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Abstract - Let R bearing with unity and satisfying certain conditions[𝑥𝑚 , 𝑦𝑚] = 0 and (𝑥𝑦)𝑛 = (𝑦𝑥)𝑛, for all 𝑥, 𝑦 ∈  𝑅. 

In this paper, we extend a well known result. 
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I. INTRODUCTION 

Let R bean associative ring with unity with centre Z(R) and Jacobsonradical J(R).    For any pair of x, y ring elements, a 

ring R is said to be commutative if and only if[x, y]=0, for all x, y ε R. In 1975, Herste in[10] introduced the concept of 

hyper centre. The hyper centreT(R) of aring R is the totality of all those elements of R which commute with some power 

of each element in R, the power may  be  localized  in  the  sense that  it  may  depend  on  the  elements. Thus T(R) 

={𝑟 ∈ 𝑅|𝑟𝑥𝑛 = 𝑥𝑛𝑟, wheren =  n(r, x) is  a  positive  integer}. We see that Z(R)⊆T(R). There exist enough non 

commutative nil rings to show that in general T(R) need not coincide with Z(R). In 1976, Herste in [11] proved that a ring 

R in which given x, y ε R, there exist integers m=m(x, y) ≥ 1,n=n(x, y) ≥ 1 such that [𝑥𝑛,𝑦𝑛]=0. If in addition, R has 

nononzero nil ideals, then R must be commutative. 

 

Motivated by these observations, one may conjecture that instead of torsion condition or absence of nil commutator 

ideal, some other constraints on the elements of R should also turn the ring commutative. Working on these lines, we 

extend this result imposing an additional condition on the underlying ring. 

 

II. MAIN RESULT 
Theorem. Let R bearing with unity 1 in which the re exist positive integer s m and n satisfying 

(C1) :[𝑥𝑚,𝑦𝑚]=0,for all x, y∈R. 

(C2) : [(𝑥𝑦)𝑛, (𝑦𝑥)𝑛]=0,for all x, y∈R. 

If in addition, integers m and n are relatively prime, then R must be commutative. 

 

The following lemmas are required to prove our theorem: 

 

Lemma 2.1[18], Lemma1]. If[x, [x,y]]=0, forallx, y∈R, then [xn,y]=nx n - 1 [x,y] holds for every posit ive integer n.  

 

Lemma 2.2.   Let R be a ring with unity 1 and f:R→Ris a function such that f(1 + x) = f (x).If there exists an integer 

m=m(x) ≥1 such that xmf(x)=0,thennecessarilyf(x)=0. 

Proof. For the elements x and 1+x, there exist integers m = m(x) ≥ 1 and n = n(1+x) ≥1 such that 

𝑥𝑚𝑓(𝑥) = 0 

(1 + 𝑥)𝑛𝑓(1 + 𝑥) = 0 = (1 + 𝑥)𝑛𝑓(𝑥) 

If N = max (m,n), then we have 

 

    𝑥𝑁𝑓(𝑥) = 0            (2.1) 

 

(1 + 𝑥)𝑁𝑓(1 + 𝑥) = 0 = (1 + 𝑥)𝑁𝑓(𝑥)                                  (2.2)  

 

If N=1,then the result follows trivially. Suppose N ≥2. We have 

𝑓(𝑥) = [(1 + 𝑥) − 𝑥]2𝑁+1𝑓(𝑥) = {(1 + 𝑥)2𝑁+1 + C1
2N+1(1 + 𝑥)2𝑁 + ⋯ + (−1)2𝑁+1 𝑥2𝑁+1 }𝑓(𝑥) 

= 0, by(2.1) and (2.2). 
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Remark2.1. Notice that commutator function [x, y] satisfies the hypothesis of the lemma i.e.,[1+x, y]=[x, y] and so the 

above lemma can be restated as follows: 

 

Lemma2.3. In a ring with unity 1,𝑥𝑛 [𝑥, 𝑦] = 0  implies that [x, y] = 0, for any positive integer m=m(x) ≥1. 

Lemma 2.4. Let R be a ring with unity 1 satisfying the identities (C1) and (C2). Then U(R), the set of all invertible 

elements and J(R), the Jacobson radical of R are commutative. 

