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Abstract - In this paper we introduce some notations in Clifford algebras and boundary value problems for Cauchy-

Riemann systems in ℝ𝑑with 𝑑 = 3,4,5,6. 
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I. INTRODUCTION 

Let ℝ𝑛+1 be the Euclidean space which has an orthonomal basis {𝑒0, 𝑒1, … , 𝑒𝑛} and endswed with the standard 

Ecuclidean inner product < 𝑥, 𝑦 > =  ∑ 𝑥𝑗𝑦𝑗
𝑛
𝑗=0 . The Clifford algebra 𝒜𝑛 is defined as the2𝑛-dimensional real associated, 

noncommunitative algebra generated by 𝑒0, 𝑒1, … , 𝑒𝑛 and the multiplication rules 

𝑒0
2 = 1, 

𝑒𝑗
2 = −1, 𝑗 = 1, … , 𝑛, 

𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖 = 0, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛. 

An element 𝑎 ∈ 𝒜𝑛 has the following form 

𝑎 = ∑ 𝑎𝐴𝑒𝐴

𝐴∈𝒩

 , 𝑎𝐴 ∈ ℝ, 

where𝐴 = {𝛼1𝛼2 … 𝛼ℎ}, (𝛼1 < ⋯ < 𝛼ℎ} is a subset of 𝒩 = {1,2, … , 𝑛} and 𝑒𝐴 = 𝑒𝛼1
𝑒𝛼2

… 𝑒𝛼ℎ
. For 𝐴 = ∅ we put 𝑒∅ =

𝑒0 = 1. 

Vector in ℝ𝑛+1 are identified with 1-vector in 𝒜𝑛 under the canonicalembeding 

𝑥 ∈ ℝ𝑛+1, 𝑥 = (𝑥1, … , 𝑥𝑛) → ∑ 𝑥𝑗𝑒𝑗

𝑛

𝑗=0

≔ 𝑥 ∈ 𝒜𝑛 . 

The conjugation is defined by a mapping sending 𝑎 ↦ �̅� with �̅�𝑗 = −𝑒𝑗 for 𝑗 = 1,2, … , 𝑛, �̅�0 = 𝑒0and 𝑎𝑏̅̅ ̅ = �̅��̅�. The inner 

product in 𝒜𝑛 is defined by 

< 𝑎, 𝑏 >0= 2𝑚. ∑ 𝑎𝐴𝑏𝐴

𝐴∈𝒩

 , 𝑤ℎ𝑒𝑟𝑒 𝑏 = ∑ 𝑏𝐴𝑒𝐴

𝐴∈𝒩

. 

Hence a norm is defined by 

‖𝑎‖0 = (< 𝑎, 𝑎 >0)1/2 = 2𝑛/2. ( ∑ 𝑎𝐴
2

𝐴∈𝒩

)

1/2

 

which turns 𝒜𝑛 into a Banach algebra of dimension 2𝑛. For other definition of Clifford algebra we refer reader to 

[F.Bracks, R.Delanghe and F.Somen]. 

Let Ω be a subset of the Euclidean space ℝ𝑛+1. We consider the function 𝑢 defined in Ω and taking values in 𝒜𝑛 

as the mapping 
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𝑢: Ω ⟶ 𝒜𝑛 . 

Then 𝑢 can be presented by 

𝑢 = ∑ 𝑢𝐴(𝑥)𝑒𝐴

𝐴∈𝒩

, 

where𝑢𝐴(𝑥) are the (real valued) functions of 𝑛 + 1 variables 𝑥0, 𝑥1, … , 𝑥𝑛. We write 𝑢 ∈ C(Ω, 𝒜n), Ck(Ω, 𝒜n),
Lp(Ω, 𝒜n), … according uA ∈ 𝐶(Ω), 𝐶𝑘(Ω), 𝐿𝑝(Ω), …  respectively. 

The Cauchy-Riemann operator and its adjoin defined by 

𝐷 = ∑ 𝑒𝑗𝜕𝑗

𝑛

𝑗=0

 ;  𝜕𝑗 =
𝜕

𝜕𝑥𝑗

  ; 𝑗 = 1,2, … 𝑛,  

�̅� = 𝜕0 − ∑ 𝑒𝑗𝜕𝑗

𝑛

𝑗=1

 . 

Definition 1 

A function 𝑢 ∈ C1(Ω, 𝒜n) is called monogenic if it sastisfies the Cauchy-Riemann system 𝐷𝑢 = 0. 

Remark 1 

From definition of Cauchy-Riemann operator, we have 

�̅�𝐷 = 𝐷�̅� = ∑ 𝜕𝑗
2

𝑛

𝑗=0

= Δ𝑛+1, 

whereΔ𝑛+1 is Laplace operator in ℝ𝑛+1. 

Remark 2 

From Remark 1 we see that, if 𝐷𝑢 = 0 then �̅�𝐷𝑢 = Δ𝑛+1𝑢𝐴 = 0. 

Let Ω be a bounded domain in a Euclidean space ℝ𝑛+1 having a sufficiently smooth boundary 𝜕Ω. Then we know 

from potential theory that to an arbitrarily chosen (continuous) function 𝑔on 𝜕Ω, there exists a uniquely determined 

solution 𝑢 of the Laplace equation such that 𝑢 = 𝑔 on 𝜕Ω. 

