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Abstract - In this study, we discussed the effect of factors in full factorial and fractional factorial designs, also we considered 

reduced factorial design which consists of significant factors alone. Sometimes, the experimenter wants to know/get additional 

information than the fractional factorial design if there is no restriction in the experimental run. The Bayes factors are used 

and found to identify and quantify the original weightage of the main/interaction effects in these three designs through the 

simulation datasets. 
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I. INTRODUCTION  

In a 2p factorial design, as the number of factors increases then the number of trials required for a full replicate of the 

design rapidly increases in the experiments. In such cases, we cannot perform a full replicate of the design and in that situation, 

a fractional factorial design has to be run. Suppose certain interactions involving a large number of factors are negligible, 

information on the lower order effects can be obtained by running a suitable fraction of the 2p full factorial design. Two-level 

fractional factorial designs are broadly divided into regular and non-regular fractional factorial designs are discussed (Tang and 

Deng, 1999). Statisticians have designated fractional factorial experiments to reduce the number of runs or trials, only selected 

treatment combinations are tried instead of all combinations. A fractional factorial design employs a systematic approach to 

reduce the number of experimental conditions to allow meaningful study. To run-size economy and be cost-effective, we use 

fractional factorial designs, which are widely applied in various fields such as engineering, industrial and scientific researches. 

The higher-order interactions are confounded, or aliased, with lower-order effects such that negligible in size in the fractional 

factorial designs. The experimenters have found that higher-order interactions of three or more factors tend to be small and can 

be ignored often. Thus we decide to omit three-factor interaction from the analysis 

 

a) 23 Full factorial design  

We consider three factors A, B, and C each at two levels, so that there are eight treatment combinations. The standard order of 

treatment combinations is 1, A, B, AB, C, AC, BC, and ABC. In this design, we have three main effects, three first-order 

interaction effects, and one second-order effect. These seven effects are mutually orthogonal contrasts of the treatment means. 

Thus, the 23 full factorial design with n replications model is 

 

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + (𝛼𝛽)𝑖𝑗 + (𝛽𝛾)𝑗𝑘 + (𝛼𝛾)𝑖𝑘 + (𝛼𝛽𝛾)𝑖𝑗𝑘 + 𝜌𝑙 + 𝜖𝑖𝑗𝑘𝑙      (1) 
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To estimate the average of the main effect of factor A, B and C are in a 23 factorial design replicated n times, we use the 

following formula:  

𝐴 =
1

4𝑛
[𝑎𝑏𝑐 + 𝑎𝑏 + 𝑎𝑐 + 𝑎 − 𝑏𝑐 − 𝑏 − 𝑐 − 1] 

𝐵 =
1

4𝑛
[𝑎𝑏𝑐 + 𝑎𝑏 + 𝑏𝑐 + 𝑏 − 𝑎𝑐 − 𝑎 − 𝑐 − 1] 

𝐶 =
1

4𝑛
[𝑎𝑏𝑐 + 𝑎𝑏 + 𝑏𝑐 + 𝑐 − 𝑎𝑏 − 𝑎 − 𝑏 − 1] 

 

The interaction effect of AB, AC and BC are 

𝐴𝐵 =
1

4𝑛
[𝑎𝑏𝑐 + 𝑎𝑏 + 𝑐 + 1 − 𝑏𝑐 − 𝑎𝑐 − 𝑎 − 𝑏] 

𝐴𝐶 =
1

4𝑛
[𝑎𝑏𝑐 + 𝑎𝑐 + 𝑏 + 1 − 𝑎𝑏 − 𝑏𝑐 − 𝑐 − 𝑎] 

𝐵𝐶 =
1

4𝑛
[𝑎𝑏𝑐 + 𝑏𝑐 + 𝑎 + 1 − 𝑎𝑏 − 𝑎𝑐 − 𝑏 − 𝑐] 

 

and the average difference between the interaction AB with the two different levels of C is the effect of interaction ABC 

𝐴𝐵𝐶 =
1

4𝑛
[𝑎𝑏𝑐 + 𝑎 + 𝑏 + 𝑐 − 𝑎𝑏 − 𝑏𝑐 − 𝑎𝑐 − 1] 

 

Finally, based on the ANOVA table for 23 full factorial designs, we can identify the significance of the main and interaction 

effects. 

