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Abstract - In this paper, Nernst-Planck(NP) equation for ion fluxes that uses Lennard Jones(LJ) potential to incorporate 

finite-size effects in terms of hard sphere repulsion was coupled with Poisson equations to form modified PNP(mPNP) 

system of equations. These coupled equations were then discretized using Galerkin finite element Method(GFEM) 

approach based on Taylor-hood elements with regular rectangular sub-domains. However, this method resulted into 

numerical oscillations in the approximate solution, necessitating stabilization to obtain desired results. Consequently, 

Stream-Upwind Petrov-Galerkin(SUPG)method which adds a mesh dependent term to the FEM together with iterative 

linearization was adopted resulting into a stable numerical scheme. The resulting linear system of equations was solved 

iteratively using preconditioned conjugate gradient(PCG) scheme to speed up convergence, where potential consistently 

updated the concentration components. Concentration profiles of two ion species under varied steric effects for mPNP and 

PNP were compared and analyzed. 
 

Keywords - Modified PNP, Lennard Jones, Hard-sphere, SUPG, Finite-size effects. 
 

I. INTRODUCTION 

Ion channels are proteins with pores down their middle, found in the membranes of biological cells [9]. These 

channels control access to the interior of cells enabling them to perform biological functions such as; signal transfers in the 

nervous system, regulation of secretion of hormones among others. The mechanisms of ionic flow within a channel as a 

function of ionic concentration, membrane potential and the structure of the channel is a central problem in molecular 

biophysics such as in[26]. 

 

Poisson-Nernst Planck (PNP) theory is a mean-field continuum model widely applied for describing ion flow in areas 

such as physics and chemistry. PNP treats electrostatic potential, concentration and ion fluxes in a consistent manner 

capable of providing accurate prediction for ion channels flows. Hence, the model have been extensively used for nano-

fluidic systems, electrochemical diffusion and ion channel applications. Numerous numerical techniques have been applied 

to solve PNP equations, among them Finite Element method(FEM) is granted as most suitable for simulation of ion 

channels, due to the inbuilt and unmatched capabilities which enables them to adequately handle irregular geometries and 

nonuniform boundaries[3, 14, 15, 16, 20, 24]. Recently, FEM have undergone several modifications to improve accuracy, 

convergence rate and degrees of freedom. However, when computing approximate solution, system of PNP equations 

present several challenges using Galerkin FEM, attributed to non linearity calling for linearization. In addition, fluxes in 

PNP equations are convection-dominated hence introducing instabilities which may result into negative concentration in 

the approximate solution, see [11, 18]. Recently, robust approaches have been successfully applied to eradicate such 

difficulties, and stabilize the schemes, such as Stream-upwind Petrov-Galerkin (SUPG) methods[5, 10, 22] and Galerkin 

Least Square methods which adds mesh dependent terms to FEM. 

 

SUPG method was considered by [18] for solving unsteady Naiver-Stokes equations in 2D, which besides eliminating 

oscillations it also incorporated small time increments to obtain stable solutions. Equally, [4] developed stabilized schemes 

for simulation of ion transport. SUPG methods and the Pseudo Residual free bubble function was introduced to enhance 

the robustness and convergence performance of the finite element algorithm in the ion channel. The two schemes gave 

reasonable results which are in agreement with experimental data and Brownian motion. [12] solved 3D PNP model using 

SUPG and interior penalty(IP) method which adds a penalizing term corresponding to gradient jumps across element 

boundaries to enforce smooth solution. The scheme was successfully applied to KcsA ion channel and the results showed 

numerical stability and robustness of SUPG. 

http://www.internationaljournalssrg.org/
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Transformation using slotboom variable[21, 6] or quasi-fermi variable approach [17, 7] was also utilized to address 

numerical difficulties of the nonlinear systems. An efficient numerical algorithm of finite difference for solving 3D steady 

state PNP equation using excess chemical potential of mobile ions described by classical density function theory was 

developed in [13]. In these algorithms, the Nernst Planck equations were transformed into the Laplace equation through the 

slotboom transformation. The algebraic multigrid method was applied to efficiently solve the system and excess chemical 

potentials were calculated through fast Fourier transforms to reduce computational complexity. The numerical results were 

established to be in agreement with experimental data. [8] presented an efficient nonlinear FE solver for solving PNP ion 

channel model with Neumann boundary conditions and membrane surface charge density. In some instances, slotboom 

variables transformation was introduced for each NP equations together with modified Newton iterative scheme to improve 

accuracy. Subsequently, [25] developed mathematical model for finite size effects using a regularized Lennard Jones (LJ) 

repulsive potential and Density function theory under energy variational framework enabling numerical verification to 

recover layering behaviour. This resulted into development and application of Edge Average finite element method to 

solve systems of mPNP coupled with convex iteration scheme ensuring self-consistency between ionic concentrations and 

electrostatic potentials. 