In view of Remark 2 we know that all real-valued component 𝑢𝐴 of a monogenic function in ℝ𝑛+1 are solutions to 

theLappace equation. This does not mean, however, that the boundary values of all real-valued components can be freely 

chosen because all components are connected by the Cauchy-Riemann system. This paper deals with the question how 

many components 𝑢𝐴 can be chosen arbitrarily on thw whole boundary, and what can be prescribed for the remaning 

components. 

II. BOUNDARY VALUE PROBLEMS FOR HOLOMORPHIC FUNCTIONS IN THE PLANE 

The Cauchy-Riemann systhem for holomorphic function 𝑤 = 𝑢 + 𝑖𝑣 in a (bounded) domain Ω in the complex plane can be 

prescribed by 

{
𝜕𝑥𝑢 = 𝜕𝑦𝑣

𝜕𝑦𝑢 = −𝜕𝑥𝑣.
                                                                                                                                   (2.1) 

We know that, the imaginary part 𝑣 of 𝑤 is uniquely determined by its boundary values. The system (2.1) leads 

for the real part 𝑢 to the completely integrable first order system, and 𝑢 is uniquely determined (in simply connected 

domains) up to a real constant. And so 𝑢 is then uniquely determined by its values at one point of Ω (or Ω̅). 

III. BOUNDARY VALUE PROBLEMS FOR CAUCHY-RIEMANN SYSTEM INℝ𝟑 

In ℝ3, The Clifford algebra 𝒜2 is defined as the 22-dimensional real associated, noncommunitative algebra generated by 

𝑒0 = 1, 𝑒1, 𝑒2, 𝑒1𝑒2 and the multiplication rules 

𝑒0
2 = 1, 
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𝑒𝑗
2 = −1, 𝑗 = 1,2, 

𝑒1𝑒2 + 𝑒2𝑒1 = 0. 

The function 𝑢 taking values in 𝒜2 can be presented by 

𝑢 = 𝑢0𝑒0 + 𝑢1𝑒1 + 𝑢2𝑒2 + 𝑢12𝑒1𝑒2, 

and the Cauchy-Riemann operator is defined by  

𝐷 = 𝑒0𝜕0 + 𝑒1𝜕1 + 𝑒2𝜕2 + 𝑒3𝜕3. 

Let Ω be a cylindrical in ℝ3 which is defined by 

{𝑥 = (𝑥0, 𝑥1, 𝑥2): 𝜓1(𝑥1, 𝑥2) < 𝑥0 < 𝜓1(𝑥1, 𝑥2), (𝑥1, 𝑥2) ∈ Ω0} 

whereΩ0 is a domain in the 𝑥1, 𝑥2-plane.A similar situation occurs for monogenic function𝑢in ℝ3. TheDefinition 1 for 

monogenic function 𝑢 leads to four real-vallued components 𝑢0, 𝑢1, 𝑢2 and 𝑢12 satisfy the Cauchy-Riemann system 

𝜕0𝑢0 − 𝜕1𝑢1 − 𝜕2𝑢2 = 0                                                                    (3.1) 

𝜕0𝑢1 + 𝜕1𝑢0 + 𝜕2𝑢12 = 0                                                                  (3.2) 

𝜕0𝑢2 − 𝜕1𝑢12 + 𝜕2𝑢0 = 0                                                                 (3.3) 

𝜕0𝑢12 + 𝜕1𝑢2 − 𝜕2𝑢1 = 0.                                                                (3.4) 

Suppose, further, that the monogenic function 𝑢is continuous in Ω̅. Since all components of a monogenic 

functions are solutions to the Laplace equation,𝑢1 and 𝑢2 are uniquely determined already by their boundary values on the 

whole boundary 𝜕Ω. Knowing 𝑢1and 𝑢2, then 𝑢12 can be determined by a simple integration in 𝑥0-direction from the last 

eqution (3.4) provided one knows only the values 𝑔12 of 𝑢12 on the lower covering surface 

𝑆0 = {𝑥 = (𝑥0, 𝑥1, 𝑥2): 𝑥0 = 𝜓1(𝑥1, 𝑥2), (𝑥1, 𝑥2) ∈ Ω̅0}. 

In order to be short, introduce the abbreviation 

−𝜕1𝑢2 + 𝜕2𝑢1 = 𝐹12. 

Then 𝑢12 can be represented in the form 

𝑢12(𝑥0, 𝑥1, 𝑥2) = 𝑔12(𝑥1, 𝑥2) + ∫ 𝐹12(𝜉0, 𝑥1, 𝑥2)𝑑𝜉0

𝑥0

𝜓1(𝑥1,𝑥2)

.      (3.5)  

Notice that not for every choice of the initial functions 𝑔12 the function 𝑢12 turns out to be a solution to the 

Laplace eqaution. In order to simplify the calculations a little bit, we suppose that the lower covering surface of our 

cylindrical domain Ω is given by 𝜓1(𝑥1, 𝑥2) ≡ 0, and so we have 

𝑢12(𝑥0, 𝑥1, 𝑥2) = 𝑔12(𝑥1, 𝑥2) + ∫ 𝐹12(𝜉0, 𝑥1, 𝑥2)𝑑𝜉0

𝑥0

0

.                  (3.6) 