 

𝒃) 𝟐𝟑−𝟏Fractional factorial design 

Suppose, the factor A and BC, B and AC, and C and AB have identical signs to each other. The calculation of effect also 

would be the same as the effect is calculated as the difference between average response at a high level and low level of the 

factor. Thus, we will be unable to distinguish between the effect of A and BC being confounded, A and BC are called aliases. 

Based on the extent of confounding, experiments are denoted by their resolution codes. The resolution of a design indicates its 

power and ability to separately estimate the effects of the factors and interactions. In general, the resolution of a design is one 

more than the smallest order interaction that some main effects is confounded with. If some main effects are confounded with 

two-factor interactions, the resolution would be 3. The resolution 2 designs do not exist as it will imply confounding of main 

effects. It is customary to write these codes in Roman letters. Resolutions III, IV and V designs are popular (Montgomery 

2017). Therefore, the 23-1 fractional factorial design is designated as  2𝐼𝐼𝐼
3−1 and the model becomes 

 

𝑦𝑖𝑗𝑘𝑙 = 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + (𝛼𝛽𝛾)𝑖𝑗𝑘 + 𝜌𝑙 + 𝜀𝑖𝑗𝑘𝑙      (2) 

 

The average effects of these factors in this half-fraction factorial design are determined by 

𝐴 =
1

2
[𝑎𝑏𝑐 − 𝑏 − 𝑐 + 𝑎] ,  B =

1

2
[abc-b-c + b]  and C =

1

2
[abc-a-b + c]    

 In terms of confounding, 2III
3-1  fractional replicate designs can be estimated main effects, but they are confounded with 

two-factor interactions then based on the ANOVA table for 2𝐼𝐼𝐼
3−1    factorial design can identify the significance of the main 

and interaction effects. The minimizing aberration in a design of resolution III ensures that the design has the minimum number 

of main effects aliased with the first-order interaction effects. Firstly, we compare the ANOVA output of full, reduced and 

fractional factorial designs in a classical approach. Further, we performed the same comparisons in a Bayesian approach to 

identify the main and interaction effects in the full, reduced and fractional factorial designs. To avoid the undisputed 

conclusions, we used Jeffreys-Zellner-Siow prior to find the Bayes factor values.  Finally, we used simulation datasets to find 

the Bayes factors to generalize an instructive conclusion. 
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c) 23 Reduced factorial design 

Suppose, the number of significant factors in the full factorial design is more than the factors in the half-fraction factorial 

design, our choice may be a reduced factorial design.  Our idea is to build a reduced factorial design with all significant factors 

alone. We cannot predetermine before we do the full factorial design. Suppose, the experimenter decides never to lose any kind 

of information from all the factors in the experiment in the future study this reduced factorial design will be useful and 

informative. This screening design is preferable if there is no constraint or deliberately wants to the experimenter, for taking 

into account of adding all the main and interaction factors except the non-significant factor(s). After identifying the significant 

factors in the full factorial design, then demonstrate this reduced factorial design, as usual, did in the full and fractional 

factorial design. Also, we used this as a tool to the decision of whether choosing the fractional factorial design is effective or 

not. If the reduced factorial design gave better results than fractional factorial design then the experimenter may think of this 

reduced factorial design. 

 II. PRIOR AND BAYES FACTOR  

In this study, we used Jeffreys-Zellner-Siow prior to find the Bayes factors for full, reduced and fractional factorial 

designs. This prior is considered in the comparison of hierarchical two-way ANOVA models (Vijayaragunathan and Srinivasan 

2021). 

