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Abstract - Water hammer is very essential for risk analysis and operation of pipeline system. This work studies the effects of 

steady friction factor, wall constraint, pipe diameter and liquid density for the analysis of water hammer in a pipeline system 

with special emphasis on the finite difference method (FDM) due to its accurate and reliable evaluation of the water hammer 

problems. We model water hammer for pipe made from polymeric material by two partial differential equations (PDEs). The 
PDEs are then discretized along the spatial dimension to give a set of ordinary differential equations, ODEs. For a given set 

of parameters, we then solve the resulting ODEs numerically and plot the pressure dynamics at the valve to determine the 

water hammer characteristics. It was observed that the model with steady friction factor is appropriate for the simulation of 

water hammer in pressurized pipes made from polymers such as Polyvinyl Chloride. The maximum pressure amplitude 

simulated by the model is estimated accurately. The pipe wall constraint, liquid density, pipe diameter has a significant 

influence on obtained results. The lower the values of Pipe diameterΑd, effective modulus of system Ds and cross-sectional 

area  , the lower the amplitudes as presented graphically. Also, during the stimulation, the experimental pressure runs shows 

the pressure increases after the valve closure linearly. Numerical validation of the FDM demonstrates that the FDM performs 

well and is as good as the method of characteristics in terms of computational speed and accuracy. 

 

Keywords -  Darcy-Weisbach equation, Finite difference method, Partial differential equation, Reynold number, Water 
hammer. 

 

1. Introduction  

 The study of water hammer stated in the 1st century B.C., when Marcus Vitruvius Pollio studied its effect in lead and tube 

pipes in the Roman water supply system [1]. According to Ismaier [2], a water hammer entails a pressure waves at the end of 

a pipeline system whenever there is a sudden closure at the valve of a pipe. The forced closure results to a sudden change of 

water molecules which generates a rapid pressure waves hit at the valve of the pipe. This pressure hit is also called hydraulic 

shock [3]. According to [4], whenever the valve closed rapidly there is a rapid change of direction or velocity of the water 

such that the pressure energy is transferred to the pipe wall and valve. This pressure waves (otherwise shock waves) travels to 

and fro on encountering a solid obstacle, and it equals the speed of the sound until it is annulled by friction losses. This is a 

major effect of water hammer particularly in older houses. 

 

 The internal variation or fluctuation within the water system caused by the movement of slow mass oscillation of water 

is called the surge. The surge is a less severe form of water hammer which can be identified as slower pressure wave 

developing within the water system. Both the surge and water hammer are referred to as transient pressure. Both are very 

dangerous because neither the water or pipe will absorb the shock waves by compressing it, and if not controlled will yield 

the same outputs: fittings, damage to pipe, leakage, pipeline system destruction, etc. 

 

 However, it was not until the 19th century that the theory of water hammer gained a rapid recognition as a municipal 

water supply system to civil engineers. This period witnessed the installation of water supply systems. For instance, 

Whitehurst [5] built a worktable water system for homes in Cheshire, England. Also, Joseph (1740 – 1810) developed a water 
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hammer for his paper industry in Voiron. Soon enough, the theory of water hammer captivated the interest of physiologist for 

the study of the circulatory systems [6]. 

 

 Water hammer is a key component in the study of pipeline systems because of the danger is posses.  A critical analysis 

of water hammer allows us to choose relevant parameters of systems like liquid density, viscosity, pipe diameter, wall 

thickness, roughness, length, cross-sectional area, etc. The theory of water hammer is generally accredited to the German 

physiologist Johannes Von Kries in 1883, who was investigating a scheduled analysis of pulse in blood vessels ([6] - [8]). 

However, many researches were solely based on classic water hammer model. That is, the main assumptions of these models 

were linear elastics characterization of pipe wall [9]. For instance [10] carried out an explicit analysis of water hammer along 

the ring line for Khobar-Daminan water transmission. Also, [11] discussed water hammer effect in spiral cases in other to 

analyze the effect of sudden flow variation in an hydraulic turbine.  

 

 Since the advent of digital computers, researchers have shifted ground to water hammer models for pipe made from 

polymeric material involving quality resistant characteristics such as polyvinyl Chloride. 

Thus, in this paper, we study the effects of steady friction factor, wall constraint, pipe diameter and liquid density for the 

analysis of water hammer in a pipeline system with special emphasis on the finite difference method (FDM) due to its 

accurate and reliable evaluation of the water hammer problems. For a given set of parameters, the FDM solves the resulting 

ODEs numerically and plots the pressure dynamics at the valve for numerical validation..  