From (3.6) we obtain 

𝜕0𝑢12(𝑥0, 𝑥1, 𝑥2) = 𝐹12(𝑥0, 𝑥1, 𝑥2), 

𝜕0
2𝑢12(𝑥0, 𝑥1, 𝑥2) = 𝜕0𝐹12(𝑥0, 𝑥1, 𝑥2).                                               (3.7) 

Moreover, differentiating under the sign of integration, one gets 

𝜕1
2𝑢12(𝑥0, 𝑥1, 𝑥2) = 𝜕1

2𝑔12(𝑥1, 𝑥2) + ∫ 𝜕1
2𝐹12(𝜉0, 𝑥1, 𝑥2)𝑑𝜉0

𝑥0

0

,       (3.8) 

𝜕2
2𝑢12(𝑥0, 𝑥1, 𝑥2) = 𝜕2

2𝑔12(𝑥1, 𝑥2) + ∫ 𝜕2
2𝐹12(𝜉0, 𝑥1, 𝑥2)𝑑𝜉0

𝑥0

0

.       (3.9) 
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Now observe that the derivatives of a solution to the Laplace equation are also solutions to the Laplace equation. 

Thus 

𝜕1
2𝐹12 + 𝜕2

2𝐹12 = −𝜕0
2𝐹12. 

Taking into accout this relation, the addtion of the formulas (3.7), (3.8) and (3.9) leads to the relation 

Δ3𝑢12(𝑥0, 𝑥1, 𝑥2) = Δ2𝑔12(𝑥1, 𝑥2) + 𝜕0𝐹12(𝑥0, 𝑥1, 𝑥2) − ∫ 𝜕0
2𝐹12(𝜉0, 𝑥1, 𝑥2)𝑑𝜉0

𝑥0

0

. 

Since 𝜕0𝐹12(𝑥0, 𝑥1, 𝑥2) is a primitive of the integrand of the last integral, the last integral has the value 

𝜕0𝐹12(𝑥0, 𝑥1, 𝑥2) − 𝜕0𝐹12(0, 𝑥1, 𝑥2). 

Thus Δ3𝑢12 has everywhere in Ω the values 

Δ3𝑢12(𝑥0, 𝑥1, 𝑥2) = Δ2𝑔12(𝑥1, 𝑥2) + 𝜕0𝐹12(0, 𝑥1, 𝑥2). 

And this, the differential equation Δ3𝑢12 = 0 is everywhere satisfied in Ω if the initial function 𝑔12 satisfies the following 

Poisson equation 

Δ2𝑔12(𝑥1, 𝑥2) = −𝜕0𝐹12(0, 𝑥1, 𝑥2) 

Everywhere in the lower covering surface S0 of the cylindrical domain Ω. And so the initial function 𝑔12 is uniquely 

determined by its boundary values on the one-dimensional boundary of the two-dimensional covering surface 𝑆0. 

Finally one can use the remaining three equation (3.1)-(3.3) in order to calculate the component 𝑢0. The 

component 𝑢0 can be constructed from the system 

𝜕0𝑢0 = 𝜕1𝑢1 + 𝜕2𝑢2: = 𝑝0,     

𝜕1𝑢0 = −𝜕0𝑢1 − 𝜕2𝑢12: = 𝑝1, 

𝜕2𝑢0 = −𝜕0𝑢2 + 𝜕1𝑢12: = 𝑝2. 

Since 𝑢1, 𝑢2 and 𝑢12 are solutions to the Laplace equation, the last system for 𝑢0 turns out to be completely integrable, that 

is 𝜕𝑘𝑝𝑗 = 𝜕𝑗𝑝𝑘 , 𝑘, 𝑗 = 0,1,2. For instance, to proof of 𝜕1𝑝0 = 𝜕0𝑝1, from the Laplace equation Δ3𝑢1 = 0, we have 

𝜕1𝑝0 − 𝜕0𝑝1 = 𝜕1(𝜕1𝑢1 + 𝜕2𝑢2) − 𝜕0(−𝜕0𝑢1 − 𝜕2𝑢12) 

              = 𝜕1
2𝑢1 + 𝜕1𝜕2𝑢2 + 𝜕0

2𝑢1 + 𝜕0𝜕2𝑢12 

              = −𝜕2
2𝑢1 + 𝜕2𝜕1𝑢2 + 𝜕2𝜕0𝑢12 

              = 𝜕2(−𝜕2𝑢1 + 𝜕1𝑢2 + 𝜕2𝜕0𝑢12) 

= 𝜕2(0) = 0.                             
Similarly, to proof of 𝜕2𝑝1 = 𝜕1𝑝2 and 𝜕2𝑝0 = 𝜕0𝑝2 one needs the Laplace equationΔ3𝑢12 = 0and Δ3𝑢2 =
0.Provided Ω is homotopically simply connected, 𝑢0 is already uniquely determined by its value at one point 𝑃0of 

Ω̅. 

To sum up, a monogenic funtion in ℝ3 is completely determined by 

• the values of two components 𝑢1 and 𝑢2 on the whole two-dimentional boundary 𝜕Ω of the three-dimentional 

domain Ω, 

• the values of 𝑢12 on the one-dimensional boundary of the two-dimentional lower covering surface 𝑆0 and 

• the value of 𝑢0 at one point 𝑃0 in Ω. 