A. Jeffreys-Zellner-Siow Prior 

Jeffreys-Zellner-Siow (JZS) prior is a mixture of priors we estimate g  from the data, (Liang et al. 2008). The Bayes Factor 

for the full model to the null model is  

𝐵𝐹 =
(𝑛/2)1/2

Γ(1/2)
 ∫ (1 + 𝑔)(𝑛−𝑘−1)/2 [1 + 𝑔(1 − 𝑅2)]−(𝑛−1)/2 𝑔−3/2∞

0
𝑒−𝑛/2𝑔𝑑𝑔  (3) 

III. APPLICATION OF 23 FACTORIAL DESIGN 

For example, the result of a 23 factorial design runs replicates four times. The purpose of the experiment is to determine 

the effect of different kinds of fertilizers Nitrogen (N), Potash (K) and Phosphate (P) each at two levels on potato crop yield. 

The ANOVA table for full factorial design is shown in Table 1, all main effects (N, P, K) and one first-order interaction effect 

(PK) are significant, other interaction effects are not significant. Now, our attention is on the factorial design which includes 

significant effects only. Thus, we go for a reduced factorial design with significant effects alone. By comparing the full and 

reduced factorial design we can identify the effect of non-significant factors in the full factorial design. In the 23 reduced 

factorial design, all effects are significant and the interaction effects PK is not in the ANOVA Table 3. If the design matrix 𝕏, 

then (X'X) and its inverse are no longer diagonal matrix, which means that the effect estimate is no longer orthogonal. 

 

Table 1. ANOVA output for 23 factorial design 

Source of 

Variation 
Df Sum Sq. Mean Sq. F value P- value  

Block 3 742 247 0.727 0.547  

N 1 3828 3828 11.252 0.003 ** 

P 1 275653 275653 810.220 <2e-16 *** 

K 1 158766 158766 466.657 7.99e-16 *** 

NP 1 990 990 2.910 0.103  

NK 1 465 465 1.367 0.255  

PK 1 14706 14706 43.225 1.64e-6 *** 

NPK 1 66 66 0.194 0.664  

Residuals 21 7145 340    

Signif. Codes: 0 ‘***’       0.001 ‘**’       0.01 ‘*’      0.05        ‘.’   0.1   ‘’ 1 
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Table 2. ANOVA output for  2III
3-1  fractional factorial design  

Source of 

Variation 
Df Sum Sq. Mean Sq. F value P- value  

Block 3 778 259 1.58 0.26107  

N 1 1764 1764 10.75 0.00956 ** 

P 1 149382 149382 910.10 2.36e-10 *** 

K 1 92416 92416 563.03 2.00e-09 *** 

Residuals 9 1477 164    

Signif. Codes: 0 ‘***’       0.001 ‘**’       0.01 ‘*’      0.05        ‘.’   0.1   ‘’ 1 

Now, we opt usual fractional factorial design for the full factorial design. The half-fraction factorial design with resolution 

III design consists of the factors N, P, K, and second-order interactions NPK. The 2III
3-1

  fractional factorial design ANOVA 

output in, Table 2, shows significant values for the factors as in the other two designs. By comparing the full, reduced, and 

fractional factorial design the level of significance are vary for the effects. Particularly, the main effect N is highly significant 

in reduced factorial design than full and fractional factorial design.  

 

Table 3. ANOVA output for 23 reduced factorial design 

Source of 

Variation 
Df Sum Sq. Mean Sq. F value P- value  

Block 3 1481 497 3.481 0.0636  

N 1 160893 160893 1134.766 8.83e-11 *** 

P 1 20592 20592 145.235 7.42e-07 *** 

K 1 17391 17391 122.659 1.52e-06 *** 

Residuals 9 1276 142    

Signif. Codes: 0 ‘***’       0.001 ‘**’       0.01 ‘*’      0.05        ‘.’   0.1   ‘’ 1 

 

Table 4. Bayes factor for full, reduced, and fractional factorial designs for actual data 

Prior 
Factorial Design 

23 Full 23-1 Fractional 23 Reduced 

Jeffreys-Zellner-Siow 

(JZS) 
18.1599 11.1800 8.8973 

Now, the same comparisons would be made in a Bayesian framework also to check the factor effects for full, reduced, and 

fractional factorial designs. First, computed Bayes factor value for 23 full factorial, 23 reduced factorial, and 23-1 fractional 

factorial models to the null model. The 23 reduced factorial and 23-1 fractional factorial design is a nested model to the 23 full 

factorial design, so we may compare Bayes factor values to the two models. The Bayes Factor values for the actual data of 23 

full, reduced and 23-1 fractional factorial designs are in Table 4. The JZS prior provide almost the same results that data 

supports 18 times of full factorial design. But, in the fractionaland reduced factorial designs, the Bayes factor values are 11.18 

and 8.8973 respectively. In the next section, we will discuss these designs for simulation datasets to check the behavior of the 

JZS prior for three types of designs.   

