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Abstract-In a graph G = (V,E), a vertex v ∈ V, ve-dominates every edge incident to it
as well as every edge adjacent to these incident edges. The vertex-edge degree of a vertex v, is
denoted by dve(v) and is the number of edges ve-dominated by v. In this paper, we introduce
the vertex-edge eccentric connectivity index of a graph G, denoted by ξcvee(G) and is equal to
the sum of the product of the connectivity and ve-degree of the vertices of G. We calculate
the vertex-edge eccentric connectivity index of if certain graphs. More specifically, we obtain
the vertex-edge eccentric connectivity index of some wheel related graphs and windmill graphs.
Finally, we obtain some upper and lower bounds on ξcvee(G).
Keywords- ve-Degree of Vertex, Connectivity, Eccentricity Index.
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1 INTRODUCTION

Throughout this paper, by G = (V,E) we mean an undirected simple graph with vertex set
V and edge set E. As usual, we denote the number of vertices and edges in a graph G by n

and m respectively. The distance dG(u, v) between any two vertices u, v ∈ V of G is equal to
the length of a shortest path between u and v. For a vertex v of G, the eccentricity of v is
e(v) = max{dG(v, u) : u ∈ V (G)}. The diameter of G is diam(G) = max{e(v) : v ∈ V (G)}
and the radius of G is rad(G) = min{e(v) : v ∈ V (G)}. For a vertex v ∈ V (G), the open
neighborhood of v in G is denoted by N(v) and is defined as N(v) = {u ∈ V (G) : dG(u, v) = 1}
and the closed neighbourhood of v is defined as N [v] = N(v)∪{v}. If e(v) = rad(G) = diam(G),
then G is called a self-centered graph. The wheel graph Wn with n + 1 vertices is defined to
be the join of K1 and Cn. The vertex corresponding to K1 is known as the apex vertex while
the vertices corresponding to Cn are known as rim vertices [12]. The helm graph Hn is a graph
obtained from wheel graph Wn by attaching a pendant edge to each rim vertex. The helm
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graph contains three types of vertices, the vertex of degree n called apex, n pendant vertices
and n rim vertices of degree four. Thus the helm graph Hn has 2n + 1 vertices and 3n edges.
The gear graph Gn also sometimes known as a bipartite wheel graph, is a graph obtained from
wheel graph Wn by adding a vertex between each pair of adjacent rim vertices. It contains
three type of vertices, the vertex of degree n called apex, n vertices of degree three and n

vertices of degree two. Thus gear graph Gn has 2n + 1 vertices and 3n edges. The Flower
graph FLn is the graph obtained from a helm graph by joining each pendant vertex to the
apex of the helm graph. There are three types of vertices, the apex of degree 2n, n vertices
of degree four and n vertices of degree two. Thus the Flower graph FLn has 2n + 1 vertices
and 4n edges. The Sunflower graph SFn is the graph obtained from the Flower graph FLn

by attaching n pendant edges to the apex vertex. Hence SFn has four types of vertices, the
apex vertex of degree 3n, n vertices of degree four, n vertices of degree two and n pendant
vertices. The French windmill graph Fmn [7] is the graph obtained by taking m ≥ 2 copies of
the complete graph Kn, n ≥ 2 with a vertex in common. That is Fmn = K1 + ∪mj=1Kn−1.
Note that Fm2 = K1,m. For any terminology or notation not mentioned here, we refer to[12].
A topological index of a G is a graph invariant number calculated from G. Various topological
indices represent molecule structures and have got greater applications in chemistry. The Zagreb
indices have been introduced, more than fifty years ago by Gutman and Trinajestic [9], in 1972,
and studied by various authors in [1, 4, 10, 11, 13, 17]. Recently several graph invariants are
defined based on vertex eccentricities and studied by so many authors. Analogously to Zagreb
indices, Ghorbani et al.[8] and Vukičević et al.[16], defined the Zagreb eccentricity indices by
replacing degrees by the eccentricity of vertices. A vertex v, ve-dominates every edge incident
to v, as well as every edge adjacent with vertices in N(v). That is, each edge incident to a vertex
in N [v]. The concept of ve-degree of vertices in a graph G is defined by authors in[2]. Recently,
Chellali et al.[3] studied properties of ve degrees of vertices in graphs. In [5], Ediz defined
ve-degree atom-bond connectivity, ve-degree geometric-arithmetic, ve-degree harmonic and ve-
degree sum-connectivity indices as parallel to their corresponding classical degree versions. Let
us present some of the ve-degree based indices of graphs. The first ve-degree Zagreb alpha
index[6] of G is defined as

Sα = Sα(G) =
∑

v∈V (G)
dve(v)2.

