An Extension of a Theorem of Herstein

Rekha Rani
Department of Mathematics, S.V.College, Aligarh-202001(U.P.) India.
Received Date: 05 February 2022
Revised Date: 02 April 2022
Accepted Date: 07 April 2022

Abstract - Let R bearing with unity and satisfying certain conditions $\left[x^{m}, y^{m}\right]=0$ and $(x y)^{n}=(y x)^{n}$, for all $x, y \in R$.
In this paper, we extend a well known result.
Keywords - Rings, Nil rings, Commutator, Hyper centre, Jacobson radical.

I. INTRODUCTION

Let R bean associative ring with unity with centre $Z(R)$ and Jacobsonradical $J(R)$. For any pair of x, y ring elements, a ring R is said to be commutative if and only $\operatorname{if}[x, y]=0$, for all $x, y \varepsilon R$. In 1975, Herste in[10] introduced the concept of hyper centre. The hyper centre $T(R)$ of aring R is the totality of all those elements of R which commute with some power of each element in R, the power may be localized in the sense that it may depend on the elements. Thus $T(R)$ $=\left\{r \in R \mid r x^{n}=x^{n} r\right.$, wheren $=\mathrm{n}(\mathrm{r}, \mathrm{x})$ is a positive integer $\}$. We see that $\mathrm{Z}(\mathrm{R}) \subseteq \mathrm{T}(\mathrm{R})$. There exist enough non commutative nil rings to show that in general $T(R)$ need not coincide with $Z(R)$. In 1976, Herste in [11] proved that a ring R in which given $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{R}$, there exist integers $m=m(x, y) \geq 1, n=n(x, y) \geq 1$ such that $\left[x^{n}, y^{n}\right]=0$. If in addition, R has nononzero nil ideals, then R must be commutative.

Motivated by these observations, one may conjecture that instead of torsion condition or absence of nil commutator ideal, some other constraints on the elements of R should also turn the ring commutative. Working on these lines, we extend this result imposing an additional condition on the underlying ring.

II. MAIN RESULT

Theorem. Let R bearing with unity 1 in which the re exist positive integer s m and n satisfying $\left(\mathrm{C}_{1}\right):\left[x^{m}, y^{m}\right]=0$, for all $x, y \in R$.
$\left(\mathrm{C}_{2}\right):\left[(x y)^{n},(y x)^{n}\right]=0$, for all $x, y \in R$.
If in addition, integers m and n are relatively prime, then R must be commutative.
The following lemmas are required to prove our theorem:
Lemma 2.1[18], Lemma1]. If $[x,[x, y]]=0$, forall $x, y \in R$, then $\left[x^{n}, y\right]=n x^{n-1}[x, y]$ holds for every positive integer n .
Lemma 2.2. Let R be a ring with unity 1 and $f: R \rightarrow R$ is a function such that $f(1+x)=f(x)$.If there exists an integer $m=m(x) \geq 1$ such that $x^{m} f(x)=0$, thennecessarily $f(x)=0$.

Proof. For the elements x and $1+x$, there exist integers $m=m(x) \geq 1$ and $n=n(1+x) \geq 1$ such that

$$
\begin{gathered}
x^{m} f(x)=0 \\
(1+x)^{n} f(1+x)=0=(1+x)^{n} f(x)
\end{gathered}
$$

If $N=\max (m, n)$, then we have

$$
\begin{align*}
& x^{N} f(x)=0 \tag{2.1}\\
& (1+x)^{N} f(1+x)=0=(1+x)^{N} f(x) \tag{2.2}
\end{align*}
$$

If $N=1$, then the result follows trivially. Suppose $\mathrm{N} \geq 2$. We have
$f(x)=[(1+x)-x]^{2 N+1} f(x)=\left\{(1+x)^{2 N+1}+C_{1}^{2 N+1}(1+x)^{2 N}+\cdots+(-1)^{2 N+1} x^{2 N+1}\right\} f(x)$
$=0, b y(2.1)$ and (2.2).

Remark2.1. Notice that commutator function $[x, y]$ satisfies the hypothesis of the lemma i.e., $[1+x, y]=[x, y]$ and so the above lemma can be restated as follows:

Lemma2.3. In a ring with unity $1, x^{n}[x, y]=0$ implies that $[x, y]=0$, for any positive integer $m=m(x) \geq 1$.
Lemma 2.4. Let R be a ring with unity 1 satisfying the identities (C_{1}) and (C_{2}). Then $U(R)$, the set of all invertible elements and $J(R)$, the Jacobson radical of R are commutative.

