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Abstract - Let 𝐺(𝑝, 𝑞) be a connected graph and 𝑀𝑣(𝐺) be its corresponding vertex semi middle graph. A dominating set 𝐷 ⊆
𝑉[𝑀𝑣(𝐺)] is split dominating set 〈𝑉[𝑀𝑣(𝐺)] − 𝐷〉 is disconnected. The minimum size of D is called the split domination 

number of 𝑀𝑣(𝐺) and is denoted by 𝛾𝑠[𝑀𝑣(𝐺)] . In this paper we obtain several results on split domination number. 
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I. INTRODUCTION 

Domination is an area in graph theory with an extensive research activity. We consider simple, finite, undirected, non-

trivial and connected graphs for our study. In literature, the concept of graph theory terminology not presented here can be 

found in Harary [1]. In a graph 𝐺, a set 𝐷 ⊆ 𝑉 is dominating set of 𝐺 if every vertex in 𝑉 − 𝐷 is adjacent to some vertex in 𝐷. 

The domination number of a graph 𝐺 is the minimum size of 𝐷. Some studies on domination and other graph valued functions 

in graph theory were studied in [2, 3, 4, 5]. The vertex semi middle graph 𝑀𝑣(𝐺) of a graph 𝐺 was studied in [19] and is 

defined as follows. The vertex semi-middle graph of a graph G, denoted by 𝑀𝑣(𝐺) is a planar graph whose vertex set is 

V(G)⋃E(G)⋃R(G) and two vertices of 𝑀𝑣(𝐺) are adjacent if and only if they corresponds to two adjacent edges of 𝐺 or one 

corresponds to a vertex and other to an edge incident with it or one corresponds to a vertex other to a region in which vertex 

lies on the region. Let R′ =  {r1
′ , r2

′ , . . . rm
′ } ⊆  V[𝑀𝑣(𝐺)] for the region set {r1, r2, … rm} of 𝐺. Let V′ =  {v1

′ , v2
′ , . . . vp

′ } ⊆

 V[𝑀𝑣(𝐺)] for the vertex set {v1, v2, … vp} of 𝐺. Let E′ =  {e1
′ , e2

′ , . . . eq
′ } ⊆  V[𝑀𝑣(𝐺)] for the edge set {e1, e2, … eq} of 𝐺 such 

that V[𝑀𝑣(𝐺)] = V ′⋃ E′ ⋃ R′. The study of domination number of jump graph [12] motivated us to introduce split domination 

number in vertex semi middle graph.  

II. PRELIMINARIES 

Theorem 2.1. [20] For the path 𝑃𝑛, 𝛾[𝑀𝑣(𝑃𝑛)] = 𝛾[𝐿(𝑃𝑛)] + 1. 

 

Theorem 2.2. [20] For the cycle 𝐶𝑛 , 𝑛 ≥ 4, 

𝛾[𝑀𝑣(𝐶𝑛)] = {

𝑛

3
+ 2                                             𝑖𝑓 𝑛 = 3𝑘, 𝑘 ≥ 2.

⌈
𝑛

3
+ 1⌉        𝑖𝑓 𝑛 = 3𝑘 + 1 𝑜𝑟 𝑛 = 3𝑘 + 2, 𝑘 ≥ 1.

 

 

Theorem 2.3. [20] For any graph G, 𝛾[𝑀𝑣(𝐺)] ≥ ⌈
𝑃

1+∆(𝐺)
⌉. 

 

III. SPLIT DOMINATION NUMBER IN VERTEX SEMI-MIDDLE GRAPH 

A dominating set D of 𝑀𝑣(𝐺) is a split dominating set if 〈𝑉[𝑀𝑣(𝐺)] − 𝐷〉 is disconnected(connected). The minimum 

cardinality of D is called split domination number of 𝑀𝑣(𝐺) and is denoted by 𝛾𝑠[𝑀𝑣(𝐺)]. A minimum split dominating set is 

denoted by 𝛾𝑠 − 𝑠𝑒𝑡. 

http://www.internationaljournalssrg.org/
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In the Figure 3.1, the split dominating set of 𝑀𝑣(𝐺) is D = {1, 3, 𝑟1
′, 𝑟2

′}, 𝛾𝑠[𝑀𝑣(𝐺)] = 3. 