IV. BOUNDARY VALUE PROBLEMS FOR CAUCHY-RIEMANN SYSTEM INℝ𝟒 

In Euclidean space ℝ4, Clifford algebra 𝒜3 has the basis elements 

𝑒0 = 1, 𝑒1, 𝑒2, 𝑒3, 𝑒1𝑒2, 𝑒1𝑒3, 𝑒2𝑒3, 𝑒1𝑒2𝑒3. 

And the multiplication rules 

𝑒0
2 = 1, 
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𝑒𝑗
2 = −1, 𝑗 = 1,2,3, 

𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖 = 0; (1 ≤ 𝑖 ≠ 𝑗 ≤ 3). 

The function 𝑢 taking values in 𝒜3 can be presented by 

𝑢 = 𝑢0𝑒0 + 𝑢1𝑒1 + 𝑢2𝑒2 + 𝑢3𝑒3 + 𝑢12𝑒1𝑒2 + 𝑢13𝑒1𝑒3 + 𝑢23𝑒2𝑒3 + 𝑢123𝑒1𝑒2𝑒3, 

and the Cauchy-Riemann operator is defined by 

𝐷 = 𝑒0𝜕0 + 𝑒1𝜕1 + 𝑒2𝜕2 + 𝑒3𝜕3. 

The Cauchy-Riemann system 𝐷𝑢 = 0can be presented by the following system (here we denote 𝑒1𝑒2 =
𝑒12, 𝑒1𝑒2𝑒3 = 𝑒123, … ) 

𝜕0𝑢0 − 𝜕1𝑢1 − 𝜕2𝑢2 − 𝜕3𝑢3 = 0                                                                (4.1) 

𝜕0𝑢1 + 𝜕1𝑢0 + 𝜕2𝑢12 + 𝜕3𝑢13 = 0                                                              (4.2) 

𝜕0𝑢2 − 𝜕1𝑢12 + 𝜕2𝑢0 + 𝜕3𝑢23 = 0                                                              (4.3) 

𝜕0𝑢3 − 𝜕1𝑢13 − 𝜕2𝑢23 + 𝜕3𝑢0 = 0                                                                (4.4) 

𝜕0𝑢12 + 𝜕1𝑢2 − 𝜕2𝑢1 − 𝜕3𝑢123 = 0                                                               (4.5) 

𝜕0𝑢13 + 𝜕1𝑢3 + 𝜕2𝑢123 − 𝜕3𝑢1 = 0                                                               (4.6) 

𝜕0𝑢23 − 𝜕1𝑢123 + 𝜕2𝑢3 − 𝜕3𝑢2 = 0                                                                (4.7) 

𝜕0𝑢123 + 𝜕1𝑢23 − 𝜕2𝑢13 + 𝜕3𝑢12 = 0.                                                            (4.8) 

Let Ω be the unit ball in ℝ4, Ω0 be the unit ball in (x1, 𝑥2, 𝑥3)-space, and Ω01 be the unit ball in (x2, 𝑥3)-plane. 

Then we have the following theorem: 

Theorem 1. The four components 𝑢1, 𝑢2, 𝑢3, 𝑢123 can be found from their alues on the whole boundary. The two 

components 𝑢12 and 𝑢23 can be found from their values on the boundary of the three-dimensional distinguishing part Ω0 of 

the boundary, while 𝑢23 can be calculated from the values on the boundaycurve Ω01. The component 𝑢0, finally, is 

completely determined by its value at the one point 𝑃0 in Ω̅. 

Proof:It is clearly that, if the value of four components: 𝑢1, 𝑢2, 𝑢3, 𝑢123 on the whole boundary of 𝜕Ω, then the 

corresponding components are uniquely determined in the whole domain Ω. 

From equation (4.5), (4.6) we can calculate the components 𝑢12, 𝑢13, for instance, from (4.5), we have 

𝜕0𝑢12 = −𝜕1𝑢2 + 𝜕2𝑢1 + 𝜕3𝑢123 = 𝐹12(𝑥0, 𝑥1, 𝑥2, 𝑥3).                                    (4.9) 

If 𝑔12 are the values of 𝑢12 on the midle surface Ω0, then we have 

𝑢12(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑔12(𝑥1, 𝑥2, 𝑥3) + ∫ 𝐹12(𝜉0, 𝑥1, 𝑥2, 𝑥3)𝑑𝜉0

𝑥0

0

.                    (4.10) 

Similar situation for function 𝑢12in ℝ3, we can show that Δ4𝑢12(𝑥) = 0 in Ω if and only if the initial function 𝑔12 

satisfies the Poisson equation in Ω0 

Δ3𝑔12 = −𝜕0𝐹12(0, 𝑥2, 𝑥3, 𝑥4). 

Now we calculate for component 𝑢23, from (4.7), (4.8), we get 

𝑢23(𝑥) = 𝑔23(𝑥2, 𝑥3) + ∫(𝑝23
0 (𝜉0, 𝜉1, 𝑥2, 𝑥3)𝑑𝜉0 + 𝑝23

1 (𝜉0, 𝜉1, 𝑥2, 𝑥3)𝑑𝜉1)

𝛾

,       (4.11) 

where 

𝜕0𝑢23 = 𝑝23
0 (𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝜕1𝑢123 − 𝜕2𝑢3 + 𝜕3𝑢2 ,                                              (4.12) 
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𝜕1𝑢23 = 𝑝23
1 (𝑥0, 𝑥1, 𝑥2, 𝑥3) = −𝜕0𝑢123 + 𝜕2𝑢13 − 𝜕3𝑢12 ,                                      (4.13) 

and𝛾 is any curve in Ω starting from (0,0, 𝑥2, 𝑥3) to (𝑥0, 𝑥1, 𝑥2, 𝑥3). 