Proof. Since m and n are relatively prime, we may assume $r n-s m=1$, for some positive integers r and s. If $k=s m$, then k $+1=r n s o$ that the identities $\left(C_{1}\right)$ and $\left(C_{2}\right)$ of the hypothesi simply that

$$
\begin{equation*}
(x y)^{k}=(y x)^{k}, \text { for all } x, y \in R \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{k+1} y^{k+1}=y^{k+1} x^{k+1}, \text { for all } x, y \in R \tag{2.4}
\end{equation*}
$$

Let $u, v \in U(R)$.Replacing x by u and y by $u^{-l} v$ in (2.3), we get

$$
\begin{equation*}
u v^{k}=v^{k} u, \text { for all } u, v \varepsilon \mathrm{R} \tag{2.5}
\end{equation*}
$$

Now replacement of x by u and y byv in(2.4)yield $s u^{k+1} v^{k+1}=v^{k+1} u x^{k+11}$ and inview of (2.5), this implies that $u v=v u$, for all $u, v \varepsilon U(R) . \mathrm{R}$ is commutative.

Further, let $a, b \varepsilon \mathrm{R}$. Then $1+a$ and $1+b$ are invertible and commute with Hence each other. Thus $a b=b a$ and $J(R)$ is commutative.

Lemma2.5. Let R be a ring with unity 1 satisfying the identities (C_{1}) and (C_{2}). Then $R / J(R)$ is commutative.
Proof. $R / J(R)$ is semi simple. We know that every semis imploring R is isomorphic to a sub direct sum of primitive rings R_{α}, each of which as ahomomorphic image of R inherits the hypothesis placed on R and so we assume that $R / J(R)$ is primitive satisfying the hypothesis of our theorem. Notice that no complete matrix ring satisfies the hypothesis as consideration of $x=e_{1 n}$ and $y=e_{n 1}$ shows. Thus by the Jacobson Density Theorem [18, pp.33], $R / J(R)$ is a division ring. Hence $R / J(R)$ is commutative by Lemma 2.4.

Now we are ready to prove our theorem
Proof of Theorem.ByLemma2.5,

$$
\begin{equation*}
C(R) \subseteq J(R) \tag{2.6}
\end{equation*}
$$

Replace x by u and y by $u^{-1} y$ in (2.3), to get $\left[u, y^{n}\right]=0$, for all $u \varepsilon \mathrm{U}(\mathrm{R})$ and $y \varepsilon$ R. Now, if $a \in J(R)$, then $1+a \in U(R)$. Replacing u by $1+a$, we obtain

$$
\begin{equation*}
\left[a, y^{n}\right]=0, \text { for all } y \in R \tag{2.7}
\end{equation*}
$$

In view of (2.6), $\left[a, y^{n+1}\right] \in J(R)$ and hence commute with $u=1+a$, for $a \in J(R)$ by Lemma 2.4. Hence $0=\left[u^{n+1}, y^{n+1}\right]=$ $(n+1) u^{n}\left[u, y^{n+1}\right] \operatorname{impliesthat}(n+1) u^{n}\left[u, y^{n+1}\right]=0$. Replacing $u b y 1+a$, we find that

$$
\begin{equation*}
(n+1)\left[a, y^{n+1}\right]=0, \text { for all } y \in R \tag{2.8}
\end{equation*}
$$

Using (2.7), we can assume that $n\left[a, y^{n}\right]=0$ and hence

$$
\begin{equation*}
n\left[a, y^{n}\right]=0=(n+1)\left[a, y^{n+1}\right], \text { for all } y \in R, a \in J(R) \tag{2.9}
\end{equation*}
$$

Since $\mathrm{J}^{2}(\mathrm{R}) \subseteq \mathrm{Z}(\mathrm{R})$, the only terms in the expansion of $(y+a)^{n+1}$ which do not commute with y^{n+1} are those involving a exactly once. Hence

$$
\begin{gathered}
0=\left[(y+a)^{n+1}, y^{n+1}\right] \\
0=\left[y^{n} a+y^{n-1} a y+\cdots+y a y^{n-1}+a y^{n}, y^{n+1}\right] \\
n\left(y^{n} a+y^{n-1} a y+\cdots+y a y^{n-1}+a y^{n}\right) y^{n+1}=n y^{n+1}\left(y^{n} a+y^{n-1} a y+\cdots+y a y^{n-1}+a y^{n}\right)
\end{gathered}
$$

