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I. INTRODUCTION 

 

An ideal [3] I on a non-empty set X is a collection of subsets of X which satisfies, 

 

(i) A  I, and B  A implies B  I 

(ii) A, B  I implies A  B  I 

 

Given topological space (X, ) with an nano ideal I on X and if P (X) is set of all subsets of X, set operator ()* : P (X) → 

P (X) is called local function [3] of A with respect to  and I defined as follows: 

For A  X, A*(I, ) = {x  X / U  A  I, for every U  (x)}, 

where (x) = {U  , x  U}. 

 

A Kuratowski’s closure operator cl*() for a topology *(I, ) called -topology finer than  is defined by cl*(A) = A  

A*(I, ) [?].  When there is no change for confusion, we will simply write A* for A*(I, ) and * for *(I, ). If A  X, then 

cl(A) and int(A), denote closure and interior of A in (X, ) respectively.  The interior and closure of A in (X, *) is denoted by 

int*(A) and cl*(A) respectively. 

 

The notation of a nano ideal topological space was introduced by Parimala et al. [8].  They studied its properties and 

various characterization.  Also some new notions in the context of nano ideal topological spaces and investigate their basic 

properties [8].  Also Krishna Prakash et al. [4] introduce nano compactness, nano connectedness and study their properties. 

 

II. PRELIMINARIES 

Now we recall the following definitions and some important properties. 

 

Definition 2.1. [5] 

Let U be a non-empty finite set of objects called the universe and R be an equivalence classes.  The pair (U, R) is said 

to be the approximation space.  Let X  U, then 

 

(i) The lower approximation of X with respect to R is 𝐿𝑅(𝑋) = ∪ {𝑅(𝑋): 𝑅(𝑋) ⊆ 𝑋, 𝑥 ∈ 𝑈} where R(X) denotes the 

equivalence class determined by x  U 

 

(ii) The upper approximation of X with respect to R is 𝑈𝑅(𝑋) = ∪ {𝑅(𝑋): 𝑅(𝑋) ∩ 𝑋 ≠ ∅, 𝑥 ∈ 𝑈} 

 

(iii) The boundary region of X with respect to R is BR(X) = UR(X) − LR(X). 
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Definition 2.2. 

Let U be an universe, R be an equivalence relation on U and R(X) = {U, , UR(X), BR(X), UR(X)} where X  U. Then 

R(X) satisfies the following axioms. 

 

(i) U and  are in R(X) 

 

(ii) The union of the elements of any subcollection of R(X) is in R(X). 

 

(iii) The intersection of the elements of any finite subcollection of R(X) is in R(X). 

 

That is, R(X) is topology on U called the nano topology on U with respect to X.  We call (U, R(X)) as a nano topological 

space.  The elements of R(X) are called nano open sets (briefly n-open sets).  Also any non-empty sets satisfies properties 

of (i), (ii) in (U, R(X)) is called nano ideal. 

 

In the rest of the paper, we denote a nano topological space by (U, N), where N = R(X).  The nano interior and nano-

closure of subsets of U are denoted by n-int(A) and n-cl(A) respectively. 

 

Definition 2.3. 

A collection {Ai / i  I} of nano-open sets in a nano topological space {U, R(X)} is called a nano open cover of a subset 

B of U if 𝐵 ⊂ ⋃ {𝐴𝑖}
𝑛
𝑖=1 . 

 

III. NANO-COMPACTNESS WITH RESPECT TO NANO IDEAL 

 

Definition 3.1. 

A subset A of a space (U, N) is said to be nano I-compact or nano-compact modulo an ideal if for every open cover {U 

/   A} of A by nano open sets of X, there exist a finite subsets 0 of , such that A −  {A /   0} \in I.  The space (U, 

N, I) is said to be nano I-compact if U is nano I-compact. 

 

If (U, N) is nano topological space with ideal I = {}, (U, ) is nano topological compact  (U, ) is nano I-compact. 

 

From this, compact  compact modulus an ideal  Nano compactness  nano compact modulo an ideal. 

 

Theorem 3.1. 

Every nano-closed subset of nano-compact a I-nano compact. 

 

Proof. 

