟏𝟒, 𝟏𝟓, 𝟏𝟔, 𝟏𝟕, 𝟏𝟖, 𝟏𝟗, 𝟐𝟎]:   

f(x) = 𝐞𝐱𝟐
= ∑

𝐱𝟐𝐧

𝐧!

∞

𝐧=𝟎

 

M[f(x)] = r ∫ e−rx
∞

0

{∑
𝐱𝟐𝐧

𝐧!

∞

𝐧=𝟎

} dx 

=  r ∑
1

n!

∞

n=0

∫ e−rx
∞

0

{(x)2n}dx 

= ∑
1

n!

∞

n=0

[r ∫ e−rx
∞

0

{(x)2n}dx] 

= ∑
1

n!

∞

n=0

M(z)2n 

= ∑
1

n!

∞

n=0

n!

r2n
 

∑
1

r2n

∞

n=0

 

 

M. Mahgoub transformation of Convergence Series [21,22,23,24,25,26] 

1 +
c + z

1!
+

(c + 2z)2

2!
+

(c + 3z)3

3!
+ ⋯ 

= ∑
(c + nx)n

n!

∞

n=0

= f(x) 

So, M{f(z)} = M {∑
(c + nx)n

n!

∞

n=0

} 

 r ∫ e−rx {∑
(c + nx)n

n!

∞

n=0

}
∞

0

dx    ,   

          let c + nx = z 
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      = ∑ r ∫ e−rx
∞

0

∞

 n=0

(c + nx)n

n!
dx 

      = ∑ r ∫ e−r(
z−c

n
)

∞

0 

∞

n=0

zn

n!

dz

n
 

     = ∑ r e
rc

n ∫ e−
r

n  
z

∞

0

∞

n=0

zn

n!

dz

n
      ,    let 

r

n
= u 

     = ∑ r e
rc

n ∫ e−uz
∞

0

∞

n=0

zn

n!

  dz

n
 

= ∑ e
rc

n  
1

n!  n
r ∫ e−uz

∞

0

∞

n=0

zndz 

 =  ∑ e
rc

n   
1

n! n
M(zn)

∞

n=0

 

Hence, 

M {∑
(c + nz)n

n!

∞

n=0

} = ∑ e
rc

n

∞

n=0

 
1

nrn
 

 

IV. CONCLUSION 

The main purpose of this paper is to give a brief idea about applications of Mahgoub Transform in various areas and how it 

is used to solve various type of problems in science and engineering. In this paper, we have found the Mahgoub 

Transformation of some power series and it comes out to be very foremost and effective tool to find the Mahgoub 

Transformation of some power series. 
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