 

Building up from our previous study that demonstrated existence of approximate solution for system of mPNP [1]and 

numerical simulation of mPNP equation [2], we now use SUPG approach to stabilize GFEM to solve 2D steady PNP with 

LJ potential for hard-sphere repulsion accounting for the steric effects. Approximate solutions are then compared with 

those obtained using Galerkin FEM. Iterative linearization was also adopted for nonlinear terms and an efficient 

preconditioned-conjugate gradient method for iteration of the resulting linear system of equation to improve convergence 

and stability of the schemes. Main aim of this study was to derive an effective modified PNP(mPNP)model which 

describes ion interaction based on hard-sphere repulsion. The emerging LJ potential in the energy functional for modeling 

hard-sphere repulsion using band limit function which cut-off higher frequencies and preserve spatial frequencies in 

Fourier modes,is derived in [19]. 

 

This paper is organized as follows:In section two we discuss ion transport models with finite size effects. We also 

demonstrate modification of the Nernst-Planck equation using LJ potential to in-cooperate hard sphere repulsion and the 

imposed boundary conditions. Section three explains the numerical techniques used to solve the nonlinear system of mPNP 

equations. Whereas, in section four, we present the numerical results and discussions. Then make concluding remarks and 

recommendation for future study in section five. 

 

II. MATHEMATICAL MODEL 

A. Poisson Nernst-Planck equation with Steric effects 

Consider a continuum flow in two dimensional rectangular domain, Ω ∈ ℝ of unit thickness representing a channel in 

cell membrane. The PNP equations are given by;  

 

 
𝜕𝑐𝑖

𝜕𝑡
= 𝛻. 𝐷𝑖(𝛻𝑐𝑖 +

𝑐𝑖

𝐾𝐵𝑇
𝑧𝑖𝑒𝛻𝛷),    𝑖 = 1, . . . 𝑁                                                   (2.1𝑎) 

                                              −𝛻. (𝜀𝛻𝛷) = ∑ 𝑧𝑖𝑒𝑐𝑖

𝑁

𝑖=1

                                                                               (2.1𝑏)  

 
with (2.1a) and (2.1b) representing Nernst-Planck (NP) equation the Poisson equations respectively. Where ci and zi are 

concentration and valence for the ith ion species, φ is the electrostatic potential, KB is the Boltzmann constant, T is the 

absolute temperature, N is the number of ions, e is the unit charge and Di is the diffusion coefficient of ion species, and ε is 

the coupling energy constant. 

 

The modified form of the PNP equation is obtained by adding a nonlinear term comprising of the Lennard Jones 

repulsive potential to the NP equation. The repulsive potential accounts for finite size effects of ions by incorporating the 

ion interaction which are modeled as infinitesimal hard spheres in a rectangular space with unit thickness. Contribution of 

the potential to the total free energy functional is given by 

 

𝐸 = ∫(𝐾𝐵𝑇 ∑ 𝑐𝑖 𝑙𝑛 𝑐𝑖 +

𝑁

𝑖=1

1

2
∑ 𝑧𝑖𝑒𝑐𝑖𝛷

𝑁

𝑖=1

)𝑑𝑥 + ∑ ∬
𝜀𝑖𝑗

2
 
(𝑎𝑖 + 𝑎𝑗)12

|𝑥 − 𝑦|12
𝑐𝑖(𝑥)𝑐𝑗(𝑦)𝑑𝑥𝑑𝑦              (2.2) 

𝑁

𝑖,𝑗=1

 

                

ai and aj are the radii of the ith and jth and εij becomes their coupling energy constant, in which we assume εij = εji. Variational 

derivative with respect to each ion 𝛿𝐸
𝛿𝑐𝑖

⁄  , we obtain repulsive energy term into the system of equations resulting into a 