 

A. Simulation for 23 full, Fractional and Reduced Factorial Designs  

We have to simulate the datasets to the respective designs to obtain reliable conclusions. In this study, simulated 10,000 

data with the error variance is 1 to compute 10,000 Bayes factor values for each of the Jeffreys-Zellner-Siow prior. In the same 

way, we computed Bayes factors for various datasets with the error variances 5, 25, and 50 respectively. The mean sum of 

squares due to error in the ANOVA result is huge, thus we took the large value of error variance to simulate datasets. This 

prior’s Bayes factors for these simulated data to the full, reduced, and fractional factorial designs. The mean and standard 

deviation of Bayes factor values for full, reduced, and fractional factorial designs were presented in Table 5.  
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This depicts that the data supporting the full model is almost two times more than the fractional factorial model. Thus, we 

got more information in the full model than the reduced and half-fraction model. If the error variance is more, the Jeffreys-

Zellner-Siow provided that the data support more or less double the times to the full model than the fractional model. But this 

prior is supporting data on full and fractional designs is slightly less (around one and half times) in original data and less error 

variance simulation data. The 23 reduced factorial design provides results close to the fractional factorial design. Furthermore, 

the reduced factorial design may produce the best result than fractional factorial design if more factors in reduced fractional 

design than fractional factorial design.  

 

Table 5. Average (SD) of 10000 Bayes factor values to the simulation of a). 23 full factorial, b). 23reduced factorial and c). 23-1 fractional factorial 

designs for JZS prior when the error variance 𝝈𝒆
𝟐 =1, 5, 25, and 50 

Error Variance  (  
23 Full 

factorial Design 

23-1Fractional 

factorial Design 

23 reduced 

Factorial Design 

1 
18.4674 

(1.7211) 

10.0869 

(1.1334) 

9.1568 

(1.1461) 

                5 
18.0553 

(1.7117) 

9.8160 

(1.1165) 

8.9099 

(1.1259) 

25 
13.0440 

(1.5516) 

6.6238 

(1.0389) 

6.0521 

(1.0415) 

50 
7.8885 

(1.5542) 

3.9790 

(1.0368) 

3.5020 

(1.0397) 

 

IV. CONCLUSION  

For any factorial design we commence with full factorial design alone, but the number of factors is large then the size of 

the design is becoming very large. Alternative to the full factorial design is a fractional factorial design which can help reduce 

the number of runs for screening designs. Several fractional factorial designs exist, but the design resolution is very important. 

We considered an illustration for 23 factorial designs, to apply the Bayesian concept in the factorial designs to find the effects 

of the factors in the full, reduced, and fractional factorial designs. In the classical approach, we find the significance of factor 

from the ANOVA output and based on the results and aliased factors we formed a fractional factorial design. Furthermore, in 

this study, we introduced a new model known as reduced factorial design consisting of all significant factors.   The Bayes 

Factor for Jeffreys-Zellner-Siow is computed for the 23 full, reduced and fractional factorial designs. It provided different 

results within the respective models. To generalize the Bayesian approach, we generated a large set of data by simulation with 

different error variances, it gives a wide range of ideas to compare the full, reduced and fractional factorial design with the 

existence of the factors.  All the Bayes factor values are in the full model are almost two times as compared with the fractional 

factorial model. Thus, we lose half of the information in a fractional factorial design.  In the simulation dataset with less error 

variance, the data support full, reduced, and fractional design, but if the error variance is high the simulation data support the 

null model. We conclude with, in this illustration, the mean square error value is huge then reduced and fractional factorial 

designs provides not much difference in results because both models has similar factors. Hence, the reduced factorial design 

has more significant factors it would express better results than fractional factorial design. 
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