Let A be a nano-closed subset of (U, N, I).  Then Ac is nano open in (U, N, I).  Let {B /   A} be an I-nano open 

cover of A by nano open subsets in (U, N).  Then {B /   }  Ac is a nano I-open cover of  

(U, N).  Since (U, N) is nano I-compact, there exist a finite subcover {B /   0}  Ac such that 

 

      U − {(B /   0)  Ac}  I 

  U − {((B /   0)  Ac)  A}  U − (B /   0) 

  U − {(B /   0)  Ac  A}  I 

  A − {B /   0}  I. 

 

Hence A is nano I-compact.          □ 

 

Note 3.1. 

Every nano g-closed subset of nano compact is nano I-compact. 

 

Note 3.2. 

If F is nano-closed and K is nano I-compact subset of U, then F  K is nano I-compact. 
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Theorem 3.2. 

Continuous image of nano I-compact space is nano f (I)-compact. 

 

Proof. 

Let 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅′(𝑌)) be a continuous map, where (U, N, I) is nano I-compact.  Let {B /   } be an nano 

open covering of the set f (X) by sets of nano open in Y.  Since f is continuous, the collection {𝑓−1(𝐵𝛼): 𝛼 ∈ Λ} is an open 

covering of X.  Given that X is nano I-compact, such that finite subcover 0 such that 

 

      X − {f −1(B) :   0}  I 

  f (X − {f −1(B) :   0})  f (I) 

  f (X) − f ({f −1(B) :   0})  f (I) 

  f (X) − {B :   0}  f (X) − f (f −1(B) :   0) 

  f (X) − {B :   0}  f (I) 

  f (X) is nano f (I)-compact 

 

Hence continuous image of nano I-compact space is nano f (I)-compact. □ 

 

Theorem 3.3. 

If A and B are nano I-compact in ideal space, then A  B is nano I-compact in (U, R(X)). 

 

Proof. 

Let {B :   } be an open cover of A  B in (U, R(X)).  Then {B :   } is an open cover of A and B.  Given A 

and B are nano I-compact, there exist finite subset 0 and 1 of  such that 

 

                                𝐴 −∪ {𝐵𝛼𝑖
: 𝛼𝑖 ∈ Λ0} = 𝐼1 𝑎𝑛𝑑 𝐵 −∪ {𝐵𝛼𝑘

: 𝛼𝑘 ∈ Λ1} = 𝐼2 

⇒ 𝐴 = 𝐼1 ∪ {∪ 𝐵𝛼𝑖
: 𝛼𝑖 ∈ Λ0} 𝑎𝑛𝑑 𝐵 = 𝐼2 ∪ {∪ 𝐵𝛼𝑘

: 𝛼𝑘 ∈ Λ1} 

 

                          𝑁𝑜𝑤  𝐴 ∪ 𝐵 =∪ {𝐵𝛼𝑖
: 𝛼𝑖 ∈ Λ0} ∪ {𝐵𝛼𝑘

: 𝛼𝑘 ∈ Λ1} ∪ 𝐼1 ∪ 𝐼2 

 =∪ {𝐵𝛼𝑖
∪ 𝐵𝛼𝑘

/𝛼𝑖 ∈ Λ0, 𝛼𝑘 ∈ Λ1} ∪ 𝐼,   𝑤ℎ𝑒𝑟𝑒 𝐼 ∈ I 

                            ⇒ (𝐴 ∪ 𝐵) =∪ {𝐵𝛼𝑖
∪ 𝐵𝛼𝑘

: 𝛼𝑖 ∈ Λ0, 𝛼𝑘 ∈ Λ1} ∪ 𝐼. 

 

This implies A  B is nano I-compact.□ 

 

Corollary 3.1. 

Finite union of nano I-compact space X is nano I-compact. 

 

Theorem 3.4. 

Every nano I-compact subset of a Hausdroff ideal space is -closed. 

 

Proof. 