 

2. Materials and Methods 

2.1 Mathematical formulation of the problem 

 For clarity of purpose, we assumed the liquid flow to be laminar, one dimensional, viscous, fully developed, 

incompressible and Newtonian flow through a pipe. The constricted wall of this pipe is assumed to thick and rough. The figure 

below shows showing water hammer effect on a closed pipe. 

 

Fig. 1 Schematic diagram of water hammer 

Source: https://www.theprocesspiping.com/water-hammer/ 
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The water hammer model is modeled by two partial differential equations given as: 

{
 

 
𝜕𝑊(𝑟, 𝑡)

𝜕𝑡
+
1

𝜌

𝜕𝑃(𝑟, 𝑡)

𝜕𝑟
+
𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0,

𝐷𝑠
2
𝜕𝑊(𝑟, 𝑡)

𝜕𝑟
+
𝜕𝑃(𝑟, 𝑡)

𝜕𝑡
= 0                                                                              

                                                 (1) 

 where, 𝑊(𝑟, 𝑡) = mean velocity flow at position  𝑟 and time 𝑡, 𝑃(𝑟, 𝑡) = pressure  at the position  𝑟 and time 𝑡, 

friction = friction factor at 𝑊(𝑟, 𝑡), or the Darcu-Weisbach friction factor, 𝜌 = fluid density,  Αd = the pipe diameter, 𝐷𝑠 = 

effective bulk modulus of the system, r = the axial distance along the streamline, z = elevation at any point of the streamline. 

Note that equation (1) contains only one spatial dimension (r). For fluid flowing in a conduit, the mean flow velocity, 𝑊(𝑟, 𝑡) 

is assumed to be uniform through the pipe cross-sectional area, A. Thus, this give the relationship between the volumetric flow 

(V) and the cross-sectional area of the pipe as 

        𝑉 = 𝐴𝑊(𝑟, 𝑡)                        (2) 

We note the following partial derivatives

𝑑𝑊(𝑟,𝑡)

𝑑𝑟
=

𝜕𝑊(𝑟,𝑡)

𝜕𝑟

𝑑𝑟

𝑑𝑡
+

𝜕𝑊(𝑟,𝑡)

𝜕𝑡
=

𝜕𝑊(𝑟,𝑡)

𝜕𝑟
𝑊(𝑟, 𝑡) +

𝜕𝑊(𝑟,𝑡)

𝜕𝑡
 ,                     

            
𝑑𝑃(𝑟,𝑡)

𝑑𝑡
=

𝜕𝑃(𝑟,𝑡)

𝜕𝑟

𝑑𝑟

𝑑𝑡
+

𝜕𝑃(𝑟,𝑡)

𝜕𝑡
=

𝜕𝑃(𝑟,𝑡)

𝜕𝑟
𝑊(𝑟, 𝑡) +

𝜕𝑃(𝑟,𝑡)

𝜕𝑡
 .                       (3) 

 

Substituting (3) into (1), we have: 

𝜕𝑊(𝑟,𝑡)

𝜕𝑟
𝑊(𝑟, 𝑡) +

𝜕𝑊(𝑟,𝑡)

𝜕𝑡
+

1

𝜌

𝜕𝑃(𝑟,𝑡)

𝜕𝑟
+ 𝑔

𝑑𝑧

𝑑𝑟
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0, 

    𝐷𝑠
2 𝜕𝑊(𝑟,𝑡)

𝜕𝑟
+

𝜕𝑃(𝑟,𝑡)

𝜕𝑟
𝑊(𝑟, 𝑡) +

𝜕𝑃(𝑟,𝑡)

𝜕𝑡
= 0 .                    (4) 

Simplifying (4) by putting the convective acceleration term to zero, we have: 

   
𝜕𝑊(𝑟,𝑡)

𝜕𝑡
+

1

𝜌

𝜕𝑃(𝑟,𝑡)

𝜕𝑟
+ 𝑔

𝑑𝑧

𝑑𝑟
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0,             

                                     𝐷𝑠
2 𝜕𝑊(𝑟,𝑡)

𝜕𝑟
+

𝜕𝑃(𝑟,𝑡)

𝜕𝑡
= 0 .             (5) 

 

3. Review of Solution Methods  

3.1. Analytic Solution 

Let the equation   

           𝐿 +
𝑊2(𝑟,𝑡)

2𝑔
= 𝐶,               (6) 

suggest a constant total head along a streamline [14], 

where, 

  𝐿 =
𝑃

𝛽
+ 𝑧, is the piezometric head,                     (7)       

𝑧 = elevation head, which does not change with time. 