Nernst-Planck equation for charge densities as  
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𝜕𝑐𝑖 

𝜕𝑡
 = 𝛻. 𝐷𝑖 (𝛻𝑐𝑖 +

𝑐𝑖

𝐾𝐵𝑇
 𝑧𝑖𝑒𝛻Φ +

𝑐𝑖

𝐾𝐵𝑇
∑ 𝛻 ∫ 𝜀𝑖𝑗 

(𝑎𝑖 + 𝑎𝑗)12

|𝑥 − 𝑦|12
𝑐𝑗(𝑦)𝑑𝑦)

𝛺

𝑁

𝑖=1

 

                  (2.3) 

where the first, second and third terms in (2.3) are respectively, diffusion, drift driven by electrostatic potential in the 

field and the hard sphere potential that characterizes finite size of ions depending on the ion species. 

Major computational challenge arises when solving equations (2.2)-(2.3) due to inefficiency in simulation occasioned by 

the effects of high frequencies. To address the problem and the resultant inaccuracy, we employ a band-limit function 

which depends on a cut-off length σ to eliminate the high spatial frequencies and preserve the bounded spatial frequencies, 

see [19, 23]. The cut-off length is a parameter whose value tends to zero for better approximation. Using band-limit 

function and fourier analysis, an approximate energy functional is derived which reduces the numerical complexity of the 

repulsive term in the LJ potential describing ion interaction represented as [19] 

 𝐸𝜎 = ∫(𝐾𝐵𝑇 ∑ 𝑐𝑖 𝑙𝑛 𝑐𝑖 +𝑁
𝑖=1

1

2
∑ 𝑧𝑖𝑒𝑐𝑖𝛷

𝑁
𝑖=1 )𝑑𝑥 + ∑ ∬

𝜀𝑖𝑗

2
 (𝑎𝑖 + 𝑎𝑗)12𝑐𝑖(𝑥)𝑐𝑗(𝑦)𝑑𝑥𝑑𝑦𝑁

𝑖,𝑗=1  

                                                                                                                                                                (2.4) 

where Sσ ≈ σd−12, the dimensional space d ≤ 3. 

Applying variational derivative in equation (2.4) for each charge density we obtain reorganized mathematical model given 

by 

 

                        
𝜕𝑐𝑖 

𝜕𝑡
 = 𝛻. 𝐷𝑖 (𝛻𝑐𝑖 +

𝑐𝑖

𝐾𝐵𝑇
 𝑧𝑖𝑒𝛻Φ +

𝑐𝑖

𝐾𝐵𝑇
∑ 𝛻𝑆𝜎𝜀𝑖𝑗 (𝑎𝑖 + 𝑎𝑗)12                                              (2.5) 𝑁

𝑖=1  

Decomposing the model for the two ion species, cn (negative) and cp (positive) in steady state, equation (2.5) is simplified 

to obtain diffusive rates of ion concentrations given by 

                               𝐷𝑛 [𝛻. (𝛻𝑐𝑛 +
𝑧𝑛

𝐾𝐵𝑇
𝑐𝑛𝛻𝛷) + 𝑆𝜎𝛻. (𝑔𝑛𝑛𝑐𝑛𝛻𝑐𝑛 + 𝑔𝑛𝑝𝑐𝑛𝛻𝑐𝑝)] = 0                                 (2.6a) 

                               𝐷𝑝 [𝛻. (𝛻𝑐𝑝 +
𝑧𝑝

𝐾𝐵𝑇
𝑐𝑝𝛻𝛷) + 𝑆𝜎𝛻. (𝑔𝑝𝑝𝑐𝑝𝛻𝑐𝑝 + 𝑔𝑛𝑝𝑐𝑝𝛻𝑐𝑛)] = 0                                 (2.6b) 

where𝑔𝑛𝑛 = 𝜀11(2𝑎1)12,   𝑔𝑛𝑝 = 𝜀12(𝑎1 + 𝑎2)12 and  𝑔𝑝𝑝 = 𝜀22(2𝑎2)12.  Coupling equation (2.6a) and(2.6b) with (2.1b), 

we obtain the nonlinear system of mPNP equations. 