 
 

Fig. 3.1: The Graph 𝑮 and its 𝑴𝒗(𝑮) 

 

We begin with some observations. 

Observation 3.1. For every star 𝐾1,𝑛, 𝛾𝑠[𝑀𝑣(𝐾1,𝑛)] = 2.              

Observation 3.2. For any path 𝑃𝑛, 𝛾𝑠[𝑀𝑣(𝑃𝑛)] = 𝛾[𝑀𝑣(𝑃𝑛)]. 

Observation 3.3. For the cycle 𝐶3, 𝛾𝑠[𝑀𝑣(𝐶3)] = 4. 
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IV. MAIN RESULTS 

Theorem 4.1. For the cycle 𝐶𝑛 , 𝑛 ≥ 4, 

𝛾𝑠[𝑀𝑣(𝐶𝑛)] = {

𝑛

3
+ 2                                             𝑖𝑓 𝑛 = 3𝑘, 𝑘 ≥ 2.

⌈
𝑛

3
+ 2⌉        𝑖𝑓 𝑛 = 3𝑘 + 1 𝑜𝑟 𝑛 = 3𝑘 + 2, 𝑘 ≥ 1.

 

Proof.  Consider 𝐺 = 𝐶𝑛 and 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, … … 𝑣𝑛} for n ≥ 4 . Assume D denote the dominating set of 𝑀𝑣(𝐶𝑛), defined as 

follows. 

𝐷 = {

𝑟1
′, 𝑟2

′, 𝑒1
′ , 𝑒4

′ , … … … 𝑒𝑛−2
′             𝑖𝑓 𝑛 = 3𝑘, 𝑘 ≥ 2.   

𝑣1
′ , 𝑟1

′, 𝑒3
′ , 𝑒6

′ , … … … 𝑒𝑛−1
′      𝑖𝑓 𝑛 = 3𝑘 + 1, 𝑘 ≥ 1.  

𝑣1
′ , 𝑟1

′, 𝑒3
′ , 𝑒6

′ , … … … 𝑒𝑛−2
′      𝑖𝑓 𝑛 = 3𝑘 + 2, 𝑘 ≥ 1.  

 

 

Clearly, D itself is a 𝛾𝑠 − 𝑠𝑒𝑡 for n = 3k . Now 𝐷′ = 𝐷 ∪ {𝑟2
′} is a set such that 𝑉[𝑀𝑣(𝐶𝑛)] − 𝐷′ is disconnected for n = 3k +1 

or n = 3k + 2 . Thus 

𝛾𝑠[𝑀𝑣(𝐶𝑛)] = {

𝑛

3
+ 2                                             𝑖𝑓 𝑛 = 3𝑘, 𝑘 ≥ 2.

⌈
𝑛

3
+ 2⌉        𝑖𝑓 𝑛 = 3𝑘 + 1 𝑜𝑟 𝑛 = 3𝑘 + 2, 𝑘 ≥ 1.

 

 

Theorem 4.2. For every graph G , 𝛾𝑠[𝑀𝑣(𝐺)] ≥  𝛾[𝑀𝑣(𝐺)]. 

 

Proof. By definition,𝑉[𝑀𝑣(𝐺)] = 𝑉′ ∪ 𝐸′ ∪ 𝑅′. Consider the dominating set 𝐷 = {𝑢𝑖
′/ 𝑢𝑖

′ ∈ 𝑉[𝑀𝑣(𝐺)]}. 

Here we have to consider four cases. 

 

Case 1. Let 𝐺 = 𝑃𝑛. With the Theorem 2.1, 𝛾[𝑀𝑣(𝑃𝑛)] = 𝛾[𝐿(𝑃𝑛)] + 1 and 〈𝑉[𝑀𝑣(𝐺)] − 𝐷〉 itself is a disconnected graph. 

By Observation 3.2, 𝛾[𝑀𝑣(𝑃𝑛)] =  𝛾𝑠[𝑀𝑣(𝑃𝑛)]. Hence 𝛾[𝑀𝑣(𝑃𝑛)] ≥  𝛾𝑠[𝑀𝑣(𝑃𝑛)] = 𝛾[𝐿(𝑃𝑛)] + 1. It follows. 

