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Abstract - In this paper, we consider the following nonlinear equation  

( ) ( )2 2 2 31
3 2 2r r

u d
u u d u d r u

t r

 +
=  +  − − − −


 

where ( ) 2 *: , ,u r t d+  . This equation has been investigated by Grotowski in 2001 in studying the Yang-Mills heat 

flow connections on Riemann manifolds. In the paper, we prove the local Cauchy problem for above equation that is well-

posed in ( )21 r
L

++
. More precisely, for any initial data ( )20 1 r

u L

++
 , there exists ( )0 0T u   such that the above equation 

has a unique solution ( ) ( )21 r
u t L

++
 for all ( )00,t T u   . 

Keywords - Local Cauchy problem, Local existence and uniqueness problem, Yang-Mills heat flows, Yang-Mills connections, 

Geometric flows. 

I. INTRODUCTION  

In this paper, we are interested in the following nonlinear heat equation  
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                                    (1) 

where ( ) 2 *: , ,u r t d+  . Equation (1) has a strong connection to the problem of Yang Mills connections in 

( )d SO d  which is an important part in Yang-Mills theory. We would like to mention that the theory was used to study the 

weak nuclear forces, governing the nuclear decay of some particles which is considered as a non-commutative version of 

Maxwell’s electromagnetism, see more details in [1]-[6]. In particular, the Yang-Mills heat flow has received a lot of attention 

from both mathematics and physics communities.  Results on existence and uniqueness of weak solutions in other functional 

spaces  were obtained in  [7] for 2,3d = , and  [8] and [9] for 4d = ; global existence has proved in [10]-[12]; the regularity 

was established in  [13] in for higher dimensions;  stability  were proved in [14] and [15]; singularity formations have been 

studied in [16]-[24], the local well posedness was studied in [25] and [26] in Sobolev spaces . In particular, the study of Yang-

Mills connections usually is considered in abstract spaces such as Riemann manifolds which get lot of inconveniences. For that 

reason, the author in [17] reduced the study of Yang-Mills connections to the problem introduced in (1).  

 

The main goal of this paper is to study the local Cauchy problem to (1) since strong connections to the Yang-Mills 

problem. Recently, the authors in [24] solved the local Cauchy problem for (1) in ( )0C

+  defined as the set of smooth 

functions with compact supports.  However, it remains open if the local Cauchy problem in can be solved ( )L

+ . In this 

work, we aim to prove the Cauchy problem in ( ) ( )21 r
L L 

+ ++
  which is strictly larger than ( )0C

+ .  
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For more convenience, we mention below some important notations which will be used in the proof of the paper. Let   be a  

Lebesgue measurable set in *,n n ,  we denote ( )L   as the set of all Lebesgue measurable functions f on   satisfying  

( ) ( ) inf  such that : 0B x f x B   =  +
 

which is a Banach  space  with  the following norm  

( )
( ) ( ) inf  such that : 0 .

L
f B x f x B 

=   =  

Similarly, we also define ( )2
1 x

L

+
  

( ) ( ) ( ) ( )
( )

2

2

1
 such that 1 .

x
L

L f L x f


 

+


 
 =   +  + 

   
and it is also a Banach space with the norm 

( ) ( ) ( )
( )2

1

2
1 .

x
L

L

f x f


+




= + . 

We call f a radially symmetric function on   if and only if for all orthogonal matrices A and x , then it satisfies that   

Ax  and ( ) ( )f Ax f x= . Hence, we introduce  

( ) ( )   such that  radially symmetricradL f L f  =   , 

which is a Banach space with 
( )

.
L 

 norm. In particular, we also define the abstract space of Banach-valued functions 

, 0TX T   by   

  ( ) ( )( )2
1

0, ,T

rad x
X L T L L  

+
=     

which is also a Banach space with the norm 

( )
 ( )0,

TX L T
z Z t


= where ( ) ( )

( )2
1 x

L
Z t z t



+


= . 

Let   be Laplace operator in Euclide space 2d + defined by 
2

2

1
j j

d

x x

j

+

=

 =  . By taking 2d + = , we recall the definition of 

semi-group  
0

t

t
e


  as follows 

( ) ( )2 2:t d de L L  +  +→  

and 

                                              ( )
( )

( )

2

2

4
2

2

1

4 d

x y

t t
d

e f x f y e dy

t +

−
−



+
=  .                                                             (2) 

We  would like to mention  [27, Proposition 48.4] the following fundamental estimate 

                                                                             
( ) ( )

2
2

d
dL

t

L
e f f

 +
 +

  .                                                         (3) 

II. MAIN RESULTS 

In this section, we aim to prove the local Cauchy problem for equation (1) in ( )2
1 x

L

++
. However, it is so hard to give a 

direct proof to equation (1) due to complexity of the linear operator  

2 1
r r

d

r

+
 +  . 

