Boundary Value Problems for Cauchy-Riemann Systems in Some Low Dimensions

Dinh Thi Kim Nhung ${ }^{1}$, Le Thi Hien ${ }^{2}$, Doan Thi Linh ${ }^{3}$
${ }^{1,2,3}$ Faculty of Management Information Systems, University of Finance and Business Administration, Hung Yen, Vietnam
Received Date: 07 February 2022
Revised Date: 03 April 2022
Accepted Date: 09 April 2022

Abstract - In this paper we introduce some notations in Clifford algebras and boundary value problems for CauchyRiemann systems in \mathbb{R}^{d} with $d=3,4,5,6$.

Keywords - Clifford analysis, Boundary value problems, Cauchy-Riemann system.

I. INTRODUCTION

Let \mathbb{R}^{n+1} be the Euclidean space which has an orthonomal basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ and endswed with the standard Ecuclidean inner product $\langle x, y\rangle=\sum_{j=0}^{n} x_{j} y_{j}$. The Clifford algebra \mathcal{A}_{n} is defined as the 2^{n}-dimensional real associated, noncommunitative algebra generated by $e_{0}, e_{1}, \ldots, e_{n}$ and the multiplication rules

$$
\begin{gathered}
e_{0}^{2}=1 \\
e_{j}^{2}=-1, j=1, \ldots, n \\
e_{i} e_{j}+e_{j} e_{i}=0,1 \leq i \neq j \leq n
\end{gathered}
$$

An element $a \in \mathcal{A}_{n}$ has the following form

$$
a=\sum_{A \in \mathcal{N}} a_{A} e_{A}, a_{A} \in \mathbb{R}
$$

where $A=\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{h}\right\},\left(\alpha_{1}<\cdots<\alpha_{h}\right\}$ is a subset of $\mathcal{N}=\{1,2, \ldots, n\}$ and $e_{A}=e_{\alpha_{1}} e_{\alpha_{2}} \ldots e_{\alpha_{h}}$. For $A=\emptyset$ we put $e_{\emptyset}=$ $e_{0}=1$.

Vector in \mathbb{R}^{n+1} are identified with 1 -vector in \mathcal{A}_{n} under the canonicalembeding

$$
x \in \mathbb{R}^{n+1}, x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow \sum_{j=0}^{n} x_{j} e_{j}:=x \in \mathcal{A}_{n}
$$

The conjugation is defined by a mapping sending $a \mapsto \bar{a}$ with $\bar{e}_{j}=-e_{j}$ for $j=1,2, \ldots, n, \bar{e}_{0}=e_{0}$ and $\overline{a b}=\bar{b} \bar{a}$. The inner product in \mathcal{A}_{n} is defined by

$$
<a, b>_{0}=2^{m} . \sum_{A \in \mathcal{N}} a_{A} b_{A}, \text { where } b=\sum_{A \in \mathcal{N}} b_{A} e_{A} .
$$

Hence a norm is defined by

$$
\|a\|_{0}=\left(<a, a>_{0}\right)^{1 / 2}=2^{n / 2} \cdot\left(\sum_{A \in \mathcal{N}} a_{A}^{2}\right)^{1 / 2}
$$

which turns \mathcal{A}_{n} into a Banach algebra of dimension 2^{n}. For other definition of Clifford algebra we refer reader to [F.Bracks, R.Delanghe and F.Somen].

Let Ω be a subset of the Euclidean space \mathbb{R}^{n+1}. We consider the function u defined in Ω and taking values in \mathcal{A}_{n} as the mapping

$$
u: \Omega \rightarrow \mathcal{A}_{n} .
$$

Then u can be presented by

$$
u=\sum_{A \in \mathcal{N}} u_{A}(x) e_{A}
$$

where $u_{A}(x)$ are the (real valued) functions of $n+1$ variables $x_{0}, x_{1}, \ldots, x_{n}$. We write $u \in \mathrm{C}\left(\Omega, \mathcal{A}_{\mathrm{n}}\right), \mathrm{C}^{\mathrm{k}}\left(\Omega, \mathcal{A}_{\mathrm{n}}\right)$, $\mathrm{L}_{\mathrm{p}}\left(\Omega, \mathcal{A}_{\mathrm{n}}\right), \ldots$ according $\mathrm{u}_{\mathrm{A}} \in C(\Omega), C^{k}(\Omega), L_{p}(\Omega), \ldots$ respectively.

The Cauchy-Riemann operator and its adjoin defined by

$$
\begin{gathered}
D=\sum_{j=0}^{n} e_{j} \partial_{j} ; \partial_{j}=\frac{\partial}{\partial x_{j}} ; j=1,2, \ldots n, \\
\bar{D}=\partial_{0}-\sum_{j=1}^{n} e_{j} \partial_{j} .
\end{gathered}
$$

Definition 1

A function $u \in \mathrm{C}^{1}\left(\Omega, \mathcal{A}_{\mathrm{n}}\right)$ is called monogenic if it sastisfies the Cauchy-Riemann system $D u=0$.

Remark 1

From definition of Cauchy-Riemann operator, we have

$$
\bar{D} D=D \bar{D}=\sum_{j=0}^{n} \partial_{j}^{2}=\Delta_{n+1},
$$

where Δ_{n+1} is Laplace operator in \mathbb{R}^{n+1}.

Remark 2

From Remark 1 we see that, if $D u=0$ then $\bar{D} D u=\Delta_{n+1} u_{A}=0$.
Let Ω be a bounded domain in a Euclidean space \mathbb{R}^{n+1} having a sufficiently smooth boundary $\partial \Omega$. Then we know from potential theory that to an arbitrarily chosen (continuous) function g on $\partial \Omega$, there exists a uniquely determined solution u of the Laplace equation such that $u=g$ on $\partial \Omega$.

In view of Remark 2 we know that all real-valued component u_{A} of a monogenic function in \mathbb{R}^{n+1} are solutions to theLappace equation. This does not mean, however, that the boundary values of all real-valued components can be freely chosen because all components are connected by the Cauchy-Riemann system. This paper deals with the question how many components u_{A} can be chosen arbitrarily on thw whole boundary, and what can be prescribed for the remaning components.