 

  Case 2. Let G be a tree. It is obvious that, 𝛾𝑠[𝑀𝑣(𝑇)] ≥  𝛾[𝑀𝑣(𝑇)] 

   

  Case 3. Now we consider the cycle 𝐶𝑛. The following is found in Theorem 2.2 and Theorem 4.1, 𝛾𝑠[𝑀𝑣(𝐶𝑛)] ≥  𝛾[𝑀𝑣(𝐶𝑛)]. 

   

  Case 4. Let any graph be G . By the Theorem 2.1, Observation 3.2 and Theorem 4.1, we can say that 𝛾𝑠[𝑀𝑣(𝐺)] ≥
 𝛾[𝑀𝑣(𝐺)]. 

   From the above cases, we can say that 𝛾𝑠[𝑀𝑣(𝐺)] ≥  𝛾[𝑀𝑣(𝐺)]. 

 

Theorem 4.3. 𝛾𝑠[𝑀𝑣(𝐺)] ≥ ⌈
𝑃

1+∆(𝐺)
⌉ for every graph 𝐺(𝑝, 𝑞). 

Proof.  

From Theorem 2.3,  

𝛾[𝑀𝑣(𝐺)] ≥ ⌈
𝑃

1 + ∆(𝐺)
⌉ … … … … . (1) 

By Theorem 4.2,  

𝛾𝑠[𝑀𝑣(𝐺)] ≥  𝛾[𝑀𝑣(𝐺)] … … … … . (2) 
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We have from equation (1) and equation (2), 

                                                                        𝛾𝑠[𝑀𝑣(𝐺)] ≥ ⌈
𝑃

1+∆(𝐺)
⌉ … … … … . (3) 

 

Theorem 4.4. Let 𝐺(𝑝, 𝑞) be a graph, 𝛾𝑠[𝑀𝑣(𝐺)] ≥ ⌈
𝑑𝑖𝑎𝑚(𝐺)+1

3
⌉.  

Proof. Let 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, … … 𝑣𝑛} be the vertex set then ∃ u, v ∈ V (G) and d(u, v) forms a diametral path in G. Evidently, 

d(u, v) = diam(G). Consider D be the γ – set of 𝑀𝑣(𝐺). If 〈𝑉[𝑀𝑣(𝐺)] − 𝐷〉 is disconnected then 〈𝐷〉 itself forms the 𝛾𝑠 − 𝑠𝑒𝑡 

of 𝑀𝑣(𝐺). Otherwise, ∃ 𝑟𝑗
′ ∈ V [𝑀𝑣(𝐺)] − D having maximum degree, 2 ≤ j ≤ m such that 〈𝑉[𝑀𝑣(𝐺)] − 𝐷 ∪ {𝑟𝑗

′}〉 consists 

more than one component. Consequently, D ∪ {𝑟𝑗
′} forms a 𝛾𝑠 − 𝑠𝑒𝑡 of 𝑀𝑣(𝐺). Therefore, the diametral path contains at most 

𝛾𝑠[𝑀𝑣(𝐺)] − 1 edges joining the neighbourhood of the vertices of D ∪ {𝑟𝑗
′}. Therefore, 2𝛾𝑠[𝑀𝑣(𝐺)] + 𝛾𝑠[𝑀𝑣(𝐺)] − 1 ≥  

diam(G) . Which gives 𝛾𝑠[𝑀𝑣(𝐺)] ≥ ⌈
𝑑𝑖𝑎𝑚(𝐺)+1

3
⌉. 

 

Theorem 4.5. For every graph G , 𝛾𝑠[𝑀𝑣(𝐺)] ≤ 𝑞 for p ≥ 4 . 