Let A be a nano I compact subset of Hausdroff space (U, N, I).  Let x  A then x  X − A. For each y  A, there exist a 

neighbourhood Uy and Vy of x and y respectively, such that Uy  Vy = .  Note that x  cl(Vy).  Now {Vy : y  A} is a -nano 

open cover of A which is a nano I-compact, there exist a finite subset 0 of  such that A −  {Vy : y  0}  I, set 𝐼 =

𝐴 −∪ {𝑉𝑦𝑖
: 𝑦 ∈ Λ0}.  Define 𝑈 = ⋃ 𝑈𝑦𝑖

𝑛
𝑖=1 . Then U is -nano open and 𝑈 ∩ (∪ 𝑉𝑦𝑖

) = ∅.  Therefore U  A  I and hence x 

 A.  Hence A is -closed. □ 

 

Theorem 3.5. 

The following are equivalent for the space (U, N, I). 

 

(i) (U, , I) is nano I-compact. 

 

(ii) (U, , I) is nano I-compact. 

 

(iii) For any family {F :   } of nano closed set of U such that {F :   } = , there exist a subset 0 of  

such that {F :   0}  I. 
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Proof. 

(a)  (b) Let {U :   } be a -open cover of U such that U = V − I, where V is nano open in X and I  I.  Now {V : 

  } is an open cover of U and hence there exist subcover 0 of  such that  

 

  U − U{V :   0}  I. 

  U − {U :   0}  { I :   0}. 

     U / {U :   0}  I.   

 (U, , I) is compact. 

 

(b)  (a) Proof follows from   . 

 

(a)  (c) Let {F :   } be a family of nano closed sets of U such that {F :   } = .  Then {U − F :   } is a 

nano open covers of U.  By (a) there exist a finite subset 0 of  such that U − {U − F :   0}  I.   {F :   0} 

 I. 

 

(c)  (a) Let {U :   } be nano-open cover of U then {U − U :   } is a collection of nano-closed sets and (U − 

U :   ) =.  Hence thers exist finite subset 0 of  such that (U − U :   0)  I.  U − U(U :   0)  I.  

This shows that (U, N, I) is nano I -compact. □ 

 

Theorem 3.6. 

Let (U, , I) be any ideal topological space and A be a subset of U such that for each nano open set V containing A, there 

is nano I-compact set B with A  B  V then A is nano I-compact. 

 

Proof. 

Let {U :   } open cover of A, where V = W  A such that W is open in U.  Given there exists nano I-compact 

subset B of U such that A  B   W.  Then {W  B :   } is B nano open cover of B.  As B is nano I-compact, there 

exist finite subset 0 of  such that B − {W  B :   0}  I.   Therefore 

 

     B − (W  B :   0)  (I1  B), I1  I 

  B  A = (W :   0)  (I1  B  A) 

  A = (W :   0)  (I1  A) 

  A − (W :   0) = I1  A  IA 

  A is nano – compact. □ 

 

Theorem 3.7. 

Let {U :   } be a family of nano topological spaces where each U is nano compact modulo to the ideal I in the 

space U.  Let I be some ideal in 𝑈 = ∏ 𝑈𝛼𝛼∈Λ  such that  : U → U is the projection map.  Then U is nano I-compact. 

 

Proof. 

Let  be the covering of U whose elements are numbers of standard pre basis.  To prove there exist a finite number Ui 

of elements of  such that 𝑋 − ⋃ 𝑈𝑖
𝑛
𝑖=1   I.  For each 0  1, let 𝛾𝛼0

 denote family of subsets of 𝛾𝛼0
 is covering 𝑈𝛼0

 by 

choosing point U from each U  there exists 0  U such that 𝛾𝛽0
 is covering of 𝑈𝛽0

.  Then we find 𝑈1
𝛽0 , 𝑈2

𝛽0 , … , 𝑈𝑛
𝛽0 such 

that  

 

𝑈𝛽0
−∪ 𝑈𝑖

𝛽0 = 𝐼𝛽0
 

⇒ 𝜋𝛽0

−1(𝑈𝛽0
) − ⋃ 𝛽0

−1(𝑈𝑖
𝛽0)𝑛

𝑖=1 ∈ 𝜋𝛽0

−1(𝐼𝛽0
) = I 

⇒ 𝑈 − ⋃ 𝑈𝑖
𝑛
𝑖=1 ∈ I 

 

Thus U is nano I-compact. 

IV. CONCLUSION 

This paper, we introduce the notion of nano compactness with respect to nano ideal and investigate some properties of 

nano topology and nano ideal.  In future, it motivation to apply this concept in fuzzy system and graph structures. 
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