Using Δ4𝑢123 = 0, from the equation (4.5) and (4.6), we obtain 

𝜕1𝑝23
0 − 𝜕0𝑝23

1 = 𝜕1
2𝑢123 − 𝜕1𝜕2𝑢3 + 𝜕1𝜕3𝑢2 + 𝜕0

2𝑢123 − 𝜕0𝜕2𝑢13 + 𝜕0𝜕3𝑢12 

= 𝜕0
2𝑢123 + 𝜕0

2𝑢123 − 𝜕2(𝜕1𝑢3 + 𝜕0𝑢13) + 𝜕3(𝜕1𝑢2 + 𝜕0𝑢12) 

= 𝜕0
2𝑢123 + 𝜕0

2𝑢123 − 𝜕2(−𝜕2𝑢123 + 𝜕3𝑢1) + 𝜕3(𝜕2𝑢1 + 𝜕3𝑢123) 

= 𝜕0
2𝑢123 + 𝜕1

2𝑢123 + 𝜕2
2𝑢123 + 𝜕3

2𝑢123 = Δ4𝑢123 = 0. 

This implies that the intrgral in (4.11) does not depend on the special choice of 𝛾, and we can prove that, the Laplace 

equation Δ4𝑢23 = 0 leads to the Poissoon equation 

Δ3𝑔23(𝑥2, 𝑥3) = −𝜕0𝑝23
0 (0,0, 𝑥2, 𝑥3) − 𝜕1𝑝23

1 (0,0, 𝑥2, 𝑥3)  𝑖𝑛 Ω01. 

Then 𝑔23 is uniquely determined by its values on the boundary curve 𝜕Ω01. 

Finally, from (4.1)-(4.4), we have 

𝜕0𝑢0 = 𝜕1𝑢1 + 𝜕2𝑢2 + 𝜕3𝑢3 =: 𝑝0 

𝜕0𝑢1 = −𝜕1𝑢0 − 𝜕2𝑢12 − 𝜕3𝑢13 =: 𝑝1 

𝜕0𝑢2 = 𝜕1𝑢12 − 𝜕2𝑢0 − 𝜕3𝑢23 =: 𝑝2 

𝜕0𝑢3 = 𝜕1𝑢13 + 𝜕2𝑢23 − 𝜕3𝑢0 =: 𝑝3 

It is not difficult to prove that 

𝜕𝑗𝑝𝑘 = 𝜕𝑘𝑝𝑗; 0 ≤ 𝑖 ≠ 𝑘 ≤ 3. 

Therefore, this systhem turns out to be completely integrable, so 𝑢0 is uniquely determined by 

𝑢0(𝑃) = 𝑢0(𝑃0) + ∫(𝑝0𝑑𝜉0 + 𝑝1𝑑𝜉1 + 𝑝2𝑑𝜉2 + 𝑝3𝑑𝜉3)

𝛾

, 

where 𝑃0 ∈ 𝜕Ω01, 𝛾 is arbitrary curve in Ω starting from 𝑃0 to 𝑃 ∈ Ω. 

V. BOUNDARY VALUE PROBLEMS FOR CAUCHY-RIEMANN SYSTEM INℝ𝟓 

In the case ℝ5, we have the Cauchy-Riemann operator 𝐷 = 𝑒0𝜕0 + 𝑒1𝜕1 + 𝑒2𝜕2 + 𝑒3𝜕3 + 𝑒4𝜕4, and a function 𝑢 taking 

values in Clifford algebra 𝒜4 can be presented by 

𝑢 = ∑ 𝑢𝐴𝑒𝐴

𝐴

, 

where 𝐴 ∈ {0,1,2,3,4,12,13,14,23,24,34,123,124,134,234,1234}, here the functions 𝑢 has 16 components. The Cauchy-

Riemann system 𝐷𝑢 = 0 is expressed by the following system  

𝜕0𝑢0 − 𝜕1𝑢1 − 𝜕2𝑢2 − 𝜕3𝑢3 − 𝜕4𝑢4 = 0                                                                (5.1) 

𝜕0𝑢1 + 𝜕1𝑢0 + 𝜕2𝑢12 + 𝜕3𝑢13 + 𝜕4𝑢14 = 0                                                           (5.2) 

𝜕0𝑢2 − 𝜕1𝑢12 + 𝜕2𝑢0 + 𝜕3𝑢23 + 𝜕4𝑢24 = 0                                                           (5.3) 

𝜕0𝑢3 − 𝜕1𝑢13 − 𝜕2𝑢23 + 𝜕3𝑢0 + 𝜕4𝑢0 = 0                                                             (5.4) 

𝜕0𝑢4 − 𝜕1𝑢14 − 𝜕2𝑢24 − 𝜕3𝑢34 + 𝜕4𝑢0 = 0                                                            (5.5) 

𝜕0𝑢12 + 𝜕1𝑢2 − 𝜕2𝑢1 − 𝜕3𝑢123 − 𝜕4𝑢124 = 0                                                         (5.6) 