Further the first ve-degree Zagreb beta index[6] of G is defined as

Sβ = Sβ(G) =
∑

uv∈V (G)
dve(u) + dve(v).
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In this paper, motivated by connectivity index, we introduce the ve-degree eccentric connectiv-
ity index of a graph. For a connected graph G = (V,E), the ve-degree of a vertex v, denoted
by dve(v), is the number of different edges which are incident with vertices in the closed neigh-
borhood N [v] of v [2]. The ve−degree eccentric connectivity index of G is defined as

ξcvee(G) =
∑

v∈V (G)
dve(v)e(v).

2 COMPUTATION OF ξcvee(G) OF SOME WHEEL RELATED GRAPHS
AND WINDMILL GRAPHS

Theorem 2.1. For n ≥ 3, let Wn be the wheel with n+ 1 vertices. Then

ξcvee(Wn) = 2n(n+ 5).

Proof: Let Wn be the wheel with v0 as the apex vertex and v1, v2, . . . , vn as the rim vertices.
Then e(v0) = 1 and e(vi) = 2 for 1 ≤ i ≤ n. Further dve(v0) = 2n and dve(vi) = n + 4 for
1 ≤ i ≤ n. By definition, we have

ξcvee(Wn) =
n∑
i=0

dve(vi)e(vi) = dve(v0)e(v0) +
n∑
i=1

dve(vi)e(vi)

= 2n.1 +
n∑
i=1

(n+ 4).2 = 2n+ 2n(n+ 4) = 2n(n+ 5).

Theorem 2.2. For n ≥ 3, let Gn be the gear graph with 2n+ 1 vertices. Then

ξcvee(Gn) = 3n(n+ 12).

Proof: Let Gn be the gear graph with 2n+ 1 vertices, and let v0 be the apex vertex, v1, . . . , vn

be the rim vertices with degree three and u1, . . . , un be the rim vertices with degree two. Then
dve(v0) = 3n, dve(vi) = n + 4, for 1 ≤ i ≤ n and dve(ui) = 6 for 1 ≤ i ≤ n. Further e(v0) = 2,
e(vi) = 3 for 1 ≤ i ≤ n and e(ui) = 3 for 1 ≤ i ≤ n. By definition, we have

ξcvee(Gn) =
∑

v∈V (Gn)
dve(v)e(v)

= dve(v0)e(v0) +
n∑
i=1

dve(vi)e(vi) +
n∑
i=1

dve(ui)e(ui)
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= 3n.2 +
n∑
i=1

(n+ 4).3 +
n∑
i=1

6.3

= 6n+ 3n(n+ 4) + 18n = 3n(n+ 12).

Theorem 2.3. For n ≥ 3, let Hn be the helm graph with 2n+ 1 vertices. Then

ξcvee(Hn) = n(3n+ 43).

Proof: Let Hn be the helm graph with 2n+ 1 vertices and let v0 be the apex vertex, v1, . . . , vn

be the rim vertices with degree four and u1, . . . , un be the pendant vertices. Then dve(v0) = 3n,
dve(vi) = n + 7 for 1 ≤ i ≤ n and dve(ui) = 4 for 1 ≤ i ≤ n. Further e(v0) = 2, e(vi) = 3 for
1 ≤ i ≤ n and e(ui) = 4 for 1 ≤ i ≤ n. By definition, we have

ξcvee(Hn) =
∑

v∈V (Hn)
dve(v)e(v)

= dve(v0)e(v0) +
n∑
i=1

dve(vi)e(vi) +
n∑
i=1

dve(ui)e(ui)

= 3n.2 +
n∑
i=1

3(n+ 7) +
n∑
i=1

4.4

= 6n+ 3n(n+ 7) + 16n = n(3n+ 43).