To overcome this challenge, we used the idea investigated in [28] where the authors successfully handled the Cauchy 

problem for harmonic heat flows. Let f  be a function defined in + , then we denote f  as f ’s extension on  2d +  given by  

                                                                                  ( ) ( )f x f x= .                                                                                    (4) 

We can see that the extension is always a radially symmetric function on 2d + .  In particular, once ( )2f C + , then we 

have ( )2 2df C + and the following identity holds 
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( ) ( )2 1
r r

d
f x f f x

r

+
 =  +  . 

Let us consider u  is a ( )2C + -solution to (1) (so-called the classical solution),  then  the extension u  belongs   to ( )2 2dC +  

and u  satisfies the following equation 

                                                     
( ) ( ) ( ) ( )

( ) ( )

22 3 2

2

0

3 2 2 , , 0, ,

0 .

d

t

d

rad

u u d u d x u x t T

u u L

+

 +

 =  − − − −  


= 

                                       (5) 

From the symmetricity of equation (5), the solution u  remains radially symmetric as well as the solution exists. In the 

following, we aim to prove the local Cauchy problem to equation (5) in ( ) ( )2

2 2

1

d d

rad x
L L +  +

+
 . Firstly, we have the 

following Lemma:  

Lemma 2.1. Let us consider   be a positive number and ( )2df L + satisfying  

                                                                         ( ) ( )
( )2

1 .
dL

x f A


 +

+  .                                                                            (6) 

Then, it holds that 

( )
( )

( )
2

1 , 0
d

t

L

x e f C A t



 +

+   , 

where the semi-group te  defined as in (2). 

Proof: By the explicit formula in (2), we write as follows 

( )
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2
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4
2
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+
=  . 

Let us consider 0R   large enough and fixed later.  For all x R , we use (6) to derive 
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It remains to the case x R . Let us define 1 :
2

x
K y y

  
=  
  

and 1 :
2

x
K y y

  
=  
  

. It is obvious that 2

1 2

dK K + = . 

Then, we have the decomposition 
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where 
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+ For 1I : We use the facts that ( )0,1t and 1,
2

x
y K x y x y −  −   , then it follows  
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Using the changing variable 
2

x y
z

t

−
=  , we get the following 
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which implies ( )1 ,I C R A . 

+ For 2I : Using the fact that 
2 ,

2

x
y K y  , then it follows ( )

1

1

x
C

y






+


+
. Hence, we estimate 2I  as follows 

( )

( )
( )

2

2

4
2 2

24
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t
d
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I e dy C A
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−
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+
  . 

Thus, we conclude that for all x R , we have  

( ) ( )(1 ) ,tx e f x C R A


+  . 

Finally, we get the conclusion of the proof.  

 

Now, we have the following result: 

Proposition 2.2. Let ( ) ( )2

2 2

0 1

d d

rad x
u L L +  +

+
  arbitrarily, there exists ( )0 0T T u=   such that problem (5) has a unique 

solution on  0,T  and  ( ) ( ) ( )2

2 2

1

d d

rad x
u t L L +  +

+
  for all  0,t T . In particular, the following estimate holds 

( )2
2

1

0 1T d

x
X L

u u  +

+

 + . 

Proof:  The result follows from the Banach fixed point theorem (the unique fixed point of a constructive mapping). Let us 

consider initial data  ( ) ( )2

2 2

0 1

d d

rad x
u L L +  +

+
   and 0T   and  define  

 0 0 such that ( ) 1
T

T t

X
B u X u e u=  −  . 

In addition, we define   a mapping on TX  

                                                 ( )( ) ( ) ( )( ) ( )( )0 0

0

, , 0 and  0

t
t stu t e u e F s u s ds t z u
−  = +   = ,                                            (7) 

 

and F defined by  

                                                                  ( ) ( ) ( )
22 33 2 2F u d u d x u= − − − − .                                                                   (8) 

In the below, we aim to prove that once T small enough,  satisfies the following properties: 

(H1):   maps 0B into itself. 

(H2):   is a contraction mapping on 0B  i.e. there exists ( )0,1   such that  

( ) ( )1 2 1 2 1 2 0, ,TT XX
u u u u u u B −  −   . 

- Proof of (H1): Let 0u B  arbitrarily, we derive from (8) and the fact 1TX
u   
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( ) ( )( )
( )

( )
( )

( )
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( )
( )2 2 2

2 2 2 2
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2 32
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d d d
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 +
+ + +

 
+  +  

 
, 
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Applying Lemma 2.1 with 2 = and ( )0,1t s−  ,   we get  

 
( ) ( )( )

( )2
2

1

1 ,T
d

x

t s

XL
e F u s C u

 +

+

− 
  

which yields          

                                                  ( ) ( )( )( )

0 1

0

TT

T

t

t t s

XX

X

u e u e F u s ds C T u −  − =  ,                                                      (9) 

for all 
0u B . Taking 

2

1

1
T

C

 
  
 

, we get 

( ) 0 TT

t

XX
u e u u −  ,

0u B  . 