$\operatorname{Using}(2.8)$, we have

$$
\begin{aligned}
& n y^{n+1}\left(y^{n} a+y^{n-1} a y+\cdots+y a y^{n-1}+a y^{n}\right)=n y^{n+1}\left(y^{n} a+y^{n-1} a y+\cdots+y a y^{n-1}+a y^{n}\right) . \\
& n y^{n+1}\left(y^{n} a+y^{n-1} a y+\cdots+y a y^{n-1}+a y^{n}\right)=n\left(y^{2 n} a y+\cdots+y^{n+1} a y\right)+n a y^{2 n+1} .
\end{aligned}
$$

This gives that $\left(a y^{2 n+1}-y^{2 n+1} a\right)=0$ and hence by the relation(2.9), $n y^{n}[a, y]=0$. ByLemma2.3, this reduce to

$$
\begin{equation*}
n[a, y]=0, \text { for all } y \in R, a \in J(R) . \tag{2.10}
\end{equation*}
$$

Replace y by y^{n}, to get $n\left[a, y^{n+1}\right]=0$, which in view of(2.9) yields

$$
\begin{equation*}
n\left[a, y^{n+1}\right]=0, \text { for all } y \in R, a \in J(R) \tag{2.11}
\end{equation*}
$$

By using (2.7)and (2.11), we have $[a, y] y^{n}=0$.Application of Lemma2.3 yields that $[a, y]=0$, for all $y \in R$ and $a \in$ $J(R)$ i.e. , $\mathrm{J}(\mathrm{R}) \subseteq \mathrm{Z}(\mathrm{R})$. Consequently, (2.6)gives

$$
\begin{equation*}
\mathrm{C}(\mathrm{R}) \subseteq \mathrm{J}(\mathrm{R}) \subseteq \mathrm{Z}(\mathrm{R}) \tag{2.12}
\end{equation*}
$$

The identity $\left(C_{1}\right)$ of the hypothesis implies that $x(x y)^{n}=x(y x)^{n}=(x y)^{n} x$ i.e., $\left[x,(x y)^{n}\right]=0$. By Lemma 2.5 and (2.12), we have $(x y)^{n}-x^{n} y^{n} \in J(R) \subseteq \mathrm{Z}(\mathrm{R})$ and hence $\left[x,(x y)^{n}\right]-x^{n}\left[x, y^{n}\right]=0$.Thus by Lemma $2.3,\left[x, y^{n}\right]=0$, for all $x, y \in R$.ApplicationofLemma2.1yieldsthat $0=\left[x, y^{n}\right]=n y^{n-1}[x, y]$. Lemma2.3implies that

$$
\begin{equation*}
n[x, y]=0, \text { for all } x, y \in R . \tag{2.13}
\end{equation*}
$$

In view of (2.4), $\left[x^{n+1}, y^{n+1}\right]=0$, which together with (2.13) and Lemma 2.1 imply that $(n+1) x^{n}\left[x, y^{n+1}\right]=0$ for all $x, y \in R$.ByLemma2.3, $(n+1)\left[x, y^{n+1}\right]=0$,for all $x, y \in R$. Arguing in the same fashion again, we have

$$
(n+1)^{2}[x, y]=0, \text { for all } x, y \in R
$$

i.e.,

$$
n^{2}[x, y]+2 n[x, y]+[x, y]=0, \text { for all } x, y \in R .
$$

Hence $[x, y]=0$,for all $x, y \in R$ by (2.13). This completes the proof of the theorem.
Remark2.2. The following exampled emonstrates that if m and n are not relatively prime in the hypothesis of the above theorem, thering maybe badly noncommutative.

Example 2.1. Consider the ring

$$
R=\left\{a I_{3}+D_{0}=\left(\begin{array}{lll}
0 & b c \\
0 & 0 & d \\
0 & 0 & 0
\end{array}\right), I_{3} \text { is } 3 \times 3 \text {, identity matrix and } a, b, c, d \in G F(2)\right\}
$$

Here R contains unity and satisfies the conditions $\left[x^{2}, y^{2}\right]=0 \operatorname{and}(x y)^{2}=(y x)^{2}$, for all $x, y \in \mathrm{R}$ but $(x y)^{3} \neq(y x)^{3}$. However, R is a noncommutative ring.