II. BOUNDARY VALUE PROBLEMS FOR HOLOMORPHIC FUNCTIONS IN THE PLANE

The Cauchy-Riemann systhem for holomorphic function $w=u+i v$ in a (bounded) domain Ω in the complex plane can be prescribed by

$$
\left\{\begin{array}{c}
\partial_{x} u=\partial_{y} v \tag{2.1}\\
\partial_{y} u=-\partial_{x} v .
\end{array}\right.
$$

We know that, the imaginary part v of w is uniquely determined by its boundary values. The system (2.1) leads for the real part u to the completely integrable first order system, and u is uniquely determined (in simply connected domains) up to a real constant. And so u is then uniquely determined by its values at one point of Ω (or $\bar{\Omega}$).

III. BOUNDARY VALUE PROBLEMS FOR CAUCHY-RIEMANN SYSTEM INR ${ }^{3}$

In \mathbb{R}^{3}, The Clifford algebra \mathcal{A}_{2} is defined as the 2^{2}-dimensional real associated, noncommunitative algebra generated by $e_{0}=1, e_{1}, e_{2}, e_{1} e_{2}$ and the multiplication rules

$$
e_{0}^{2}=1,
$$

$$
\begin{aligned}
& e_{j}^{2}=-1, j=1,2 \\
& e_{1} e_{2}+e_{2} e_{1}=0
\end{aligned}
$$

The function u taking values in \mathcal{A}_{2} can be presented by

$$
u=u_{0} e_{0}+u_{1} e_{1}+u_{2} e_{2}+u_{12} e_{1} e_{2}
$$

and the Cauchy-Riemann operator is defined by

$$
D=e_{0} \partial_{0}+e_{1} \partial_{1}+e_{2} \partial_{2}+e_{3} \partial_{3}
$$

Let Ω be a cylindrical in \mathbb{R}^{3} which is defined by

$$
\left\{x=\left(x_{0}, x_{1}, x_{2}\right): \psi_{1}\left(x_{1}, x_{2}\right)<x_{0}<\psi_{1}\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right) \in \Omega_{0}\right\}
$$

where Ω_{0} is a domain in the x_{1}, x_{2}-plane.A similar situation occurs for monogenic functionuin \mathbb{R}^{3}. TheDefinition 1 for monogenic function u leads to four real-vallued components u_{0}, u_{1}, u_{2} and u_{12} satisfy the Cauchy-Riemann system

$$
\begin{align*}
& \partial_{0} u_{0}-\partial_{1} u_{1}-\partial_{2} u_{2}=0 \tag{3.1}\\
& \partial_{0} u_{1}+\partial_{1} u_{0}+\partial_{2} u_{12}=0 \tag{3.2}\\
& \partial_{0} u_{2}-\partial_{1} u_{12}+\partial_{2} u_{0}=0 \tag{3.3}\\
& \partial_{0} u_{12}+\partial_{1} u_{2}-\partial_{2} u_{1}=0 . \tag{3.4}
\end{align*}
$$

Suppose, further, that the monogenic function u is continuous in $\bar{\Omega}$. Since all components of a monogenic functions are solutions to the Laplace equation, u_{1} and u_{2} are uniquely determined already by their boundary values on the whole boundary $\partial \Omega$. Knowing u_{1} and u_{2}, then u_{12} can be determined by a simple integration in x_{0}-direction from the last eqution (3.4) provided one knows only the values g_{12} of u_{12} on the lower covering surface

$$
S_{0}=\left\{x=\left(x_{0}, x_{1}, x_{2}\right): x_{0}=\psi_{1}\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right) \in \bar{\Omega}_{0}\right\}
$$

In order to be short, introduce the abbreviation

$$
-\partial_{1} u_{2}+\partial_{2} u_{1}=F_{12}
$$

Then u_{12} can be represented in the form

$$
\begin{equation*}
u_{12}\left(x_{0}, x_{1}, x_{2}\right)=g_{12}\left(x_{1}, x_{2}\right)+\int_{\psi_{1}\left(x_{1}, x_{2}\right)}^{x_{0}} F_{12}\left(\xi_{0}, x_{1}, x_{2}\right) d \xi_{0} . \tag{3.5}
\end{equation*}
$$

Notice that not for every choice of the initial functions g_{12} the function u_{12} turns out to be a solution to the Laplace eqaution. In order to simplify the calculations a little bit, we suppose that the lower covering surface of our cylindrical domain Ω is given by $\psi_{1}\left(x_{1}, x_{2}\right) \equiv 0$, and so we have

$$
\begin{equation*}
u_{12}\left(x_{0}, x_{1}, x_{2}\right)=g_{12}\left(x_{1}, x_{2}\right)+\int_{0}^{x_{0}} F_{12}\left(\xi_{0}, x_{1}, x_{2}\right) d \xi_{0} . \tag{3.6}
\end{equation*}
$$

From (3.6) we obtain

$$
\begin{gather*}
\partial_{0} u_{12}\left(x_{0}, x_{1}, x_{2}\right)=F_{12}\left(x_{0}, x_{1}, x_{2}\right), \\
\partial_{0}^{2} u_{12}\left(x_{0}, x_{1}, x_{2}\right)=\partial_{0} F_{12}\left(x_{0}, x_{1}, x_{2}\right) . \tag{3.7}
\end{gather*}
$$

Moreover, differentiating under the sign of integration, one gets

$$
\begin{align*}
& \partial_{1}^{2} u_{12}\left(x_{0}, x_{1}, x_{2}\right)=\partial_{1}^{2} g_{12}\left(x_{1}, x_{2}\right)+\int_{0}^{x_{0}} \partial_{1}^{2} F_{12}\left(\xi_{0}, x_{1}, x_{2}\right) d \xi_{0} \tag{3.8}\\
& \partial_{2}^{2} u_{12}\left(x_{0}, x_{1}, x_{2}\right)=\partial_{2}^{2} g_{12}\left(x_{1}, x_{2}\right)+\int_{0}^{x_{0}} \partial_{2}^{2} F_{12}\left(\xi_{0}, x_{1}, x_{2}\right) d \xi_{0} . \tag{3.9}
\end{align*}
$$