1.1 Boundary and initial conditions 

Then imposing Dirichlet boundary conditions by specifying ion concentrations and potential at the channel inlet and outlet 

for the domain as 

 

𝑐𝑛 (𝑥, 0) = 𝑐𝑝(𝑥, 0) = 𝐻1  

𝑐𝑛 (𝑥, 0.1) = 𝑐𝑝(𝑥, 0.1) = 0 

Φ(𝑥, 0) = 𝐻2 ,  Φ(𝑥, 1) = 0, 𝑥, 𝑦 ∈ 𝜕𝛺 

                               

                                              (2.7)  

where H1 > 0 and H2 > 0 are constants. For completeness, we prescribe Neumann boundary condition at the channel walls 

for both concentration and potential, representing no flux conditions and given by 

 

[(𝛻𝑐𝑛 +
𝑧𝑛𝑒

𝐾𝐵𝑇
𝑐𝑛𝛻𝛷) + 𝑆𝜎𝛻. (𝑔𝑛𝑛𝑐𝑛𝛻𝑐𝑛 + 𝑔𝑛𝑝𝑐𝑛𝛻𝑐𝑝)] . 𝑛 = 0 

(𝜀𝛻𝛷). 𝑛 = 0   
                   

                                                            (2.8) 

where electro-neutrality condition is assumed for the charge densities 

lim
𝑥→∞

𝑐𝑛(𝑥, 0) = 𝑐𝑝(𝑥, 0)                           

                                             (2.9) 

 

III. NUMERICAL METHOD 

This section reduces the model to a two dimensional systems of modified PNP equations given by equation (2.6) and 

(2.1b), redefine numerically the boundary conditions in section 2.2. We then consider two ion species denoted by n and p, 

with valencies taken to be zn = −1 and zp = 1, and radii a1 = 1.5Å and a2 = 2.0Å, respectively. Diffusion coefficients 

were taken to be Dn = 2.0305 × 10−5and  Dp = 1.335 × 10−5 for negative and positive ions respectively and flow 

assumed to be in the y-axis and normal to the x-axis. 

 

A. Galerkin Finite Element Method 

The study examined use of Taylor-hood rectangular discretization of the systems of mPNP and PNP equations with 9 
nodes for concentration and 4 nodes for potential variables. Shape functions were derived using local co-ordinates(η,ξ) to 
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express the components in form of 4-noded bilinear elements and 9-noded quadratic element denoted by Mj  for j = 1,...4 
and Ni  for i = 1,...9 respectively. The resulting quadratic interpolation functions are used for concentration components, cn 

and cp while bilinear interpolation functions for potential component, Φ. Resulting into 22 unknown variables for each 

subdomain are applied to uniform partition of the whole domain, Ω. To overcome non linearity in the equations, the 

unknown was expressed in iterative form as 

 𝑐𝑛
𝑘+1 = 𝑐𝑛

𝑘 + 𝑐𝑛̂,       𝑐𝑝
𝑘+1 = 𝑐𝑝

𝑘 + 𝑐𝑝̂,        Φ𝑘+1 = Φ𝑘 + Φ̂,                                                              

                                     (3.1)  

where  𝑐𝑖
𝑘 and   Φ𝑘  are the previous known values while 𝑐𝑖̂ and Φ̂ are the corrected values. 

For novelty purposes we let 𝑆1 = 𝑆𝜎𝑔𝑛𝑛 , 𝑆2 = 𝑆𝜎𝑔𝑛𝑝 and 𝑆3 = 𝑆𝜎𝑔𝑝𝑝 and 𝑒
𝐾𝐵𝑇⁄ = 𝑞  in equation (2.6), hence 

obtaining 

                                                        𝐷𝑛𝛻. (𝛻𝑐𝑛 − 𝑞𝑐𝑛𝛻𝛷 + 𝑆1𝑐𝑛𝛻𝑐𝑛 + 𝑆2𝑐𝑛𝛻𝑐𝑝) = 0                                (3.2𝑎)                                    

                                                        𝐷𝑝𝛻. (𝛻𝑐𝑝 − 𝑞𝑐𝑝𝛻𝛷 + 𝑆1𝑐𝑝𝛻𝑐𝑝 + 𝑆2𝑐𝑝𝛻𝑐𝑛) = 0                                (3.2𝑏)                                