𝑊2(𝑟,𝑡)

2𝑔
= velocity head,  
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𝑃

𝛽
= pressure head, 

𝛽 = 𝑃𝑔 is the specific heat weight of fluid. 

Here, ` 
𝑊2(𝑟,𝑡)

2𝑔
 corresponds to `

𝜕𝑊(𝑟,𝑡)

𝜕𝑟
𝑊(𝑟, 𝑡),  and is negliable in many cases when compared with the frictional term. It is 

more conventional to express equation (5) in terms of L instead of `𝑃. Hence, from equation (7), we define 

𝜕𝐿

𝜕𝑟
=

1

𝛽

𝜕𝑃

𝜕𝑟
+

𝜕𝑧

𝜕𝑟
  ⟹

𝜕𝑃

𝜕𝑟
= 𝛽 (

𝜕𝐿

𝜕𝑟
−

𝜕𝑧

𝜕𝑟
). 

But 𝛽 = 𝑃𝑔, which implies that 

       
𝜕𝑃

𝜕𝑟
= 𝑃𝑔 (

𝜕𝐿

𝜕𝑟
−

𝜕𝑧

𝜕𝑟
), and 

𝜕𝑃

𝜕𝑡
= 𝑃𝑔 (

𝜕𝐿

𝜕𝑡
−

𝜕𝑧

𝜕𝑡
)         (8) 

Since the elevation head, 𝑧 does not change with time, we have that 
𝜕𝑧

𝜕𝑡
 is zero, and 

𝜕𝑧

𝜕𝑟
 is expressed as sin∅, where ∅ is the 

angle of the slope. 

Now, substituting (8) into (5), we arrive at 

𝜕𝑊(𝑟,𝑡)

𝜕𝑡
+

1

𝜌
(𝑃𝑔 (

𝜕𝐿

𝜕𝑟
−

𝜕𝑧

𝜕𝑟
)) + 𝑔

𝑑𝑧

𝑑𝑟
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0, 

𝐷𝑠
2 𝜕𝑊(𝑟,𝑡)

𝜕𝑟
+ 𝑃𝑔

𝜕𝐿

𝜕𝑡
= 0 .         

         ⟹
𝜕𝑊(𝑟,𝑡)

𝜕𝑡
+ 𝑔

𝜕𝐿

𝜕𝑟
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0     (9)    

𝐷𝑠
2 𝜕𝑊(𝑟,𝑡)

𝜕𝑟
+ 𝑃𝑔

𝜕𝐿

𝜕𝑡
= 0 . 

|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) is dependent on the sign of the velocity and is non-linear. Thus, this makes the 

analytic method difficult and complicated even though the boundary conditions are simple. To proceed, we take partial 

derivatives of (9) with respect to 𝑡 and 𝑟 such that it is a frictionless case. 

       
𝜕2𝑊(𝑟,𝑡)

𝜕𝑡2
+ 𝑔

𝜕2𝐿

𝜕𝑡𝜕𝑟
= 0,

𝜕2𝑊(𝑟,𝑡)

𝜕𝑡𝜕𝑟
+

𝑃𝑔

𝐷𝑠
2

𝜕2𝐿

𝜕𝑡2
= 0                    (10) 

and  

      𝐷𝑠
2 𝜕

2𝑊(𝑟,𝑡)

𝜕𝑟2
+ 𝑃𝑔

𝜕2𝐿

𝜕𝑡𝜕𝑟
= 0,

𝜕2𝑊(𝑟,𝑡)

𝜕𝑡𝜕𝑟
+ 𝑔

𝜕2𝐿

𝜕𝑟2
= 0                  (11) 

Now, substituting (11) from (10), we have 

      
𝜕2𝑊(𝑟,𝑡)

𝜕𝑡2
− 𝐷𝑠

2 𝜕
2𝑊(𝑟,𝑡)

𝜕𝑟2
= 0, 

𝜕2𝐿

𝜕𝑡2
−𝐷𝑠

2 𝜕
2𝐿

𝜕𝑟2
= 0.                    (12) 

The equations (12) are called the one-dimensional wave equations which can be solved individually for flow velocity or 

piezometric head. Basically, the analytic solution to (12) is due to d’ Alembert (IEEE, 2008). It is given as 

        𝐿(𝑟, 𝑡) =
𝑓(𝑟−𝐷𝑠)+𝑓(𝑟+𝐷𝑠)

2
−

1

2𝐷𝑠
∫ 𝑔(𝑠)𝑑𝑠,
𝑟+𝐷𝑠

𝑟−𝐷𝑠
                (13) 
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with conditions: 

 𝐿(𝑟, 0) defines the initial pressure across the conduit, 

 𝑔(𝑟) =
𝜕𝐿(𝑟,0)

𝜕𝑡
 defines the change of pressure with time.  