Now observe that the derivatives of a solution to the Laplace equation are also solutions to the Laplace equation. Thus

$$
\partial_{1}^{2} F_{12}+\partial_{2}^{2} F_{12}=-\partial_{0}^{2} F_{12} .
$$

Taking into accout this relation, the addtion of the formulas (3.7), (3.8) and (3.9) leads to the relation

$$
\Delta_{3} u_{12}\left(x_{0}, x_{1}, x_{2}\right)=\Delta_{2} g_{12}\left(x_{1}, x_{2}\right)+\partial_{0} F_{12}\left(x_{0}, x_{1}, x_{2}\right)-\int_{0}^{x_{0}} \partial_{0}^{2} F_{12}\left(\xi_{0}, x_{1}, x_{2}\right) d \xi_{0}
$$

Since $\partial_{0} F_{12}\left(x_{0}, x_{1}, x_{2}\right)$ is a primitive of the integrand of the last integral, the last integral has the value

$$
\partial_{0} F_{12}\left(x_{0}, x_{1}, x_{2}\right)-\partial_{0} F_{12}\left(0, x_{1}, x_{2}\right)
$$

Thus $\Delta_{3} u_{12}$ has everywhere in Ω the values

$$
\Delta_{3} u_{12}\left(x_{0}, x_{1}, x_{2}\right)=\Delta_{2} g_{12}\left(x_{1}, x_{2}\right)+\partial_{0} F_{12}\left(0, x_{1}, x_{2}\right)
$$

And this, the differential equation $\Delta_{3} u_{12}=0$ is everywhere satisfied in Ω if the initial function g_{12} satisfies the following Poisson equation

$$
\Delta_{2} g_{12}\left(x_{1}, x_{2}\right)=-\partial_{0} F_{12}\left(0, x_{1}, x_{2}\right)
$$

Everywhere in the lower covering surface S_{0} of the cylindrical domain Ω. And so the initial function g_{12} is uniquely determined by its boundary values on the one-dimensional boundary of the two-dimensional covering surface S_{0}.

Finally one can use the remaining three equation (3.1)-(3.3) in order to calculate the component u_{0}. The component u_{0} can be constructed from the system

$$
\begin{aligned}
& \partial_{0} u_{0}=\partial_{1} u_{1}+\partial_{2} u_{2}:=p_{0}, \\
& \partial_{1} u_{0}=-\partial_{0} u_{1}-\partial_{2} u_{12}:=p_{1} \\
& \partial_{2} u_{0}=-\partial_{0} u_{2}+\partial_{1} u_{12}:=p_{2}
\end{aligned}
$$

Since u_{1}, u_{2} and u_{12} are solutions to the Laplace equation, the last system for u_{0} turns out to be completely integrable, that is $\partial_{k} p_{j}=\partial_{j} p_{k}, k, j=0,1,2$. For instance, to proof of $\partial_{1} p_{0}=\partial_{0} p_{1}$, from the Laplace equation $\Delta_{3} u_{1}=0$, we have

$$
\begin{aligned}
\partial_{1} p_{0}-\partial_{0} p_{1}= & \partial_{1}\left(\partial_{1} u_{1}+\partial_{2} u_{2}\right)-\partial_{0}\left(-\partial_{0} u_{1}-\partial_{2} u_{12}\right) \\
= & \partial_{1}^{2} u_{1}+\partial_{1} \partial_{2} u_{2}+\partial_{0}^{2} u_{1}+\partial_{0} \partial_{2} u_{12} \\
= & -\partial_{2}^{2} u_{1}+\partial_{2} \partial_{1} u_{2}+\partial_{2} \partial_{0} u_{12} \\
& =\partial_{2}\left(-\partial_{2} u_{1}+\partial_{1} u_{2}+\partial_{2} \partial_{0} u_{12}\right) \\
& =\partial_{2}(0)=0 .
\end{aligned}
$$

Similarly, to proof of $\partial_{2} p_{1}=\partial_{1} p_{2}$ and $\partial_{2} p_{0}=\partial_{0} p_{2}$ one needs the Laplace equation $\Delta_{3} u_{12}=0$ and $\Delta_{3} u_{2}=$ 0 .Provided Ω is homotopically simply connected, u_{0} is already uniquely determined by its value at one point P_{0} of $\bar{\Omega}$.

To sum up, a monogenic funtion in \mathbb{R}^{3} is completely determined by

- the values of two components u_{1} and u_{2} on the whole two-dimentional boundary $\partial \Omega$ of the three-dimentional domain Ω,
- the values of u_{12} on the one-dimensional boundary of the two-dimentional lower covering surface S_{0} and
- the value of u_{0} at one point P_{0} in Ω.

IV. BOUNDARY VALUE PROBLEMS FOR CAUCHY-RIEMANN SYSTEM INR $\mathbb{R}^{\mathbf{4}}$

In Euclidean space \mathbb{R}^{4}, Clifford algebra \mathcal{A}_{3} has the basis elements

$$
e_{0}=1, e_{1}, e_{2}, e_{3}, e_{1} e_{2}, e_{1} e_{3}, e_{2} e_{3}, e_{1} e_{2} e_{3}
$$

And the multiplication rules

$$
e_{0}^{2}=1,
$$

$$
\begin{gathered}
e_{j}^{2}=-1, j=1,2,3 \\
e_{i} e_{j}+e_{j} e_{i}=0 ;(1 \leq i \neq j \leq 3)
\end{gathered}
$$

The function u taking values in \mathcal{A}_{3} can be presented by

$$
u=u_{0} e_{0}+u_{1} e_{1}+u_{2} e_{2}+u_{3} e_{3}+u_{12} e_{1} e_{2}+u_{13} e_{1} e_{3}+u_{23} e_{2} e_{3}+u_{123} e_{1} e_{2} e_{3}
$$

and the Cauchy-Riemann operator is defined by

$$
D=e_{0} \partial_{0}+e_{1} \partial_{1}+e_{2} \partial_{2}+e_{3} \partial_{3} .
$$