                
To express components of equation (3.1) in terms of shape functions we have 

where cnj , cpj and   Φj are the parameter measurements at the nodes. Consequently, employing Galerkin weighted residual 

approach and weight function to the coupled constitutive equations(3.2)and (2.1b) results into a set of algebraic linear 

system of equations. Subsequently, we seek a solutions of the form ci  ∈ [H0
1]2 and Φ ∈ L2(Ω) satisfying the boundary 

conditions in section 2.1. At this instance concentration and potential equations (3.2) and (2.1b) are reduced into weak 

forms with help of divergence theorem to obtain 
 

              R(ci, w) = Di ∫ (∇ci − qci∇Φ + Sjci∇ci). ∇w ∂Ω = ∫ fi . w dΩ,    j = 1,2 or 3
ΩΩ

                         

              (3.3a) 

                ∫ 𝜀𝛻𝛷. 𝛻𝜑 𝑑𝛺
𝛺

= ∫ ∑ 𝑧𝑖
𝑁
𝑖=1 𝑒𝑐𝑖𝜑 𝑑𝛺 − ∮ 𝜀

𝜕𝛷

𝜕𝜂
𝜑𝑑𝛤,    𝑖 = 𝑛, 𝑝

𝛤
                             

               (3.3b) 

wherew ∈ H0
1(Ω) and φ ∈ L2(Ω) are the weight function and η is the unit outward normal for each control volume. 

                                         

B. Stabilized Finite Element Method 

Since application of the standard Galerkin FEM in NP equation (3.3a) results into oscillations in the computed 

numerical solutions, need for stabilization of the numerical scheme arises. Stream Upwind Petrov-Galerkin(SUPG) mesh 

dependent stabilization term is added to the weak form of NP equation to improve the results and redefining of the Peclet 

number as strength of convection intensity and given by 

                                                               𝑝𝑒𝑇 = 0.33
‖𝑏𝑖‖2ℎ𝑇  

2𝐷𝐼
                                            (3.4) 

Where  𝑏𝑖 = −
𝐷𝑖𝛻𝜑

𝐾𝐵𝑇
   and ℎ𝑇   is the diameter of the element,T. Stabilization parameter is given by 

  

        𝑇𝑘 =
ℎ𝑇

2‖𝑏𝑖‖2
𝜓(𝑝𝑒𝑇)          and            𝜓(𝑝𝑒𝑇) = {

1,    𝑖𝑓 𝑝𝑒𝑇 > 1
𝑝𝑒𝑇 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                              (3.5)                                                                       

                                  
Then the notations are used we regenerate improved NP equations containing the weak form and SUPG stabilization 

term as    

R(ci,w)+ ∑ ∫ 𝐷𝑖 ∇ · (∇𝑐𝑖 − 𝑞𝑐𝑖∇Φ) + 𝑆𝑗𝑐𝑖∇𝑐𝑖) . 𝑤𝑠𝑢𝑝𝑔𝑞𝑞
𝑇𝑇  =∫ 𝑓𝑖𝑤𝛺

dΩ + ∫ 𝑓𝑖𝑇
wsupgdT.                (3.6) 

 

where wsupg = Tkbi.∇w is the stabilization parameter. The SUPG scheme helps to stabilize the mPNP equation, however it is 

very costly to implement the scheme due to the strong form of the nonlinear SUPG term in equation (3.6), since integration 

by parts is not applied to reduce the order. Therefore, equation (3.6) and (3.3b) are decoupled and solved iteratively for 

potential with initial concentration values, the updated potential values are then imposed on the NP equations, which are 

solved using preconditioned conjugate gradient method to improve convergence of the numerical scheme. The process is 

repeated until accepted tolerance is achieved. 
 

IV. NUMERICAL RESULTS AND DISCUSSION 

Now, we consider two monovalent ion species in closed domain, Ω to describe the effects of steric components S1, S2 

and S3 on dynamics of concentration for mPNP and compare with PNP model using stabilized FEM and standard Galerkin 