The equation (13) is vital for understanding the phenomenon of water hammer. It is applied in a single dominant conduit with 

very low friction levels. 

 

3.2 Methods of Characteristics 

The method of characteristics transforms the two hyperbolic partial differential equations in (5) into a single ordinary 

differential equation (ODE). The method is described in details as presented below. 

Now, introducing the Lagrange multiplier 𝜆 to equation (5), we have 

𝜆 [
𝜕𝑊(𝑟,𝑡)

𝜕𝑡
+

1

𝜌

𝜕𝑃(𝑟,𝑡)

𝜕𝑟
+ 𝑔

𝑑𝑧

𝑑𝑟
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) + 𝐷𝑠

2 𝜕𝑊(𝑟,𝑡)

𝜕𝑟
+

𝜕𝑃(𝑟,𝑡)

𝜕𝑡
] = 0      (14)      

By taking like terms together: 

 (𝜆
𝜕𝑊(𝑟,𝑡)

𝜕𝑡
++𝐷𝑠

2 𝜕𝑊(𝑟,𝑡)

𝜕𝑟
) + (

𝜆

𝜌

𝜕𝑃(𝑟,𝑡)

𝜕𝑟
+

𝜕𝑃(𝑟,𝑡)

𝜕𝑡
) + 𝜆𝑔

𝑑𝑧

𝑑𝑟
+ 𝜆

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0.          (15)    

Hence by partial derivatives: 

𝜆
𝑑𝑊(𝑟, 𝑡)

𝑑𝑡
= 𝜆

𝜕𝑊(𝑟, 𝑡)

𝜕𝑡
+ 𝜆

𝜕𝑊(𝑟, 𝑡)

𝜕𝑟

𝑑𝑟

𝑑𝑡
. 

Thus, by comparison of coefficients, we have 

𝜆
𝜕𝑊(𝑟, 𝑡)

𝜕𝑡
+ 𝜆

𝜕𝑊(𝑟, 𝑡)

𝜕𝑟

𝑑𝑟

𝑑𝑡
= 𝜆

𝜕𝑊(𝑟, 𝑡)

𝜕𝑡
+ 𝐷𝑠

2
𝜕𝑊(𝑟, 𝑡)

𝜕𝑟
. 

          ⟹ 𝜆
𝑑𝑟

𝑑𝑡
= 𝐷𝑠

2.              (16) 

Similarly,  

𝑑𝑃(𝑟, 𝑡)

𝑑𝑡
=
𝜕𝑃(𝑟, 𝑡)

𝜕𝑡
+
𝜕𝑃(𝑟, 𝑡)

𝜕𝑟

𝑑𝑟

𝑑𝑡
, 

⟹
𝜆

𝜌

𝜕𝑃(𝑟, 𝑡)

𝜕𝑟
+
𝜕𝑃(𝑟, 𝑡)

𝜕𝑡
=
𝜕𝑃(𝑟, 𝑡)

𝜕𝑡
+
𝜕𝑃(𝑟, 𝑡)

𝜕𝑟

𝑑𝑟

𝑑𝑡
, 

           ⟹
𝜆

𝜌
=

𝑑𝑟

𝑑𝑡
.               (17)  

From equation (16), we arrive at, 

           
𝑑𝑟

𝑑𝑡
=

𝐷𝑠
2

𝜆
                  (18) 

Using (18) on (17), we have: 

           𝜆2 = 𝑃2𝐷𝑠
2.                    (19)    

       

⟹ 𝜆 = ±𝑃𝐷𝑠, 

where 𝑃 > 0 but 𝐷𝑠 can either be positive or negative. 

Now, subjecting  𝜆 = +𝑃𝐷𝑠, the first two terms in equation become totally differentials, that is, 
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       𝜆
𝑑𝑊(𝑟,𝑡)

𝑑𝑡
+

𝑑𝑃(𝑟,𝑡)

𝑑𝑡
+  𝜆𝑔

𝑑𝑧

𝑑𝑟
+ 𝜆

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0.      (20)     

  This implies that 

    𝑃𝐷𝑠
𝑑𝑊(𝑟,𝑡)

𝑑𝑡
+

𝑑𝑃(𝑟,𝑡)

𝑑𝑡
+  𝑃𝐷𝑠𝑔

𝑑𝑧

𝑑𝑟
+ 𝑃𝐷𝑠

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0, 

     ⟹
𝑑𝑊(𝑟,𝑡)

𝑑𝑡
+

1

𝑃𝐷𝑠

𝑑𝑃(𝑟,𝑡)

𝑑𝑡
+  𝑔

𝑑𝑧

𝑑𝑟
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0.         (21) 

 Equation (21) is known as the positive characteristic equation denoted as 𝐶+ equation. 