The Cauchy-Riemann system $D u=0$ can be presented by the following system (here we denote $e_{1} e_{2}=$ $e_{12}, e_{1} e_{2} e_{3}=e_{123}, \ldots$)

$$
\begin{align*}
& \partial_{0} u_{0}-\partial_{1} u_{1}-\partial_{2} u_{2}-\partial_{3} u_{3}=0 \tag{4.1}\\
& \partial_{0} u_{1}+\partial_{1} u_{0}+\partial_{2} u_{12}+\partial_{3} u_{13}=0 \tag{4.2}\\
& \partial_{0} u_{2}-\partial_{1} u_{12}+\partial_{2} u_{0}+\partial_{3} u_{23}=0 \tag{4.3}\\
& \partial_{0} u_{3}-\partial_{1} u_{13}-\partial_{2} u_{23}+\partial_{3} u_{0}=0 \tag{4.4}\\
& \partial_{0} u_{12}+\partial_{1} u_{2}-\partial_{2} u_{1}-\partial_{3} u_{123}=0 \tag{4.5}\\
& \partial_{0} u_{13}+\partial_{1} u_{3}+\partial_{2} u_{123}-\partial_{3} u_{1}=0 \tag{4.6}\\
& \partial_{0} u_{23}-\partial_{1} u_{123}+\partial_{2} u_{3}-\partial_{3} u_{2}=0 \tag{4.7}\\
& \partial_{0} u_{123}+\partial_{1} u_{23}-\partial_{2} u_{13}+\partial_{3} u_{12}=0 \tag{4.8}
\end{align*}
$$

Let Ω be the unit ball in $\mathbb{R}^{4}, \Omega_{0}$ be the unit ball in ($\mathrm{x}_{1}, x_{2}, x_{3}$)-space, and Ω_{01} be the unit ball in (x_{2}, x_{3})-plane. Then we have the following theorem:

Theorem 1. The four components $u_{1}, u_{2}, u_{3}, u_{123}$ can be found from their alues on the whole boundary. The two components u_{12} and u_{23} can be found from their values on the boundary of the three-dimensional distinguishing part Ω_{0} of the boundary, while u_{23} can be calculated from the values on the boundaycurve Ω_{01}. The component u_{0}, finally, is completely determined by its value at the one point P_{0} in $\bar{\Omega}$.

Proof:It is clearly that, if the value of four components: $u_{1}, u_{2}, u_{3}, u_{123}$ on the whole boundary of $\partial \Omega$, then the corresponding components are uniquely determined in the whole domain Ω.

From equation (4.5), (4.6) we can calculate the components u_{12}, u_{13}, for instance, from (4.5), we have

$$
\begin{equation*}
\partial_{0} u_{12}=-\partial_{1} u_{2}+\partial_{2} u_{1}+\partial_{3} u_{123}=F_{12}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \tag{4.9}
\end{equation*}
$$

If g_{12} are the values of u_{12} on the midle surface Ω_{0}, then we have

$$
\begin{equation*}
u_{12}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=g_{12}\left(x_{1}, x_{2}, x_{3}\right)+\int_{0}^{x_{0}} F_{12}\left(\xi_{0}, x_{1}, x_{2}, x_{3}\right) d \xi_{0} \tag{4.10}
\end{equation*}
$$

Similar situation for function u_{12} in \mathbb{R}^{3}, we can show that $\Delta_{4} u_{12}(x)=0$ in Ω if and only if the initial function g_{12} satisfies the Poisson equation in Ω_{0}

$$
\Delta_{3} g_{12}=-\partial_{0} F_{12}\left(0, x_{2}, x_{3}, x_{4}\right)
$$

Now we calculate for component u_{23}, from (4.7), (4.8), we get

$$
\begin{equation*}
u_{23}(x)=g_{23}\left(x_{2}, x_{3}\right)+\int_{\gamma}\left(p_{23}^{0}\left(\xi_{0}, \xi_{1}, x_{2}, x_{3}\right) d \xi_{0}+p_{23}^{1}\left(\xi_{0}, \xi_{1}, x_{2}, x_{3}\right) d \xi_{1}\right) \tag{4.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\partial_{0} u_{23}=p_{23}^{0}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\partial_{1} u_{123}-\partial_{2} u_{3}+\partial_{3} u_{2} \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
\partial_{1} u_{23}=p_{23}^{1}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=-\partial_{0} u_{123}+\partial_{2} u_{13}-\partial_{3} u_{12}, \tag{4.13}
\end{equation*}
$$

and γ is any curve in Ω starting from $\left(0,0, x_{2}, x_{3}\right)$ to $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.
Using $\Delta_{4} u_{123}=0$, from the equation (4.5) and (4.6), we obtain

$$
\begin{gathered}
\partial_{1} p_{23}^{0}-\partial_{0} p_{23}^{1}=\partial_{1}^{2} u_{123}-\partial_{1} \partial_{2} u_{3}+\partial_{1} \partial_{3} u_{2}+\partial_{0}^{2} u_{123}-\partial_{0} \partial_{2} u_{13}+\partial_{0} \partial_{3} u_{12} \\
=\partial_{0}^{2} u_{123}+\partial_{0}^{2} u_{123}-\partial_{2}\left(\partial_{1} u_{3}+\partial_{0} u_{13}\right)+\partial_{3}\left(\partial_{1} u_{2}+\partial_{0} u_{12}\right) \\
=\partial_{0}^{2} u_{123}+\partial_{0}^{2} u_{123}-\partial_{2}\left(-\partial_{2} u_{123}+\partial_{3} u_{1}\right)+\partial_{3}\left(\partial_{2} u_{1}+\partial_{3} u_{123}\right) \\
=\partial_{0}^{2} u_{123}+\partial_{1}^{2} u_{123}+\partial_{2}^{2} u_{123}+\partial_{3}^{2} u_{123}=\Delta_{4} u_{123}=0 .
\end{gathered}
$$

This implies that the intrgral in (4.11) does not depend on the special choice of γ, and we can prove that, the Laplace equation $\Delta_{4} u_{23}=0$ leads to the Poissoon equation

$$
\Delta_{3} g_{23}\left(x_{2}, x_{3}\right)=-\partial_{0} p_{23}^{0}\left(0,0, x_{2}, x_{3}\right)-\partial_{1} p_{23}^{1}\left(0,0, x_{2}, x_{3}\right) \text { in } \Omega_{01} .
$$