𝜕0𝑢13 + 𝜕1𝑢3 + 𝜕2𝑢123 − 𝜕3𝑢1 − 𝜕4𝑢134 = 0                                                         (5.7) 
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𝜕0𝑢14 + 𝜕1𝑢4 + 𝜕2𝑢124 + 𝜕3𝑢134 − 𝜕4𝑢1 = 0                                                          (5.8) 

𝜕0𝑢23 − 𝜕1𝑢123 + 𝜕2𝑢3 − 𝜕3𝑢2 − 𝜕4𝑢234 = 0                                                         (5.9) 

𝜕0𝑢24 − 𝜕1𝑢124 + 𝜕2𝑢4 + 𝜕3𝑢234 − 𝜕4𝑢2 = 0                                                       (5.10) 

𝜕0𝑢34 − 𝜕1𝑢134 − 𝜕2𝑢234 + 𝜕3𝑢4 − 𝜕4𝑢3 = 0                                                       (5.11) 

𝜕0𝑢123 + 𝜕1𝑢23 − 𝜕2𝑢13 + 𝜕3𝑢12 + 𝜕4𝑢1234 = 0.                                                 (5.12) 

𝜕0𝑢124 + 𝜕1𝑢24 − 𝜕2𝑢14 − 𝜕3𝑢1234 + 𝜕4𝑢12 = 0.                                                 (5.13) 

𝜕0𝑢134 + 𝜕1𝑢34 + 𝜕2𝑢1234 − 𝜕3𝑢14 + 𝜕4𝑢13 = 0.                                                 (5.14) 

𝜕0𝑢234 − 𝜕1𝑢1234 + 𝜕2𝑢34 − 𝜕3𝑢24 + 𝜕4𝑢23 = 0.                                                (5.15) 

𝜕0𝑢1234 + 𝜕1𝑢234 − 𝜕2𝑢134 + 𝜕3𝑢124 − 𝜕4𝑢123 = 0.                                            (5.16) 

Let 

Ω = {𝑥 = (𝑥0, 𝑥1, … , 𝑥4) ∈ ℝ4 : ∑ 𝑥𝑗
2 < 1

𝑛

𝑗=0

}, 

Ω0 = {𝑥 = (𝑥0, 𝑥1, … , 𝑥4) ∈ Ω: 𝑥0 = 0}, 

Ω01 = {𝑥 = (𝑥0, 𝑥1, … , 𝑥4) ∈ Ω: 𝑥0 = 𝑥1 = 0}, 

Ω012 = {𝑥 = (𝑥0, 𝑥1, … , 𝑥4) ∈ Ω: 𝑥0 = 𝑥1 = 𝑥2 = 0}, 

and 

Λ0
5 = {34}, 

Λ1
5 = {23,24}, 

Λ2
5 = {12,13,14,1234}, 

Λ3
5 = {1,2,3,4,123,124,134,234}. 

Then we have following theorem. 

Theorem 2. A monogenic function 𝑢 = ∑ 𝑢𝐴𝑒𝐴𝐴  defined in Ω, taking values in 𝒜4 is completely determined by its values 

in distinguishing boundary of Ω, which as 

• 𝑢𝐴 = 𝜑𝐴, 𝐴 ∈ Λ3
5 in whole boundary of domain Ω, which is 4-dimentional, 

• 𝑢𝐴 = 𝜑𝐴, 𝐴 ∈ Λ2
5 in whole boundary of domain Ω0, which is 3-dimentional, 

• 𝑢𝐴 = 𝜑𝐴, 𝐴 ∈ Λ1
5 in whole boundary of domain Ω01, which is 2-dimentional, 

• 𝑢𝐴 = 𝜑𝐴, 𝐴 ∈ Λ0
5 in whole boundary of domain Ω012, which is 1-dimentional, 

• After all, the value of 𝑢0 at the point 𝑃0 ∈ 𝜕Ω. 

Proof: By assumption of the boundary values of eight components: 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢123, 𝑢124, 𝑢134, 𝑢234 on the whole 

boundary of Ω, the corresponding components are uniquely determined in the whole domain Ω. 

The equation (5.6), (5.7), (5.8), (5.16)allow to calcualte the components: 𝑢12, 𝑢13, 𝑢14, 𝑢1234 by a simple 

integration in 𝑥0-direction from the values on the distinguishing part Ω0. 

By the system (5.9, 5.12) and (5.10,5.13) we can calculate the components: 𝑢23, 𝑢24 by an integrarion in 𝑥0, 𝑥1- 

direction from values on the distinguishing part Ω01. 

From the system (5.11, 5.14, 5.15), we can calculate the component𝑢34 by an integration in 𝑥0, 𝑥1, 𝑥2-direction 

from the values on the distinguishing part Ω012. 

Finally, since the domain Ω is homotopically simply connected, from (5.1)-(5.5) we can show that, 𝑢0 is uniquely 

determined by its value at one point 𝑃0of 𝜕Ω012. 