 

Proof. Since m and n are relatively prime, we may assume rn -sm= 1, for some positive integers r and s. If k = sm, then k 

+ 1 = rnso that the identities (C1) and(C2) of the hypothesi simply that  

 

(𝑥𝑦)𝑘 =  (𝑦𝑥)𝑘, for all x, y∈R.    (2.3) 

and 

                                      𝑥𝑘+1𝑦𝑘+1 = 𝑦𝑘+1𝑥𝑘+1,for allx, y∈R.           (2.4) 

 

Let 𝑢, 𝑣 ∈ 𝑈(𝑅).Replacing x by u and y by u -1v in (2.3), we get 

  

     𝑢𝑣𝑘 = 𝑣𝑘𝑢, for all u,v ε R.          (2.5) 

 Now replacement of x by u and ybyv in(2.4)yield s𝑢𝑘+1𝑣𝑘+1 = 𝑣𝑘+1 𝑢𝑥𝑘+11and inview of (2.5), this implies that 

𝑢𝑣 =  𝑣𝑢, for all 𝑢, 𝑣  𝜀 𝑈(𝑅). R is commutative. 

Further, let a, bε R. Then1+ aand1 +b are invertible and commute with Hence each other. Thus ab=ba and J(R) is 

commutative. 

 

Lemma2.5. Let R be a ring with unity 1 satisfying the identities (C1) and (C2). Then R/J(R)is commutative. 

Proof. R/J(R)is semi simple. We know that every semis imploring R is isomorphic to a sub direct sum of primitive rings Rα, 

each of which as ahomomorphic image of R inherits the hypothesis placed on R and so we assume that R/J(R) is 

primitive satisfying the hypothesis of our theorem. Notice that no complete matrix ring satisfies the hypothesis as 

consideration ofx =e1nand y = en1 shows. Thus by the Jacobson Density Theorem [18, pp. 33], R / J(R) is a division ring. 

Hence R/J(R) is commutative by Lemma 2.4. 

 

          Now we are ready to prove our theorem 

 

Proof of Theorem.ByLemma2.5, 

         C(R )⊆ J(R ).                       (2.6) 

 

Replace x by u and y by u-1y in (2.3), to get [u, yn] = 0, for all uε U(R) and y ε R. Now, if a∈ 𝐽(𝑅), then 1 + 𝑎 ∈ 𝑈(𝑅). 
Replacing u by 1 + a, we obtain  

        [𝑎, 𝑦𝑛] = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑅.                         (2.7) 

In view of (2.6), [𝑎, 𝑦𝑛+1] ∈ 𝐽(𝑅)and hence commute with u=1+a, for𝑎 ∈ 𝐽(𝑅)by Lemma 2.4. Hence0 = [𝑢𝑛+1, 𝑦𝑛+1] =
(𝑛 + 1)𝑢𝑛[𝑢, 𝑦𝑛+1]impliesthat(𝑛 + 1)𝑢𝑛[𝑢, 𝑦𝑛+1] = 0. Replacinguby1+a,we find that 

        (𝑛 + 1)[𝑎, 𝑦𝑛+1] = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑅.     (2.8) 

Using (2.7), we can assume that n[a, yn]=0 and hence 

     𝑛[𝑎, 𝑦𝑛] = 0 = (𝑛 + 1)[𝑎, 𝑦𝑛+1], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑅, 𝑎 ∈ 𝐽(𝑅)   (2.9) 

Since J2(R) ⊆ Z(R ), the only terms in the expansion of (𝑦 + 𝑎)𝑛+1 which do not commute with 𝑦𝑛+1are those involving a 

exactly once. Hence 
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    0 = [(𝑦 + 𝑎)𝑛+1, 𝑦𝑛+1] 

0 = [𝑦𝑛𝑎 + 𝑦𝑛−1𝑎𝑦 + ⋯ + 𝑦𝑎𝑦𝑛−1 + 𝑎𝑦𝑛 , 𝑦𝑛+1] 

   𝑛(𝑦𝑛𝑎 + 𝑦𝑛−1𝑎𝑦 + ⋯ + 𝑦𝑎𝑦𝑛−1 + 𝑎𝑦𝑛)𝑦𝑛+1 = 𝑛𝑦𝑛+1(𝑦𝑛𝑎 + 𝑦𝑛−1𝑎𝑦 + ⋯ + 𝑦𝑎𝑦𝑛−1 + 𝑎𝑦𝑛). 

Using(2.8), we have  

   𝑛𝑦𝑛+1(𝑦𝑛𝑎 + 𝑦𝑛−1𝑎𝑦 + ⋯ + 𝑦𝑎𝑦𝑛−1 + 𝑎𝑦𝑛) = 𝑛𝑦𝑛+1(𝑦𝑛𝑎 + 𝑦𝑛−1𝑎𝑦 + ⋯ + 𝑦𝑎𝑦𝑛−1 + 𝑎𝑦𝑛). 