Then g_{23} is uniquely determined by its values on the boundary curve $\partial \Omega_{01}$.
Finally, from (4.1)-(4.4), we have

$$
\begin{gathered}
\partial_{0} u_{0}=\partial_{1} u_{1}+\partial_{2} u_{2}+\partial_{3} u_{3}=: p^{0} \\
\partial_{0} u_{1}=-\partial_{1} u_{0}-\partial_{2} u_{12}-\partial_{3} u_{13}=: p^{1} \\
\partial_{0} u_{2}=\partial_{1} u_{12}-\partial_{2} u_{0}-\partial_{3} u_{23}=: p^{2} \\
\partial_{0} u_{3}=\partial_{1} u_{13}+\partial_{2} u_{23}-\partial_{3} u_{0}=: p^{3}
\end{gathered}
$$

It is not difficult to prove that

$$
\partial_{j} p^{k}=\partial_{k} p^{j} ; 0 \leq i \neq k \leq 3 .
$$

Therefore, this systhem turns out to be completely integrable, so u_{0} is uniquely determined by

$$
u_{0}(P)=u_{0}\left(P_{0}\right)+\int_{\gamma}\left(p^{0} d \xi_{0}+p^{1} d \xi_{1}+p^{2} d \xi_{2}+p^{3} d \xi_{3}\right)
$$

where $P_{0} \in \partial \Omega_{01}, \gamma$ is arbitrary curve in Ω starting from P_{0} to $P \in \Omega$.

V. BOUNDARY VALUE PROBLEMS FOR CAUCHY-RIEMANN SYSTEM INR ${ }^{5}$

In the case \mathbb{R}^{5}, we have the Cauchy-Riemann operator $D=e_{0} \partial_{0}+e_{1} \partial_{1}+e_{2} \partial_{2}+e_{3} \partial_{3}+e_{4} \partial_{4}$, and a function u taking values in Clifford algebra \mathcal{A}_{4} can be presented by

$$
u=\sum_{A} u_{A} e_{A}
$$

where $A \in\{0,1,2,3,4,12,13,14,23,24,34,123,124,134,234,1234\}$, here the functions u has 16 components. The CauchyRiemann system $D u=0$ is expressed by the following system

$$
\begin{align*}
& \partial_{0} u_{0}-\partial_{1} u_{1}-\partial_{2} u_{2}-\partial_{3} u_{3}-\partial_{4} u_{4}=0 \tag{5.1}\\
& \partial_{0} u_{1}+\partial_{1} u_{0}+\partial_{2} u_{12}+\partial_{3} u_{13}+\partial_{4} u_{14}=0 \tag{5.2}\\
& \partial_{0} u_{2}-\partial_{1} u_{12}+\partial_{2} u_{0}+\partial_{3} u_{23}+\partial_{4} u_{24}=0 \tag{5.3}\\
& \partial_{0} u_{3}-\partial_{1} u_{13}-\partial_{2} u_{23}+\partial_{3} u_{0}+\partial_{4} u_{0}=0 \tag{5.4}\\
& \partial_{0} u_{4}-\partial_{1} u_{14}-\partial_{2} u_{24}-\partial_{3} u_{34}+\partial_{4} u_{0}=0 \tag{5.5}\\
& \partial_{0} u_{12}+\partial_{1} u_{2}-\partial_{2} u_{1}-\partial_{3} u_{123}-\partial_{4} u_{124}=0 \tag{5.6}\\
& \partial_{0} u_{13}+\partial_{1} u_{3}+\partial_{2} u_{123}-\partial_{3} u_{1}-\partial_{4} u_{134}=0 \tag{5.7}
\end{align*}
$$

$$
\begin{align*}
& \partial_{0} u_{14}+\partial_{1} u_{4}+\partial_{2} u_{124}+\partial_{3} u_{134}-\partial_{4} u_{1}=0 \tag{5.8}\\
& \partial_{0} u_{23}-\partial_{1} u_{123}+\partial_{2} u_{3}-\partial_{3} u_{2}-\partial_{4} u_{234}=0 \tag{5.9}\\
& \partial_{0} u_{24}-\partial_{1} u_{124}+\partial_{2} u_{4}+\partial_{3} u_{234}-\partial_{4} u_{2}=0 \tag{5.10}\\
& \partial_{0} u_{34}-\partial_{1} u_{134}-\partial_{2} u_{234}+\partial_{3} u_{4}-\partial_{4} u_{3}=0 \tag{5.11}\\
& \partial_{0} u_{123}+\partial_{1} u_{23}-\partial_{2} u_{13}+\partial_{3} u_{12}+\partial_{4} u_{1234}=0 . \tag{5.12}\\
& \partial_{0} u_{124}+\partial_{1} u_{24}-\partial_{2} u_{14}-\partial_{3} u_{1234}+\partial_{4} u_{12}=0 . \tag{5.13}\\
& \partial_{0} u_{134}+\partial_{1} u_{34}+\partial_{2} u_{1234}-\partial_{3} u_{14}+\partial_{4} u_{13}=0 . \tag{5.14}\\
& \partial_{0} u_{234}-\partial_{1} u_{1234}+\partial_{2} u_{34}-\partial_{3} u_{24}+\partial_{4} u_{23}=0 . \tag{5.15}\\
& \partial_{0} u_{1234}+\partial_{1} u_{234}-\partial_{2} u_{134}+\partial_{3} u_{124}-\partial_{4} u_{123}=0 . \tag{5.16}
\end{align*}
$$

Let

$$
\begin{gathered}
\Omega=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{4}\right) \in \mathbb{R}^{4}: \sum_{j=0}^{n} x_{j}^{2}<1\right\}, \\
\Omega_{0}=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{4}\right) \in \Omega: x_{0}=0\right\}, \\
\Omega_{01}=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{4}\right) \in \Omega: x_{0}=x_{1}=0\right\}, \\
\Omega_{012}=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{4}\right) \in \Omega: x_{0}=x_{1}=x_{2}=0\right\},
\end{gathered}
$$

and

$$
\begin{gathered}
\Lambda_{0}^{5}=\{34\}, \\
\Lambda_{1}^{5}=\{23,24\}, \\
\Lambda_{2}^{5}=\{12,13,14,1234\}, \\
\Lambda_{3}^{5}=\{1,2,3,4,123,124,134,234\} .
\end{gathered}
$$