Theorem 2.4. Let FLn be the Flower graph with 2n+ 1 vertices. Then

ξcvee(FLn) = 8n(n+ 3).

Proof: Let FLn be the Flower graph with 2n+ 1 vertices and 4n edges and let v0 be the apex
vertex, v1, . . . , vn be the rim vertices with degree four and u1, . . . , un be the extreme vertices
with degree two. Then dve(v0) = 4n, dve(vi) = 2n + 7 for 1 ≤ i ≤ n and dve(ui) = 2n + 3 for
1 ≤ i ≤ n. Further e(v0) = 1, e(vi) = 2 for 1 ≤ i ≤ n and e(ui) = 2 for 1 ≤ i ≤ n. By definition,
we have

ξcvee(FLn) =
∑

v∈V (Fln)
dve(v)e(v)

= dve(v0)e(v0) +
n∑
i=1

dve(vi)e(vi) +
n∑
i=1

dve(ui)e(ui)
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= 4n.1 +
n∑
i=1

(2n+ 7).2 +
n∑
i=1

(2n+ 3).2

= 4n+ 2n(2n+ 7) + 2n(2n+ 3) = 8n(n+ 3).

Theorem 2.5. Let SFLn be the Sunflower graph with 3n+ 1 vertices. Then

ξcvee(SFLn) = n(18n+ 25).

Proof: Let SFLn, be the Sunflower graph with 3n+ 1 vertices and let v0 be the apex vertex,
v1, . . . , vn be the rim vertices of degree four, u1, . . . , un be the extreme vertices of degree two and
w1, . . . wn be the vertices of degree one. Then dve(v0) = 5n, dve(vi) = 3n+ 7, dve(ui) = 3n+ 3,
dve(wi) = 3n, e(v0) = 1, e(vi) = e(ui) = e(wi) = 2, for 1 ≤ i ≤ n. Be definition, we have

ξcvee(SFLn) =
∑

v∈V (Sfn)
dve(v)e(v)

= dve(v0)e(v0) +
n∑
i=1

dve(vi)e(vi) +
n∑
i=1

dve(ui)e(ui)

+
n∑
i=1

dve(wi)e(wi)

= 5n.1 +
n∑
i=1

(3n+ 7).2 +
n∑
i=1

(3n+ 3).2 +
n∑
i=1

(3n).2

= 5n+ 2n(3n+ 7) + 2n(3n+ 3) + 2n.3n = n(18n+ 25).

Theorem 2.6. Let m,n ≥ 2 and let Fmn be the French windmill graph. Then

ξcvee(Fmn ) = m
(n− 1)

2
(
2n2 + 4mn− 5n− 4m+ 4

)
.

Proof: Let Fmn be theFrench windmill with v0 as the central common vertex and let v1j , . . . ,

v(n−1)j be the vertices of the jth copy of Kn−1 for 1 ≤ j ≤ m. Then dve(v0) = mn(n−1)
2 ,

dve(vij) = n(n−1)
2 + (m− 1)(n− 1), e(v0) = 1, e(vij) = 2 for 1 ≤ i ≤ m and 1 ≤ j ≤ n. By the

definition, we have

ξcvee(Fmn ) =
∑

v∈V (Fm
n )
dve(v)e(v)
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= dve(v0)e(v0) +
n−1∑
i=1

m∑
j=1

dve(vij)e(vij)

=
((n(n− 1)

2
)
m
)
.1 +

n−1∑
i=1

m∑
j=1

(n(n− 1)
2 + (m− 1)(n− 1)

)
2

=
(n(n− 1)

2
)
m+ 2m(n− 1)

(n(n− 1)
2 + (m− 1)(n− 1)

)
=
(n(n− 1)

2
)
m+m(n− 1)

(
n2 − n+ 2mn− 2n− 2m+ 2

)
= m

(n− 1)
2

(
n+ 2(n2 − n+ 2mn− 2n− 2m+ 2)

)
= m

(n− 1)
2

(
2n2 + 4mn− 5n− 4m+ 4

)
.

Theorem 2.7. Let Cmn+1 be the Kulli cycle windmill graph with, n ≥ 3 with a vertex K1, in
common. Then

ξcvee(Cmn+1) =


m
(
2n+ n2(n+ 2)

)
, if n is even,

mn
(
2 + (n2 + n− 2)

)
, if n is odd.