Proof. Consider 𝐺(𝑝, 𝑞) be any graph. Let D be a γ−set of 𝑀𝑣(𝐺). If 〈𝑉[𝑀𝑣(𝐺)] − 𝐷〉 is disconnected then 〈𝐷〉 itself is a      

 𝛾𝑠 − 𝑠𝑒𝑡 of 𝑀𝑣(𝐺).) . Otherwise, ∃ 𝑟𝑗
′ ∈ V[𝑀𝑣(𝐺)]−D having maximum degree, 2 ≤ j ≤ m such that 〈𝑉[𝑀𝑣(𝐺)] − (𝐷 ∪ 𝑟𝑗

′)〉 is           

disconnected. Obviously, D ∪ 𝑟𝑗
′ forms a 𝛾𝑠 − 𝑠𝑒𝑡 of 𝑀𝑣(𝐺). Thus, 𝛾𝑠[𝑀𝑣(𝐺)] ≤ 𝑞. 

 

Theorem 4.6. For every tree 𝑇(𝑝, 𝑞),  𝛾𝑠[𝑀𝑣(𝑇)] ≤ 𝛼1(𝑇) . 

Proof. Let 𝐸1 = {𝑒1, 𝑒2, … … 𝑒𝑘, 1 ≤ 𝑘 ≤ 𝑞} be the minimum set of edges in G , so that |𝐸1| = 𝛼1(𝑇). Consider the dominating 

set D of 𝑀𝑣(𝑇). By the Theorem 4.2, 𝛾𝑠[𝑀𝑣(𝑇)] =  𝛾[𝑀𝑣(𝑇)] and 〈𝑉[𝑀𝑣(𝑇)] − 𝐷〉 is disconnected. As a result, D itself forms 

the  𝛾𝑠 − 𝑠𝑒𝑡 of 𝑀𝑣(𝑇) . Thereafter, |D| ≤ |𝐸1| . Hence  𝛾𝑠[𝑀𝑣(𝑇)] ≤ 𝛼1(𝑇). 

 

Theorem 4.7. For every graph 𝐺(𝑝, 𝑞), 𝛾𝑠[𝑀𝑣(𝐺)] ≤ 𝑑𝑖𝑎𝑚(𝐺) + 𝛼0(𝐺). 

Proof. Let 𝛼0(𝐺) be the vertex covering number of G. Let 𝑉(𝐺) = {𝑣1, 𝑣2, … … 𝑣𝑛} then ∃ 𝑣𝑖 , 𝑣𝑗 ∈ V (G) such that K = d(𝑣𝑖 , 𝑣𝑗) 

= {𝑣1, 𝑣2, … … 𝑣𝑘} forms a diametral path in G. Consider D be a γ − set in 𝑀𝑣(𝐺). 〈𝑉[𝑀𝑣(𝐺)] − 𝐷〉 is disconnected, then 〈𝐷〉 
itself is a 𝛾𝑠 − 𝑠𝑒𝑡 of 𝑀𝑣(𝐺). 

 

Hence 

                                                     |D| ≤ |K ∪ A|. 

                                                     |D| ≤ |K| ∪ |A|. 

                                  𝛾𝑠[𝑀𝑣(𝐺)] ≤ 𝑑𝑖𝑎𝑚(𝐺) + 𝛼0(𝐺). 

 

Otherwise, ∃ 𝑟𝑗
′ ∈ V [𝑀𝑣(𝐺)] − D having maximum degree, 2 ≤ j ≤ m such that 〈𝑉[𝑀𝑣(𝐺)] − (𝐷 ∪ 𝑟𝑗

′)〉  consists of many 

components. Evidently, a  𝛾𝑠 − 𝑠𝑒𝑡 of 𝑀𝑣(𝐺)  is generated by D ∪ {𝑟𝑗
′} . Since D ∪ {𝑟𝑗

′} includes diametral path, we have 

 

 

                                              |D ∪ {𝑟𝑗
′}| ≤ |K ∪ A| . 

                                              |D ∪ {𝑟𝑗
′}| ≤ |K| ∪ |A| . 

                                    𝛾𝑠[𝑀𝑣(𝐺)] ≤ 𝑑𝑖𝑎𝑚(𝐺) + 𝛼0(𝐺). 

 

V. CONCLUSION 

 In this paper we established split domination results on vertex semi-middle graph. Many bounds on domination number of 

vertex semi-middle graph are obtained.  
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