Then we have following theorem.
Theorem 2. A monogenic function $u=\sum_{A} u_{A} e_{A}$ defined in Ω, taking values in \mathcal{A}_{4} is completely determined by its values in distinguishing boundary of Ω, which as

- $u_{A}=\varphi_{A}, A \in \Lambda_{3}^{5}$ in whole boundary of domain Ω, which is 4-dimentional,
- $u_{A}=\varphi_{A}, A \in \Lambda_{2}^{5}$ in whole boundary of domain Ω_{0}, which is 3-dimentional,
- $u_{A}=\varphi_{A}, A \in \Lambda_{1}^{5}$ in whole boundary of domain Ω_{01}, which is 2-dimentional,
- $u_{A}=\varphi_{A}, A \in \Lambda_{0}^{5}$ in whole boundary of domain Ω_{012}, which is 1-dimentional,
- After all, the value of u_{0} at the point $P_{0} \in \partial \Omega$.

Proof: By assumption of the boundary values of eight components: $u_{1}, u_{2}, u_{3}, u_{4}, u_{123}, u_{124}, u_{134}, u_{234}$ on the whole boundary of Ω, the corresponding components are uniquely determined in the whole domain Ω.

The equation (5.6), (5.7), (5.8), (5.16)allow to calcualte the components: $u_{12}, u_{13}, u_{14}, u_{1234}$ by a simple integration in x_{0}-direction from the values on the distinguishing part Ω_{0}.

By the system $(5.9,5.12)$ and $(5.10,5.13)$ we can calculate the components: u_{23}, u_{24} by an integrarion in x_{0}, x_{1} direction from values on the distinguishing part Ω_{01}.

From the system $(5.11,5.14,5.15)$, we can calculate the component u_{34} by an integration in x_{0}, x_{1}, x_{2}-direction from the values on the distinguishing part Ω_{012}.

Finally, since the domain Ω is homotopically simply connected, from (5.1)-(5.5) we can show that, u_{0} is uniquely determined by its value at one point P_{0} of $\partial \Omega_{012}$.

The theorem is proved.

VI. BOUNDARY VALUE PROBLEMS FOR CAUCHY-RIEMANN SYSTEM INR ${ }^{\mathbf{6}}$

In the case \mathbb{R}^{6}, we have the Cauchy-Riemann operator $D=e_{0} \partial_{0}+e_{1} \partial_{1}+e_{2} \partial_{2}+e_{3} \partial_{3}+e_{4} \partial_{4}+e_{5} \partial_{5}$, and a function u taking values in Clifford algebra \mathcal{A}_{5} can be presented by

$$
u=\sum_{A} u_{A} e_{A}
$$

where $A \in\{0,1,2, \ldots, 5,12, \ldots, 15,23, \ldots, 123, \ldots, 12345\}$, here the functions u has 32 components. Therefore, CauchyRiemann system $D u=0$ is expressed by the following system