The theorem is proved. 
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VI. BOUNDARY VALUE PROBLEMS FOR CAUCHY-RIEMANN SYSTEM INℝ𝟔 

In the case ℝ6, we have the Cauchy-Riemann operator 𝐷 = 𝑒0𝜕0 + 𝑒1𝜕1 + 𝑒2𝜕2 + 𝑒3𝜕3 + 𝑒4𝜕4 + 𝑒5𝜕5, and a function 𝑢 

taking values in Clifford algebra 𝒜5 can be presented by 

𝑢 = ∑ 𝑢𝐴𝑒𝐴

𝐴

, 

where 𝐴 ∈ {0,1,2, … ,5,12, … ,15,23, … ,123, … ,12345}, here the functions 𝑢 has 32 components. Therefore, Cauchy-

Riemann system 𝐷𝑢 = 0 is expressed by the following system 

𝜕0𝑢0 − 𝜕1𝑢1 − 𝜕2𝑢2 − 𝜕3𝑢3 − 𝜕4𝑢4 − 𝜕5𝑢5 = 0                                                          (6.1) 

𝜕0𝑢1 + 𝜕1𝑢0 + 𝜕2𝑢12 + 𝜕3𝑢13 + 𝜕4𝑢14 + 𝜕5𝑢15 = 0                                                   (6.2) 

𝜕0𝑢2 − 𝜕1𝑢12 + 𝜕2𝑢0 + 𝜕3𝑢23 + 𝜕4𝑢24 + 𝜕5𝑢25 = 0                                                   (6.3) 

𝜕0𝑢3 − 𝜕1𝑢13 − 𝜕2𝑢23 + 𝜕3𝑢0 + 𝜕4𝑢34 + 𝜕5𝑢35 = 0                                                   (6.4) 

𝜕0𝑢4 − 𝜕1𝑢14 − 𝜕2𝑢24 − 𝜕3𝑢34 + 𝜕4𝑢0 + 𝜕5𝑢45 = 0                                                 (6.5) 

𝜕0𝑢5 − 𝜕1𝑢15 − 𝜕2𝑢25 − 𝜕3𝑢35 − 𝜕4𝑢45 + 𝜕5𝑢0 = 0                                                 (6.6) 

𝜕0𝑢12 + 𝜕1𝑢2 − 𝜕2𝑢1 − 𝜕3𝑢123 − 𝜕4𝑢124 − 𝜕5𝑢125 = 0                                            (6.7) 

𝜕0𝑢13 + 𝜕1𝑢3 + 𝜕2𝑢123 − 𝜕3𝑢1 − 𝜕4𝑢134 − 𝜕5𝑢135 = 0                                            (6.8) 

𝜕0𝑢14 + 𝜕1𝑢4 + 𝜕2𝑢124 + 𝜕3𝑢134 − 𝜕4𝑢1 − 𝜕5𝑢145 = 0                                            (6.9) 

𝜕0𝑢15 + 𝜕1𝑢5 + 𝜕2𝑢125 + 𝜕3𝑢135 + 𝜕4𝑢145 − 𝜕5𝑢1 = 0                                               (6.10) 

𝜕0𝑢23 − 𝜕1𝑢123 + 𝜕2𝑢3 − 𝜕3𝑢2 − 𝜕4𝑢234 − 𝜕5𝑢235 = 0                                               (6.11) 

𝜕0𝑢24 − 𝜕1𝑢124 + 𝜕2𝑢4 + 𝜕3𝑢234 − 𝜕4𝑢2 − 𝜕5𝑢245 = 0                                              (6.12) 

𝜕0𝑢25 − 𝜕1𝑢125 + 𝜕2𝑢5 + 𝜕3𝑢235 + 𝜕4𝑢245 − 𝜕5𝑢2 = 0                                              (6.13) 

𝜕0𝑢34 − 𝜕1𝑢134 − 𝜕2𝑢234 + 𝜕3𝑢4 − 𝜕4𝑢3 − 𝜕5𝑢345 = 0                                              (6.14) 

𝜕0𝑢35 − 𝜕1𝑢135 − 𝜕2𝑢235 − 𝜕3𝑢345 + 𝜕4𝑢5 − 𝜕5𝑢4 = 0                                               (6.15) 

𝜕0𝑢45 − 𝜕1𝑢145 − 𝜕2𝑢245 − 𝜕3𝑢345 + 𝜕4𝑢5 − 𝜕5𝑢4 = 0                                               (6.16) 

𝜕0𝑢123 + 𝜕1𝑢23 − 𝜕2𝑢13 + 𝜕3𝑢12 + 𝜕4𝑢1234 + 𝜕5𝑢1235 = 0.                                      (6.17) 

𝜕0𝑢124 + 𝜕1𝑢24 − 𝜕2𝑢14 − 𝜕3𝑢1234 + 𝜕4𝑢12 + 𝜕5𝑢1245 = 0.                                      (6.18) 

𝜕0𝑢125 + 𝜕1𝑢25 − 𝜕2𝑢15 − 𝜕3𝑢1235 − 𝜕4𝑢1245 + 𝜕5𝑢12 = 0.                                      (6.19) 

𝜕0𝑢134 + 𝜕1𝑢34 + 𝜕2𝑢1234 − 𝜕3𝑢14 + 𝜕4𝑢13 + 𝜕5𝑢1235 = 0.                                      (6.20) 

𝜕0𝑢135 + 𝜕1𝑢35 + 𝜕2𝑢1235 − 𝜕3𝑢15 − 𝜕4𝑢1345 + 𝜕5𝑢13 = 0.                                      (6.21) 

𝜕0𝑢145 + 𝜕1𝑢45 + 𝜕2𝑢1245 + 𝜕3𝑢1345 − 𝜕4𝑢15 + 𝜕5𝑢14 = 0.                                      (6.22) 

