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1. Introduction 
Fuzzy set theory introduced by Zadeh[25] has laid the foundation for the new mathematical theories in the research of 

mathematics. The concept “neutrosophic set” was first given by Smarandache[9]. Neutrosophic operations and 

Neutrosophic topological spaces have been investigated by Salama[20]. Later, Dhavaseelan[8] introduced 

neutrosophic contra irresolute beta omega continuous mapping. Here, we shall introduce neutrosophic contra irresolute 

beta omega continuous mapping, neutrosophic  almost contra beta omega continuous mapping, neutrosophic beta omega 

convergent, neutrosophic beta omega connected. 

2. Preliminaries 
Definition 2.1.  [9] Let X be a non-empty fixed set.  A neutrosophic set (NS) G is an object having the form G =  {< x, 

µG(x), σG(x), υG(x) > : x ∈ X} where µG(x), σG(x) and υG(x) represent the degree of membership, degree of 

indeterminacy and the degree of nonmembership respectively of each element x ∈ X to the set G.  A neutrosophic set 

G = {< x, µG(x), σG(x), υG(x) >: x ∈ X } can be identified as an ordered triple < µG,
,  σG ,  υG > in ]−0, 1+[ on X. 

Definition 2.2. [2] For any two sets G and H, 

1. G ⊆ H ⇔ µG(x) ≤  µH(x), σG(x) ≤  σH(x) and υG(x) ≥    υH(x), x ∈  X 

2. G ∩ H = < x, µG(x) ∧                                                                               µH(x), σG(x) ∧                     σH(x), υG(x) ∨   υH(x) > 

3. G ∪ H = < x, µG(x) ∨  µH(x), σG(x) ∨     σH(x), υG(x) ∧  υH(x) > 

4. G C = {< x, υG(x), 1- σG(x), µG(x) >: x ∈ X }  

5. 0N = {< x, 0, 0, 1 >: x ∈  X } 

6. 1N = {< x, 1, 1, 0 >: x ∈                 X }. 

Definition 2.3. [20] A neutrosophic topology (NT) on a non-empty set X is a family τ of neutrosophic subsets in X 

satisfies the following axioms: 

1. 0N, 1N ⊆  τ 

2. G1 ∩ G2 ⊆  τ  for any G1, G2 ⊆       τ 

3. ∪ Gi  ⊆  τ  where {Gi  : i ⊆ J}⊆  τ 

http://www.internationaljournalssrg.org/
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Here the pair (X, τ) is a neutrosophic topological space (NTS) and any neutrosophic set in τ is known as a 

neutrosophic open set (N-open set) in X. A neutrosophic set G is a neutrosophic closed set (N-closed set) if and only if 

its complement GC is a neutrosophic open set in X.  

Definition 2.4. [16] A neutrosophic set G of a neutrosophic topological space (X, τ) is called neutrosophic beta omega 

closed (Nβω-closed) if βclN(G) ⊆ U whenever G ⊆  U and U is Nω-open in (X, τ). 

Definition 2.5. [ 6 ] A nonempty family F of N-open sets on (X, τ) is known as N − filter 

1. if 0N ∉ F. 

2. If G, H ∈ F  then G ∩ H ∈ F. 

3. If G ∈ F and G ⊆ H then H ∈ F. 

Definition 2.6.  [ 8 ] A nonempty family B of N-open sets on F is named as N − filter base 

1. If 0N  B. 

2. If G, H ∈ B then I ⊆ G ∩ H for some I ∈ B. 

Definition 2.7. [ 8 ] A N-filter F is called N − convergent to a N-point xr,s,t of a NTS (X, τ) if for each N-open set G of (X, τ) 

containing xr,s,t, there exists a N-set H ∈ F such that H ⊆ G 

Definition 2.8. [ 8 ] A N-filter F is called NRC-convergent to a N-point xr,s,t of a NTS (X, τ) if for each NR-closed set G of (X, 

τ) containing xr,s,t, there exists a N-set H∈F such that H ⊆ G 

Definition 2.9.  [ 8 ] A space (X, τ) is called as N-connected if (X, τ) cannot be written as union of two disjoint non empty N-

open sets. 

3. Neutrosophic Contra Irresolute Beta Omega Continuous Mapping 

Definition 3.1. A map f : (X, τ) → (Y, σ) is called Neutrosophic Contra Irresolute Beta Omega Continuous (contra-irresolute-

Nβω-continuous) if f-1(U) is Nβω-closed in (X, τ) for each Nβω-open set U in (Y, σ). 