$$
\begin{align*}
& \partial_{0} u_{0}-\partial_{1} u_{1}-\partial_{2} u_{2}-\partial_{3} u_{3}-\partial_{4} u_{4}-\partial_{5} u_{5}=0 \tag{6.1}\\
& \partial_{0} u_{1}+\partial_{1} u_{0}+\partial_{2} u_{12}+\partial_{3} u_{13}+\partial_{4} u_{14}+\partial_{5} u_{15}=0 \tag{6.2}\\
& \partial_{0} u_{2}-\partial_{1} u_{12}+\partial_{2} u_{0}+\partial_{3} u_{23}+\partial_{4} u_{24}+\partial_{5} u_{25}=0 \tag{6.3}\\
& \partial_{0} u_{3}-\partial_{1} u_{13}-\partial_{2} u_{23}+\partial_{3} u_{0}+\partial_{4} u_{34}+\partial_{5} u_{35}=0 \tag{6.4}\\
& \partial_{0} u_{4}-\partial_{1} u_{14}-\partial_{2} u_{24}-\partial_{3} u_{34}+\partial_{4} u_{0}+\partial_{5} u_{45}=0 \tag{6.5}\\
& \partial_{0} u_{5}-\partial_{1} u_{15}-\partial_{2} u_{25}-\partial_{3} u_{35}-\partial_{4} u_{45}+\partial_{5} u_{0}=0 \tag{6.6}\\
& \partial_{0} u_{12}+\partial_{1} u_{2}-\partial_{2} u_{1}-\partial_{3} u_{123}-\partial_{4} u_{124}-\partial_{5} u_{125}=0 \tag{6.7}\\
& \partial_{0} u_{13}+\partial_{1} u_{3}+\partial_{2} u_{123}-\partial_{3} u_{1}-\partial_{4} u_{134}-\partial_{5} u_{135}=0 \tag{6.8}\\
& \partial_{0} u_{14}+\partial_{1} u_{4}+\partial_{2} u_{124}+\partial_{3} u_{134}-\partial_{4} u_{1}-\partial_{5} u_{145}=0 \tag{6.9}\\
& \partial_{0} u_{15}+\partial_{1} u_{5}+\partial_{2} u_{125}+\partial_{3} u_{135}+\partial_{4} u_{145}-\partial_{5} u_{1}=0 \tag{6.10}\\
& \partial_{0} u_{23}-\partial_{1} u_{123}+\partial_{2} u_{3}-\partial_{3} u_{2}-\partial_{4} u_{234}-\partial_{5} u_{235}=0 \tag{6.11}\\
& \partial_{0} u_{24}-\partial_{1} u_{124}+\partial_{2} u_{4}+\partial_{3} u_{234}-\partial_{4} u_{2}-\partial_{5} u_{245}=0 \tag{6.12}\\
& \partial_{0} u_{25}-\partial_{1} u_{125}+\partial_{2} u_{5}+\partial_{3} u_{235}+\partial_{4} u_{245}-\partial_{5} u_{2}=0 \tag{6.13}\\
& \partial_{0} u_{34}-\partial_{1} u_{134}-\partial_{2} u_{234}+\partial_{3} u_{4}-\partial_{4} u_{3}-\partial_{5} u_{345}=0 \tag{6.14}\\
& \partial_{0} u_{35}-\partial_{1} u_{135}-\partial_{2} u_{235}-\partial_{3} u_{345}+\partial_{4} u_{5}-\partial_{5} u_{4}=0 \tag{6.15}\\
& \partial_{0} u_{45}-\partial_{1} u_{145}-\partial_{2} u_{245}-\partial_{3} u_{345}+\partial_{4} u_{5}-\partial_{5} u_{4}=0 \tag{6.16}\\
& \partial_{0} u_{123}+\partial_{1} u_{23}-\partial_{2} u_{13}+\partial_{3} u_{12}+\partial_{4} u_{1234}+\partial_{5} u_{1235}=0 . \tag{6.17}\\
& \partial_{0} u_{124}+\partial_{1} u_{24}-\partial_{2} u_{14}-\partial_{3} u_{1234}+\partial_{4} u_{12}+\partial_{5} u_{1245}=0 . \tag{6.18}\\
& \partial_{0} u_{125}+\partial_{1} u_{25}-\partial_{2} u_{15}-\partial_{3} u_{1235}-\partial_{4} u_{1245}+\partial_{5} u_{12}=0 . \tag{6.19}\\
& \partial_{0} u_{134}+\partial_{1} u_{34}+\partial_{2} u_{1234}-\partial_{3} u_{14}+\partial_{4} u_{13}+\partial_{5} u_{1235}=0 . \tag{6.20}\\
& \partial_{0} u_{135}+\partial_{1} u_{35}+\partial_{2} u_{1235}-\partial_{3} u_{15}-\partial_{4} u_{1345}+\partial_{5} u_{13}=0 . \tag{6.21}\\
& \partial_{0} u_{145}+\partial_{1} u_{45}+\partial_{2} u_{1245}+\partial_{3} u_{1345}-\partial_{4} u_{15}+\partial_{5} u_{14}=0 . \tag{6.22}\\
& \partial_{0} u_{234}-\partial_{1} u_{1234}+\partial_{2} u_{34}-\partial_{3} u_{24}+\partial_{4} u_{23}+\partial_{5} u_{2345}=0 . \tag{6.23}\\
& \partial_{0} u_{235}-\partial_{1} u_{1235}+\partial_{2} u_{35}-\partial_{3} u_{25}-\partial_{4} u_{2345}+\partial_{5} u_{23}=0 . \tag{6.24}\\
& \partial_{0} u_{245}-\partial_{1} u_{1245}+\partial_{2} u_{45}+\partial_{3} u_{2345}-\partial_{4} u_{25}+\partial_{5} u_{24}=0 . \tag{6.25}\\
& \partial_{0} u_{345}-\partial_{1} u_{1245}-\partial_{2} u_{2345}+\partial_{3} u_{45}-\partial_{4} u_{35}+\partial_{5} u_{34}=0 . \tag{6.26}\\
& \partial_{0} u_{1234}+\partial_{1} u_{234}-\partial_{2} u_{134}+\partial_{3} u_{124}-\partial_{4} u_{123}-\partial_{5} u_{12345}=0 . \tag{6.27}\\
& \partial_{0} u_{1235}+\partial_{1} u_{235}-\partial_{2} u_{135}+\partial_{3} u_{125}+\partial_{4} u_{12345}-\partial_{5} u_{123}=0 . \tag{6.28}\\
& \partial_{0} u_{1245}+\partial_{1} u_{245}-\partial_{2} u_{145}-\partial_{3} u_{12345}+\partial_{4} u_{125}-\partial_{5} u_{124}=0 . \tag{6.29}
\end{align*}
$$

$$
\begin{align*}
& \partial_{0} u_{1345}+\partial_{1} u_{345}+\partial_{2} u_{12345}-\partial_{3} u_{145}+\partial_{4} u_{135}-\partial_{5} u_{134}=0 . \tag{6.30}\\
& \partial_{0} u_{2345}-\partial_{1} u_{12345}+\partial_{2} u_{345}-\partial_{3} u_{245}+\partial_{4} u_{235}-\partial_{5} u_{234}=0 . \tag{6.31}\\
& \partial_{0} u_{12345}+\partial_{1} u_{2345}-\partial_{2} u_{1345}+\partial_{3} u_{1245}-\partial_{4} u_{1235}+\partial_{5} u_{1234}=0 . \tag{6.32}
\end{align*}
$$

Let

$$
\begin{gathered}
\Omega=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{5}\right) \in \mathbb{R}^{6}: \sum_{j=0}^{n} x_{j}^{2}<1\right\}, \\
\Omega_{0}=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{5}\right) \in \Omega: x_{0}=0\right\}, \\
\Omega_{01}=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{5}\right) \in \Omega: x_{0}=x_{1}=0\right\}, \\
\Omega_{012}=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{5}\right) \in \Omega: x_{0}=x_{1}=x_{2}=0\right\}, \\
\Omega_{0123}=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{5}\right) \in \Omega: x_{0}=x_{1}=x_{2}=x_{3}=0\right\},
\end{gathered}
$$

and

$$
\begin{gathered}
\Lambda_{0}^{6}=\{45\}, \\
\Lambda_{1}^{6}=\{34,35\}, \\
\Lambda_{2}^{6}=\{23,24,25,2345\}, \\
\Lambda_{3}^{6}=\{12,13,14,15,1234,1235,1245,1345\}, \\
\Lambda_{4}^{6}=\{1,2,3,4,5,123,124,125,134,135,145,234,235,245,345,12345\} .
\end{gathered}
$$

Then similar in \mathbb{R}^{5} we can proved the following theorem.
Theorem 3. A monogenic function $u=\sum_{A} u_{A} e_{A}$ defined in Ω, taking values in \mathcal{A}_{5} is completely determined by its values in distinguishing boundary of Ω, which as

- $u_{A}=\varphi_{A}, A \in \Lambda_{4}^{6}$ in whole boundary of domain Ω, which is 5-dimentional,
- $u_{A}=\varphi_{A}, A \in \Lambda_{3}^{6}$ in whole boundary of domain Ω_{0}, which is 4-dimentional,
- $u_{A}=\varphi_{A}, A \in \Lambda_{2}^{6}$ in whole boundary of domain Ω_{01}, which is 3-dimentional,
- $u_{A}=\varphi_{A}, A \in \Lambda_{1}^{6}$ in whole boundary of domain Ω_{012}, which is 2-dimentional,
- $u_{A}=\varphi_{A}, A \in \Lambda_{0}^{6}$ in whole boundary of domain Ω_{0123}, which is 1-dimentional,
- After all, the value of u_{0} at the point $P_{0} \in \partial \Omega$.