   𝑛𝑦𝑛+1(𝑦𝑛𝑎 + 𝑦𝑛−1𝑎𝑦 + ⋯ + 𝑦𝑎𝑦𝑛−1 + 𝑎𝑦𝑛) = 𝑛(𝑦2𝑛𝑎𝑦 + ⋯ + 𝑦𝑛+1𝑎𝑦) + 𝑛𝑎𝑦2𝑛+1. 

This gives that(𝑎𝑦2𝑛+1 − 𝑦2𝑛+1𝑎) = 0 and hence by the relation(2.9),𝑛𝑦𝑛[𝑎, 𝑦] = 0.ByLemma2.3, this reduce to 

 𝑛[𝑎, 𝑦] = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑅, 𝑎 ∈ 𝐽(𝑅).     (2.10) 

Replace y by yn, to get n [a ,yn+1]=0,which in view of(2.9) yields 

 𝑛[𝑎, 𝑦𝑛+1] = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑅, 𝑎 ∈ 𝐽(𝑅).     (2.11) 

By using (2.7)and (2.11), we have [𝑎, 𝑦] 𝑦𝑛  =  0.Application of Lemma2.3 yields that[𝑎, 𝑦 ]  =  0,for all 𝑦 ∈ 𝑅 and𝑎 ∈
𝐽(𝑅)i.e. , J(R)⊆ Z(R ). Consequently,(2.6)gives 

     C(R)  ⊆J(R ) ⊆ Z(R ).        (2.12) 

The identity(C1) of the hypothesis implies that 𝑥(𝑥𝑦)𝑛 = 𝑥(𝑦𝑥)𝑛 = (𝑥𝑦)𝑛𝑥i.e.,[𝑥, (𝑥𝑦)𝑛] = 0. By Lemma 2.5 and 

(2.12), we have (𝑥𝑦)𝑛 − 𝑥𝑛𝑦𝑛 ∈ 𝐽(𝑅) ⊆ Z(R)and hence[𝑥, (𝑥𝑦)𝑛] − 𝑥𝑛[𝑥, 𝑦𝑛] = 0.Thus by Lemma 2.3,[𝑥, 𝑦𝑛] = 0, for 

all 𝑥, 𝑦 ∈ 𝑅.ApplicationofLemma2.1yieldsthat0= [𝑥, 𝑦𝑛] = 𝑛𝑦𝑛−1[𝑥, 𝑦]. Lemma2.3implies that 

          𝑛[𝑥, 𝑦] = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑅.     (2.13)  

In view of (2.4),[𝑥𝑛+1, 𝑦𝑛+1] = 0, which together with (2.13) and Lemma 2.1 imply that(𝑛 + 1)𝑥𝑛[𝑥, 𝑦𝑛+1] = 0,for all 

𝑥, 𝑦 ∈ 𝑅.ByLemma2.3,(𝑛 + 1)[𝑥, 𝑦𝑛+1] = 0, for all 𝑥, 𝑦 ∈ 𝑅. Arguing in the same fashion again, we have 

(𝑛 + 1)2[𝑥, 𝑦] = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑅. 

i.e., 

𝑛2[𝑥, 𝑦] + 2𝑛[𝑥, 𝑦] + [𝑥, 𝑦] = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑅. 

  Hence [𝑥, 𝑦]  = 0,for all𝑥, 𝑦 ∈ 𝑅by (2.13). This completes the proof of the theorem. 

Remark2.2. The following exampled emonstrates that if m and n are not relatively prime in the hypothesis of the 

above theorem, thering maybe badly noncommutative. 

 

Example 2.1. Consider the ring 

𝑅 = {
𝑎𝐼3 + 𝐷0 = (

0 𝑏𝑐
0 0 𝑑
0 0 0

) , 𝐼3𝑖𝑠  3 ×  3 
, identity matrix and𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐺𝐹(2)} 

Here R contains unity and satisfies the conditions[x2, y2]=0and(xy)2=(yx)2,for all x , y  ε R but (xy)3≠ (yx)3. However, R is a 

noncommutative ring. 

Remark2.3. The following example justifies that the conditions imposed on the hypothesis of the theorem is not 

superfluous. 

Example 2.2. Let R = {(
0 𝑏 𝑐
0 0 𝑑
0 0 0

) ;  𝑎, 𝑏, 𝑐, 𝑑 ∈  𝐺𝐹(3)}be a ring. It can be easily verified that R is an on commutative ring 

satisfying the condition[𝑥3, 𝑦3]  =  0,for all 𝑥, 𝑦 ∈ 𝑅. However, R does not satisfies the condition(𝑥𝑦)2 = (𝑦𝑥)2,for all 𝑥, 𝑦 ∈
𝑅. 
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CONCLUSION 

In this paper, we extend the result of Herstein imposing an additional condition on the underlying ring and its proof is 

based on Jacobson structure theory of rings. 
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