Remark2.3. The following example justifies that the conditions imposed on the hypothesis of the theorem is not superfluous.
Example 2.2. Let $\mathrm{R}=\left\{\left(\begin{array}{ccc}0 & b & c \\ 0 & 0 & d \\ 0 & 0 & 0\end{array}\right) ; a, b, c, d \in G F(3)\right\}$ be a ring. It can be easily verified that R is an on commutative ring satisfying the condition $\left[x^{3}, y^{3}\right]=0$,for all $x, y \in R$. However, R does not satisfies the condition $(x y)^{2}=(y x)^{2}$,for all $x, y \in$ R.

CONCLUSION

In this paper, we extend the result of Herstein imposing an additional condition on the underlying ring and its proof is based on Jacobson structure theory of rings.

REFERENCES

[1] Abu-Khuzam, H., H. Bell, A. Yaqub, Commutativity of Rings Satisfying Certain Polynomial Identities, Bull. Austral. Math. Soc., 44 (1991) 63-69
[2] Abu-Khuzam, H., H. Tominaga, A. Yaqub, Commutativity Theorem for S-Unital Rings Satisfying Polynomial Identities, Math. J. Okayama Univ., 22 (1980) 111-114.
[3] Abu-Khuzam, H., A. Yaqub, Commutativity of Rings With No Nonzero Nil Ideals, Math. Japonica, 30(2) (1985) 165-168.
[4] Bell, H.E., On The Power Map And Ring Commutativity, Canad. Math. Bull., 21(4) (1978) 399-404.
[5] Bell, H.E., On Two Commutativity Properties for Rings, Math. Japonica, 26(5) (1981) 523-528.
[6] Bell, H.E.,On Commutativity of Rings With Constrains on Commutators, Results Math., 8 (1985) 123-131.
[7] Bell, H.E., A Setwise Commutativity Property for Rings, Comm. Algebra., 25(3) (1997) 989-998.
[8] Faith,C.,Posneralgebraicdivisionextensions,Proc.Amer.Math.Soc.,110(1960) 43-53.
[9] Herstein,I.N.,Two remarks on commutativityofrings,Canad.J.Math.7(1955) 411-412.
[10] Herstein,I.N.,Two on the Hypercentreof a Ring,J. Algebra.36(1975), 151-155.
[11] Herstein,I.N.,A Commutativity Theorem,J. Algebra.38(1976) 112-115.
[12] Herstein., I. N. A Theorem on Rings, Can. J. Math., 5 (1953) 238-241.
[13] Herstein., I. N., A Generalization of a Theorem of Jacobson III, Amer. J. Math., 75 (1953)105-111.
[14] Herstein., I. N., The Structure of a Certain Class of Rings, Amer. J. Math., 75 (1953) 864-871.
[15] Herstein, I. N., A Condition for Commutativity of Rings, Canad. J. Math., 9 (1957) 583-586.
[16] Herstein, I. N., Non-Commutative Rings, Cyrus Monograph No. 15, Math. Association of America, Washington, D.C., (1968).
[17] Herstein, I. N., On the Hypercenter of A Ring, J. Algebra, 36(1975)151-155.
[18] Jacobson, N., Structure of Rings Amer. Math. Soc. Coll. Pub. (1956).
[19] Kezlan, T. P., On Identities Which Are Equivalent With Commutativity, Math. Japonica, 29 (1) (1984) 135-139
[20] Kezlan, T. P., On Identities Which Are Equivalent With Commutativity II, Math. Japonica, 34 (2) (1989) 197-204
[21] Klein, A., I. Nada, H.E. Bell, Some Commutativity Results for Rings, Bull. Austral. Math. Soc., 22 (1980) 285-289.
[22] Luh, J., A Commutativity Theorem for Primary Rings, Acta Math. Acad. Sci. Hungar., 22 (1977) 75-77.
[23] Lihtman, A. I., Rings that are Radical over Commutative Subrings, Mat. Shornik. 83 (1970) 513-523.
[24] Outcalt, ., A. Yaqub, A Commutativity Theorem for Rings With Constraints Involving An Additive Subsemigroup, Math. Japonica, 24 (2) (1979) 195-202
[25] Psomopoulos, E., A Commutativity Theorem for Rings, Math. Japonica, 29 (3) (1984) 371-373.