FEM. We take ε = 1, q = 1, e = 1 and 𝑇𝑘𝑛  = 3.059 × 10−3 and 𝑇𝑘𝑝  = 4.015 × 10−2 stabilization parameters for cn and cp, 

respectively. Figures 2, 3 and 4 illustrates the results obtained for mPNP using Galerkin FEM, whereas Figures 5, 6 and 7 

are results obtained using SUPG method. We end up determining the effects of variation of the steric components on ion 

concentration for mPNP system. 
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Upon varying S1 when S2 and S3 are held constant increases the repulsive forces between anions allowing upsurge in 

penetration and flow of cations in the channel. The changes in flow of the ions did not synchronize with changes in steric 

component, some steric values displayed negative concentration as demonstrated in Figure 2. Increase in the positive steric 

component, S3 creates increase in the repulsive forces between cation, permitting more anions to be adsorbed and 

accumulated than cations in the ion channel, see Figure 4. The minimal change in flow of cations noted upon varying S3 

values, is attributed to frequent collision and competition between them. Finally, a slight increase in the attractive steric 

component, S2 is observed to induce increase in flow of both ions as illustrated in Figure 3. However the adsorption of 

anions was observed to be higher than cations. 

 

               
(a)                   (b) 

 

Fig. 1 PNP for Ions concentration cn and cp 

 

       
(a)                                                                                             (b) 
Fig. 2 Galerkin FEM for Ions concentration with varying negative steric values S1 

 
 

      
(a)                    (b) 

 

Fig. 3 Galerkin FEM for Ions concentration with varying attractive steric values, S2 
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(a)                    (b) 

 

Fig. 4 Galerkin FEM for Ions concentration with varying positive steric values, S3 

 

The SUPG scheme was utilized to stabilize the numerical scheme and results displayed in Figures 5, 6 and 7. 

Comparing these results with Galerkin FEM scheme for solving the mPNP system we obtain better and improved results. It 

is observed that sight increase in steric components S1, S2 and S3 resulted in increase of concentration for both cation and 

anions. However, the flow was much faster for anions, see Figure 5-7. The variation of repulsive forces of anions, S1 

holding S2 and S3 constants and repulsive forces of cations S3 taking S1 and S2 to be constants, resulted into increase in flow 

of both ion species corresponding to insignificant increase in steric values. The flow in cations was shown to be minimal 

compared to anions and this may be due to larger size of cations, increase in repulsive forces between them leads to 

frequent collisions preventing their flow. Whereas, the anion have smaller radius size allowing more penetration when they 

interact. Varying the attractive forces between the ions, S2, resulted in minimal flow for both anions and cations, see Figure 

6. 

 
(a)   (b) 

 
Fig. 5 SUPG stabilization for Ions concentration with varying steric component, S1 

 

                
(a)           (b) 

Fig. 6 SUPG stabilization for Ions concentration with varying steric component, S2 
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(a)               (b) 

 
Fig. 7 SUPG stabilization for Ions concentration with varying steric component, S3 

 

It can be deduced that SUPG method gave stable approximate solution showing the dynamics of concentration with 

varying steric components compared to the Galerkin FEM for mPNP and PNP equations in Figure 1. From the results 

presented in Figures 2 and 3 it is evident that finite size of ions plays a crucial role in the flow and accumulation of ions in 

the ion channel. The diffusion of anions is also observed to be faster than cations in all the variations, this may be as a 

result of bulk mobility of the anions which is higher than the cations in the channel caused by larger radius size of cation 

compared to anions. 

 
Table 1. Mesh refinement for number of elements, N to determine the convergence after I iterations 

 

The stability is demonstrated by convergence of our numerical scheme in Table 1, which enlists the number of 

iterations and corresponding to the absolute global error in concentration. The error was found to reduce as iteration 

increases. 

V. CONCLUSION 

This paper presents approximate solutions for PNP with hard-sphere repulsion for Galerkin FEM, SUPG with 

stabilization. SUPG stabilization of GFEM eliminates inconsistency in the computed solution enabling establishment of 

distinction between the flow in relation to steric components qualitatively. It is observed that finite size effects impacted on 

the flow of ion, evident by changes in ion flow as a result of insignificant increase in all steric components. The anions 

were particularly, observed to flow faster and accumulate more than cations. Mesh refinement and increase in the number 

of iterations resulted in error reduction demonstrating stability and convergence of the numerical scheme. We were able to 

undo the main challenge in using the SUPG scheme which is the choice of optimum stabilization parameter crucial in 

obtaining stable solutions, and compare results against those obtained using Galerkin FEM. The impact of the steric effects 

and extension to multiple ion species competition in unsteady mPNP model forms an integral future area of study. 
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