Example 3.1. Let X = [0, 1], τ ={0N, H(x), 1N},σ = {0N, GC(x), HC(x), 1N}, (X, τ) = (Y, σ) = {0N , G(x), H(x), GC(x), HC(x), 

1N}. Where                                                    

G(x) = {
<  x, x, 1 −  x > ,       if 0 ≤  x ≤  

1

2

<  1 –  x, 1 –  x, x > ,   if 
1

2
 ≤  x ≤  1

 

H(x) = {
<  x, x, 1 −  x > ,   if 0 ≤  x ≤  

1

2

<  
1

2
,

1

2
,

1

2
> ,              if 

1

2
 ≤  x ≤  1

 

Then τ and σ are NTs. Define a mapping f : (X ,τ) → (Y, σ) by f(a) = a where a ∈ [0,1]. Then f is contra-irresolute-Nβω-

continuous mapping. 

Proposition 3.1. If f : (X ,τ)→ (Y, σ) is contra-irresolute-Nβω-continuous map and g : (Y, σ) → (Z, ϕ) is a contra-Nβω-

continuous map then g∘f : (X ,τ)→ (Z, ϕ) is Nβω-continuous. 

Proof. Let U be N-open set in (Z, ϕ). Since g is contra-Nβω-continuous, g-1(U) is Nβω-closed in (Y, σ). Since f is contra-

irresolute-Nβω-continuous, f-1(g-1(U)) = (g∘f)-1(U) is Nβω-open in (X, τ). Thus g∘f is Nβω-continuous. 

Proposition 3.2. If f : (X ,τ)→ (Y, σ) is Nβω-irresolute map and g : (Y, σ) → (Z, ϕ) is a contra-Nβω-continuous map then g ∘ f 

: (X, τ)→ (Z,ϕ) is contra-Nβω-continuous. 

Proof. Let U be N-open set in (Z, ϕ). Since g is contra-Nβω-continuous, g-1(U) is Nβω-closed in (Y, σ). Since f is Nβω-

irresolute, f-1(g-1((U)) = (g∘f)-1(U) is Nβω-closed in (X, τ). Thus g∘f is N-contra-Nβω-continuous. 
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4. Neutrosophic Almost Contra Beta Omega Continuous Mapping 
Definition 4.1. Let (X, τ) and (Y, σ) be any two neutrosophic topological spaces. A function f : (X, τ) → (Y, σ) is called as 

neutrosophic almost contra beta omega continuous (almost contra-Nβω-continuous) if inverse image of each NR-open set in 

(Y, σ) is Nβω-closed set in (X, τ).  

Theorem 4.1. Let f : (X, τ) → (Y, σ) be a function and g: (X, τ) → (X, τ) × (Y, σ) be the graph function defined by g(P) = (P, 

f(P)) for each P ∈ (X, τ). If g is almost contra-Nβω-continuous function, then f is almost contra-Nβω-continuous function. 

Proof. Let G be a NR-closed set in (Y, σ). Accordingly, (X, τ) × G is a NR- closed set in (X, τ) ×(Y, σ). since g is almost 

contra Nβω continuous, so that f-1(G) = g-1((X, τ) ×G)) is a Nβω-open in (X, τ). Thus f is almost contra-Nβω-continuous. 

Definition 4.2. A N-filter F is called a Nβω-convergent to a N-point xr,s,t of a neutrosophic topological space (X, τ), if for each 

Nβω-open set G of (X, τ) containing xr,s,t there exists a N-set H ∈ F  so as H ⊆ G. 

Example 4.3. Let X = {a, b, c} and τ = {0N, G, 1N} where G = < ξ,(
a

0.1
,

b

0.1
,

c

0.1
) , (

a

0.1
,

b

0.1
,

c

0.1
) , (

a

0.8
,

b

0.8
,

c

0.8
)>; H = < 

ξ,(
a

0.3
,

 b

0.2
,

 c

0.1
) , (

 a

0.2
,  

 b

0.2
,

 c

0.1
) , (

 a

0.2
,

 b

0.1
,

 c

0.1
)>; I = < ξ,(

 a

0.2
,

 b

0.1
,

 c

0.1
) , (

 a

0.2
,  

 b

0.1
,

 c

0.1
) , (

 a

0.3
,

 b

0.2
,

 c

0.2
)> and F= {I, IC, HC, 

GC,1N}. Then τ is a NT and consider the N-point a0.3,0.2,0.1. Then F is Nβω-convergent to a N-point a0.3,0.2,0.1. 