Proof: Let Cmn+1, be the Kulli cycle windmill graph with, n ≥ 3 with a vertex K1, in common,
if n ≥ 5, m ≥ 2. Let v0 be the central vertex (common) and Cjn, j = 1, 2 · · · ,m be the jth copy
of Cn in Cmn+1, with vertex set Vj = {V1j , V2j , · · · , V(n)j}. Then dve(v0) = 2mn, dve(vi) = 2n+4,
i = 1, 2, · · · , n. e(v0) = 1, e(vi) = n

2 , if n is even i = 1, 2, · · · , n and e(vi) = n−1
2 , if n is odd.

i = 1, 2, · · · , n. By the definition we have
Case I: If n ≥ 4, with a vertex K1, if n is even.

ξcvee(Cmn+1) = dve(v0)e(v0) +
n∑
i=1

dve(vi)e(vi),

= (2mn)(1) +m
n∑
i=1

(2n+ 4)
(n

2
)
,

= 2mn+m
(
2n(n+ 2)n2

)
,

= m
(
2n+ n2(n+ 2)

)
.

Case II: If n ≥ 3, with a vertex K1, if n is odd.

ξcvee(Cmn+1) = dve(v0)e(v0) +
n∑
i=1

dve(vi)e(vi),
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= (2mn)(1) +m
n∑
i=1

(2n+ 4)
(n− 1

2
)
,

= 2mn+m
(
2n(n+ 2)

(n− 1
2

))
,

= 2mn+mn
(
(n2 + n− 2)

)
,

= mn
(
2 + (n2 + n− 2)

)
.

3 BOUNDS ON THE V E-DEGREE ECCENTRIC CONNECTIVITY
INDEX OF GRAPHS

Theorem 3.1. Let G be a connected graph with n vertices. Then

ξcvee(G) ≥ 1
rad(G) + diam(G)

[
Sα(G) + rad(G)diam(G)M1(G)

]
.

Proof: For i = 1, . . . , n, let ai = e(vi) and bi = dve(vi), M = diam(G) and m = rad(G) . Then
we get that

n∑
i=1

d2
ve(vi) + rad(G)diam(G)

n∑
i=1

e2(vi) ≤ (rad(G) + diam(G))
n∑
i=1

e(vi)dve(vi)

which implies that,

Sα(G) + rad(G)diam(G)M1(G) ≤ (rad(G) + diam(G))φ(G).

Therefore,
ξcvee(G) ≥ 1

rad(G) + diam(G)
[
Sα(G) + rad(G)diam(G)M1(G)

]
.

Now, we have the following corollary from Theorem 3.1.

Corollary 3.2. Let G be a graph with n vertices whose ∆ ≤ n− 1 and δ ≥ 1. Then

ξcvee(G) ≥ 1
n

[
Sα(G) +M1(G)

]
.

Theorem 3.3. Let G be a connected graph with n vertices. Then

ξcvee(G) ≥ φ(G)
n

[
M1(G)− 3η(G)

]
,
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where η(G) is the total number of triangles in G. The bounds is sharp on the cycle Cn, n ≥ 3
and the star K1,n−1, n ≥ 2.

Proof: Chebyshev’s inequality states the following:For any non increasing sequences a1 ≥ a2 ≥
· · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn,

n
n∑
i=1

aibi ≥
n∑
i=1

ai

n∑
i=1

bi (3)

is true. Let G be a connected graph with V (G) = {v1, . . . , vn}. Now, by setting ai = e(vi) and
bi = dve(vi) for 1 ≤ i ≤ n in (3), we get that

n
n∑
i=1

e(vi)dve(vi) ≥
n∑
i=1

e(vi)
n∑
i=1

dve(vi)

≥ φ(G)
[
M1(G)− 3η(G)

]
.

and so,
nξcvee(G) ≥ φ(G)

[
M1(G)− 3η(G)

]
.

Therefore
ξcvee(G) ≥ φ(G)

n

(
M1(G)− 3η(G)

)
.

4 CONCLUSION

We have proposed new vertex edge eccentrical connectivity topological index of graph G. We
calculated of some wheel related graphs and windmill graphs and also we calculated some upper
and lower bounds on ξcvee(G).
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