𝜕0𝑢234 − 𝜕1𝑢1234 + 𝜕2𝑢34 − 𝜕3𝑢24 + 𝜕4𝑢23 + 𝜕5𝑢2345 = 0.                                     (6.23) 

𝜕0𝑢235 − 𝜕1𝑢1235 + 𝜕2𝑢35 − 𝜕3𝑢25 − 𝜕4𝑢2345 + 𝜕5𝑢23 = 0.                                     (6.24) 

𝜕0𝑢245 − 𝜕1𝑢1245 + 𝜕2𝑢45 + 𝜕3𝑢2345 − 𝜕4𝑢25 + 𝜕5𝑢24 = 0.                                     (6.25) 

𝜕0𝑢345 − 𝜕1𝑢1245 − 𝜕2𝑢2345 + 𝜕3𝑢45 − 𝜕4𝑢35 + 𝜕5𝑢34 = 0.                                     (6.26) 

𝜕0𝑢1234 + 𝜕1𝑢234 − 𝜕2𝑢134 + 𝜕3𝑢124 − 𝜕4𝑢123 − 𝜕5𝑢12345 = 0.                              (6.27) 

𝜕0𝑢1235 + 𝜕1𝑢235 − 𝜕2𝑢135 + 𝜕3𝑢125 + 𝜕4𝑢12345 − 𝜕5𝑢123 = 0.                              (6.28) 

𝜕0𝑢1245 + 𝜕1𝑢245 − 𝜕2𝑢145 − 𝜕3𝑢12345 + 𝜕4𝑢125 − 𝜕5𝑢124 = 0.                              (6.29) 
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𝜕0𝑢1345 + 𝜕1𝑢345 + 𝜕2𝑢12345 − 𝜕3𝑢145 + 𝜕4𝑢135 − 𝜕5𝑢134 = 0.                              (6.30) 

𝜕0𝑢2345 − 𝜕1𝑢12345 + 𝜕2𝑢345 − 𝜕3𝑢245 + 𝜕4𝑢235 − 𝜕5𝑢234 = 0.                              (6.31) 

𝜕0𝑢12345 + 𝜕1𝑢2345 − 𝜕2𝑢1345 + 𝜕3𝑢1245 − 𝜕4𝑢1235 + 𝜕5𝑢1234 = 0.                        (6.32) 

Let 

Ω = {𝑥 = (𝑥0, 𝑥1, … , 𝑥5) ∈ ℝ6 : ∑ 𝑥𝑗
2 < 1

𝑛

𝑗=0

}, 

Ω0 = {𝑥 = (𝑥0, 𝑥1, … , 𝑥5) ∈ Ω: 𝑥0 = 0}, 

Ω01 = {𝑥 = (𝑥0, 𝑥1, … , 𝑥5) ∈ Ω: 𝑥0 = 𝑥1 = 0}, 

Ω012 = {𝑥 = (𝑥0, 𝑥1, … , 𝑥5) ∈ Ω: 𝑥0 = 𝑥1 = 𝑥2 = 0}, 

Ω0123 = {𝑥 = (𝑥0, 𝑥1, … , 𝑥5) ∈ Ω: 𝑥0 = 𝑥1 = 𝑥2 = 𝑥3 = 0}, 

and 

Λ0
6 = {45}, 

Λ1
6 = {34, 35}, 

Λ2
6 = {23,24,25,2345}, 

Λ3
6 = {12,13,14,15,1234,1235,1245,1345}, 

Λ4
6 = {1,2,3,4,5,123,124,125,134,135,145,234,235,245,345,12345}. 

Then similar in ℝ5 we can proved the following theorem. 

Theorem 3. A monogenic function 𝑢 = ∑ 𝑢𝐴𝑒𝐴𝐴  defined in Ω, taking values in 𝒜5 is completely determined by its values 

in distinguishing boundary of Ω, which as 

• 𝑢𝐴 = 𝜑𝐴, 𝐴 ∈ Λ4
6 in whole boundary of domain Ω, which is 5-dimentional, 

• 𝑢𝐴 = 𝜑𝐴, 𝐴 ∈ Λ3
6 in whole boundary of domain Ω0, which is 4-dimentional, 

• 𝑢𝐴 = 𝜑𝐴, 𝐴 ∈ Λ2
6 in whole boundary of domain Ω01, which is 3-dimentional, 

• 𝑢𝐴 = 𝜑𝐴, 𝐴 ∈ Λ1
6 in whole boundary of domain Ω012, which is 2-dimentional, 

• 𝑢𝐴 = 𝜑𝐴, 𝐴 ∈ Λ0
6 in whole boundary of domain Ω0123, which is 1-dimentional, 

• After all, the value of 𝑢0 at the point 𝑃0 ∈ 𝜕Ω. 

VII. CONCLUSION 

The above results show that one can generaliza the concept of conjugate solution to higher dimensions: Given 2n−1 

real-valued solutions to the Laplace equation in a (homotopically simply connected) domain in ℝn+1, one can find 

2n−1another real-valued functions which are also solutions to the Laplace equation, and the whole system of all 2n real-

valued functions are the real components of a monogenic function in ℝn+1. The 2n−1 real-valued conjugate solutions to the 

Laplace equation are uniquely determined by their initial values on some parts of the boundary. 
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