Proposition 4.1. If a function f : (X, τ) → (Y, σ) is almost contra-Nβω-continuous function and each N-filter base B in (X, τ) is 

Nβω-converging to xr,s,t, then N-filter base f(B) is NRC-convergent to the point f(xr,s,t). 

Proof. Let xr,s,t ∈ (X, τ) and B be any N-filter base in (X, τ) and Nβω-converging to xr,s,t. Since f is almost contra-Nβω-

continuous, subsequently, for any NR-closed G in (Y, σ) including f(xr,s,t), there exists Nβω-open H in (X, τ) consisting xr,s,t. 

Therefore f(H) ⊆ G. As B is Nβω-convergent to xr,s,t and H is Nβω-open consisting xr,s,t, there occurs P ∈ B such that P ⊆ H. 

This means that f(P) ⊆ G and consequently the N-filter base f(B) is NRC-convergent to f(xr,s,t). 

Definition 4.3. A space (X, τ) is called a Nβω-connected, if (X, τ) can’t be expressed as union of two disjoint non-empty Nβω-

open sets. 

Example 4.4.  Let X = {a, b, c}, τ = {0N, G, 1N} and (X, τ) = {0N, G, H, I, GC, HC, IC, 1N}  where G = < ξ, (
a

0.8
,

b

0.8
,

c

0.8
),  

(
a

0.7
,

b

0.7
,

c

0.7
) , (

a

0.2
,

b

0.2
,

c

0.2
) >; H = < ξ, (

a

0.7
,

 b

0.7
,

 c

0.7
) , (

 a

0.6
,  

 b

0.6
,

 c

0.6
) , (

 a

0.3
,

 b

0.3
,

 c

0.3
) >; I = < ξ, (

 a

0.9
,

 b

0.9
,

 c

0.9
), 

(
 a

0.8
,  

 b

0.8
,

 c

0.8
) , (

 a

0.1
,

 b

0.1
,

 c

0.1
) >. Then (X, τ) is Nβω-connected 

Theorem 4.2. If f : (X, τ) → (Y, σ) is an almost contra-Nβω-continuous and surjection with (X, τ) is Nβω-connected space, 

then (Y, σ) is N-connected. 

Proof. Let f : (X, τ) → (Y, σ) be an almost contra-Nβω-continuous and surjection with (X, τ) is Nβω connected. Suppose (Y, 

σ) is not N-connected. Accordingly, there exist disjoint N-open sets G and H such that (Y, σ) = G ∪ H. Then G and H are N-

clopen in (Y, σ). Since f is almost contra-Nβω-continuous, f-1(G) and f-1(H) are Nβω-open sets in (X, τ). In addition f-1(G) and 

f-1(H) are disjoint, non-empty and (X, τ) = f-1(G) ∪ f-1(H) which is the contradiction to the fact that (X, τ) is Nβω-connected 

space. Hence, (Y, σ) is N-connected. 

Definition 4.4. A function f : (X, τ) → (Y, σ) is called weakly almost contra-Nβω-continuous if for each N-point xr,s,t in (X, τ) 

and each NR-closed set V of (Y, σ) containing f(xr,s,t), there exists a Nβω-open set U in (X, τ), such that clN(f(U)) ⊆ V. 

Definition 4.5. A function f : (X, τ) → (Y, σ) is called as N(βω, P)-open if the image of each Nβω-open set is NP- open. 

Theorem 4.3. If f : (X, τ) → (Y, σ) is a weakly almost contra-Nβω-continuous and N(βω, P)-open, then f is almost contra-

Nβω-continuous. 

Proof . Let xr,s,t be any N-point in (X, τ) and V be a NR-closed set containing f(xr,s,t). Since f is weakly almost contra-Nβω-

continuous, there exist a Nβω-open set U in (X, τ) containing xr,s,t so as clN(f(U)) ⊆ V . Since f is a N(βω, P)-open, f(U) is a 

NP-open set in (Y, σ) and f(U) ⊆ intN(clN(f(U))) ⊆ V. This shows f is almost contra-Nβω-continuous. 

 



Pious Missier S et al. / IJMTT, 68(5), 1-4, 2022 

 

4 

5. Conclusion 
In this paper, we defined the concepts of neutrosophic contra irresolute beta omega continuous mapping and studied 

the properties of this mapping. Furthermore, we have defined and analyzed the concept of neutrosophic almost contra beta 

omega continuous mapping. Moreover, we have studied neutrosophic beta omega convergence. 
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