In addition, since u  is radially symmetric, so ( )F u  defined as in (8) is and the convolution in (2) saves the symmetry that 

leads ( )( )u t is radially symmetric for all  0,t T . Finally, we conclude (H1).  

 

- Proof of (H2): Let 
1 2 0,u u B , and we write  

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

1 2 1 2 1 2

2 2 2

1 2 1 1 2 2

3 2

                                2 .

F u s F u s d u s u s u s u s

d x u s u s u s u s u s u s

− = − − − +

− − − + +
 

 

Since 1 1TX
u  and 2 1TX

u  , we derive  

( )( ) ( )( )
( )

( ) ( )
( )

 22
22 11

1 2 1 2 , 0,
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F u s F u s C u s u s s T
 + +

++

−  −   . 

Regarding to Lemma 2.1, we have 
( ) ( )( ) ( )( )( )

( )
( ) ( )

( )22
22 11

1 2 1 2 1 2 Tdd
xx

t s

XLL
e F u s F u s C u s u s C u u

 + +
++

− 
−  −  − , 

for all ( )0, 0,t s s t−   . Thus, we derive from (6) that for all ( 0,t T  

( )( ) ( )( )
( )2

2
1

1 2 1 2 2 1 2

0

T Td

x

t

X XL
u t u t C u u ds C T u u

 +

+

 
 −  −  − 

 
 , 

which yields  

( ) ( )1 2 2 1 2 TT XX
u u C T u u −  − , 1 2 0,u u B  . 

 

Finally, we choose 2

1

2
C T  i.e. 

2

2

1

2
T

C

 
  
 

then  

( ) ( )1 2 1 2

1

2
TT XX

u u u u −  − , 1 2 0,u u B  , 

. 
which concludes  (H2). 

 

Now, we continue on the proof of the proposition, since 
TX is a Banach space and   is a contractive map from 0B  to itself, so 

we apply  Banach fixed point theorem  that there  uniquely exists 0u B  such that  

( ) ( )( )  , 0,u t u t t T=    , 

and we have the estimate  
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                                                     ( ) ( )2
2

1

0 0 0 1T dT T

x

t t

X LX X
u e u u e u u  +

+

  +  −  + .                                                    (10) 

In particular, by the parabolic regularity of the semi-group te  , we improve that ( ) ( ) ( )2 2 , 0,du t C t T+    and it satisfies 

equation (5) for all ( ) ( )2, 0,dx t T+  point-wise, and we derive from (10) 

( ) ( ) ( 
2

1

0
2

2

1

, , , 0,
1

x
L

d

u

u x t x t T
x



+ +

+

   
+

. 

 

Finally, we get the conclusion of the Proposition.  

 

Consequently, Proposition 2.2 implies the following result:  

Proposition 2.3: Let 1d  be an integer number and   initial choice ( )20 1 r
u L

++
 . Then, there exists ( )0T T u= such that 

problem (1) has a unique solution on  0,T and ( ) ( ) ( ) ( 2

2

1
, 0,

x
u t L C t T

+ ++
    . In particular, we have the following 

estimate 

( )
( )

( ) ( )0

2
, , , 0,

1

C u
u r t r t T

r
+   

+
. 

Proof: Let ( )20 1 r
u L

++
 , then, it follows from the extension (4) that ( ) ( )2

2 2

0 1

d d

rad x
u L L +  +

+
  . Applying  Proposition 

2.2, we obtain the existence and the uniqueness of the solution u  to equation (5) on ( )00,T u    and 

( ) ( ) ( ) ( ) ( 2

2

1
, 0,rad x

u t L L C t T 

+ + ++
     , then, the problem (1) and (8) are equivalent in the radially symmetric 

setting, this leads to the existence and the uniqueness of u and also the conclusion  the proposition completely follows. 

 

Remark 2.4: We can repeat the proof of Propositions 2.2 and 2.3, to establish the local existence and uniqueness in spaces 

( )
1 r

L 



++
where 

2

3
  . Since the main difficulty is to handle the hugeness of nonlinear term 2 3r u at infinity. However, once 

( )
1

2
,

3r
u L  

++
   it follows that the nonlinearity is controlled well by  

( )
( )( ) ( )

1

22
3 332 3

3
1 1

1 r
L

r
r u r u u r

r


  




+

−

= +  +
+

, 

since 
2

3 0

−  . We kindly refer the readers to check the details of the general results. 

III. CONCLUSION 

As we showed in Proposition 2.3, the local Cauchy problem in ( )21 r
L

++
is completely solved (also in ( )

1

2
,

3r
L  

++
  

as in Remark 2.4).  In comparison to the result proved in Donninger and Schörkhuber, 2019  where the authors considered the 

problem in ( )0C

+ , our result is better.  The technique of the proof replies to the idea given by Biernat and Seki, 2019 that 

extended the original problem to  the  radially symmetric one in 
2d +
, and then, we established a new property that the semi-

group te  , 0t    reserves the polynomial decays showed in Lemma 2.1, then  the existence and uniqueness follows by the 

route map based on Banach fixed point theorem.  
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