VII. CONCLUSION

The above results show that one can generaliza the concept of conjugate solution to higher dimensions: Given $2^{\mathrm{n}-1}$ real-valued solutions to the Laplace equation in a (homotopically simply connected) domain in \mathbb{R}^{n+1}, one can find $2^{\mathrm{n}-1}$ another real-valued functions which are also solutions to the Laplace equation, and the whole system of all 2^{n} realvalued functions are the real components of a monogenic function in \mathbb{R}^{n+1}. The 2^{n-1} real-valued conjugate solutions to the Laplace equation are uniquely determined by their initial values on some parts of the boundary.

ACKNOWLEDGMENT

We are grateful to Professor Le Hung Son, Hanoi University of Science and Technology, for his useful discussion to complete this paper.

REFERENCES

[1] O. Celebi and K. Koca, A Note on a Boundary Value Problem for Nonlinear Complex Differential Equations in Wiener-type Domains, InternationalConference on Applied Mathematics, (2004) 321-326.
[2] C. Miranda, Partial differential equations of elliptic type. Ergebnisse der Mathematik and ihrerGrenzgebiete, Band 2, Springer-Verlag, New York, Second revised edition.Translated from the Italian by Zane C. Motteler. (1970).
[3] D. Gilbarg and N.S.Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag Berlin Heidelbaerg New York Tokyo (1983).
[4] Doan Cong Dinh, Dirichlet boundary value problem for monogenic function in Clifford analysis, Complex Variables and Elliptic Equations, 2014. 59 (9) (2014) 1201-1213.
[5] Doan Cong Dinh, Generalized Clifford Analysis, The doctoral thesis, Graz University of Technology, (2012).
[6] D. Alayon-Solarz and C. J. Vanegas, Operators Associated to the CauchyRiemann Operators in Elliptic Complex Numbers, Adv. Appl. Clifford Algebras. 22 (2012) 257-270.
[7] F. Brackx, R. Delanghe and F. Sommen, Clifford analysis, Pitman, Research Notes, 76 (1982).
[8] Dao Viet Cuong, From distinguishing boundaries to bounday value problems for mononegic functions, Complex Analysis and Operator Theory (2021).
[9] A. Escassut, W. Tutschke and C. C. Yang (editors),Some topicson value distribution and differentiability in complex and p-adicanalysis. Science Press Beijing. (2008).
[10] Sha Huang, Yu Ying Qiao, and Guo Chun Wen, Real and ComplexClifford Analysis, Advances in Complex Analysis and Its Applications, Springer-Verlag. 5 (2006).
[11] J. Vanegas and F. Vargas, On weighted Dirac Operators and their Fundamental Solution for Anisotropic Media, Adv. Appl. Clifford Algebras 28 (2018).
[12] V. V. Kravchenko, Applied quaternionic analysis,Research and Exposition in Mathematics, Lemgo: HeldermannVerlag. 28 (2003).
[13] Le Hung Son and W. Tutschke (editors), Algebraic Structures in Partial Differential Equations Related to Complex and Clifford Analysis, Ho Chi Minh CityUniversity of Education Press, Ho Chi Minh City, (2010).
[14] Le Hung Son and W. Tutschke, Complex Methods in Higher Dimensions |Recent Trends for Solving Boundary Value and Initial Value Problems, ComplexVariables, 50 (7-11) (2005) 673679.
[15] Le Hung Son and W. Tutschke, First order Differential Operators Associated to the Cauchy-Riemann Operator in the Plane, Complex Var. Theory Appl. 48(2003) 797-801.
[16] Le Hung Son and W Tutschke,Complex Methods In Higher Dimensions - Recent Trends for Solving Boundary Value and Initialvalue Problems. Complex Variables, 50 (. 7-11) (2005) 673-679.
[17] Le Hung Son and W. Tutschke (editors), Algebraic Structures Inpartial Differential Equations Related to Complex and Clifford analysis. Ho Chi Minh City University of Education Press.Ho Chi MinhCity, (2010).
[18] Muhammad SajidIqbal, Solutions of Boundary Value Problems for Nonlinear Partial Differential Equations by Fixed Point Methods, Disseration, Graz, (2011).
[19] A.S.A. Mshimba and W. Tutschke (editors), Functional AnalyticMethods in Complex Analysis and Applications to Partial Differential Equations, Proceedings of the Second Workshop held at theICTP in Trieste, January 25-29, (1993). World Scientific (1995). 3940 Bibliography
[20] Sheldon Alex, Paul Bourdon and Wade Ramey, Harmonic Function Theory,Second Edition, Springer-Verlag New York, Inc, (2001).
[21] Richard Delanghe, Clifford Analysis,History and Perspective, Computational Methods and Function Theory.1(1) (2001) 107-153.
[22] W. Tutschke, An elementary approach to Clifford Analysis. Contained in the Collection of papers [8]. (1995) 402-408.
[23] W. Tutschke, Real and Complex Fundamental Solutions - a way for Unifyingmathematical Analysis. Bol. Asoc. Mat. Venez., 9(2) (2002) 141-179.
[24] W. Tutschke, The Distinguishing Surface for Monogenic Functions in Cliffordanalysis. Advances in Applied Clifford Analysis. Online:DOI 10.1007/s00006-014-0484-y.
[25] W. E. Hamilton, Elements of Quaternion, Publisher London, Longmans, Green, \& Co. (1866).
[26] W.Tutschke, Generalized Analytic Functions in Higher Dimensions, GeorgianMath. J. (2007).