Also, constraining  𝜆 = −𝑃𝐷𝑠, we have, 

      ⟹
𝑑𝑊(𝑟,𝑡)

𝑑𝑡
−

1

𝑃𝐷𝑠

𝑑𝑃(𝑟,𝑡)

𝑑𝑡
+  𝑔

𝑑𝑧

𝑑𝑟
+
𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0,         (22) 

which is known as the negative characteristic equation denoted as 𝐶− equation. 

Let recall that 𝑃 = 𝜌𝑔(𝐿 − 𝑧), then 

            
𝑑𝑃(𝑟,𝑡)

𝑑𝑡
= 𝜌𝑔 (

dL

dt
−

dz

dr

dr

dt
).             (23) 

Substituting (23) into (21), we have: 

𝑑𝑊(𝑟,𝑡)

𝑑𝑡
+

𝑃𝑔

𝑃𝐷𝑠
(
dL

dt
−

dz

dr

dr

dt
) +  𝑔

𝑑𝑧

𝑑𝑟
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0, 

⟹
𝑑𝑊(𝑟,𝑡)

𝑑𝑡
+

𝑔

𝐷𝑠
(
dL

dt
) −

𝑔

𝐷𝑠

dz

dr

dr

dt
+  𝑔

𝑑𝑧

𝑑𝑟
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0. 

But  
dr

dt
= +𝐷𝑠 , 

⟹
𝑑𝑊(𝑟,𝑡)

𝑑𝑡
+

𝑔

𝐷𝑠
(
dL

dt
) −

𝑔

𝐷𝑠

dz

dr

dr

dt
+  𝑔

𝑑𝑧

𝑑𝑟
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0, 

⟹
𝑑𝑊(𝑟,𝑡)

𝑑𝑡
+

𝑔

𝐷𝑠
(
dL

dt
) − 𝑔

dz

dr
+  𝑔

𝑑𝑧

𝑑𝑟
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0,           

⟹
𝑑𝑊(𝑟,𝑡)

𝑑𝑡
+

𝑔

𝐷𝑠
(
dL

dt
) +

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0.                  (24) 

Similarly, for  
dr

dt
= −𝐷𝑠, 

⟹
𝑑𝑊(𝑟,𝑡)

𝑑𝑡
−

𝑔

𝐷𝑠
(
dL

dt
) +

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0.              (25)    

The equations (24) and (25) are the foundation for finite difference solution of equation (5). 

 

4. The Proposed Method: Finite Difference Method 

 The major highlight of the method of characteristics is that it seeks relevant information about the numerical solution along 

the approximation to the characteristics lines. This implies that the numerical scheme for the method of characteristics offers 

better solution that has vivid fronts. However, major disadvantages of the method of characteristics include; 

 i.  it is more difficult to implement than other methods such as the direct finite difference method. 

 ii. its approximations are unequally spaced set of points in the 𝑟𝑡 plane. 

 Now, let define 𝑁 segments in a section of conduit such that there exist (𝑁 + 1) sample points  

partitioned by the distance ∆𝑥. 
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Applying the finite difference method on (24) and (25) for the head, 𝐿𝑝 and velocity head,  

𝑊𝑝 at the point 𝑥, we have: 

                      
𝑊𝑃−𝑊𝑙

∆𝑡
+

𝑔

𝐷𝑠
[𝐿𝑃 − 𝐿𝑙] +

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊𝑙(𝑟, 𝑡)|)𝑊𝑙(𝑟, 𝑡)|𝑊𝑙(𝑟, 𝑡)| = 0,            (26) 

      
𝑊𝑃−𝑊𝑟

∆𝑡
−

𝑔

𝐷𝑠
[𝐿𝑃 − 𝐿𝑟] +

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊𝑟(𝑟, 𝑡)|)𝑊𝑟(𝑟, 𝑡)|𝑊𝑟(𝑟, 𝑡)| = 0,      (27) 

for  ∆𝑥 = ±𝐷𝑠∆𝑡. 

Note that the subscript 𝑟 and 𝑙 denotes sample points to the left and right of 𝑥 and one ∆𝑡 in the past. Moreover, the 

relationship between ∆𝑥 and ∆𝑡 subjects the solution to the characteristics lines. 

Multiplying the equations (26) and (27) by ∆𝑡, we obtain 

    𝑊𝑃 −𝑊𝑙 +
𝑔

𝐷𝑠
[𝐿𝑃 − 𝐿𝑙] +

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛∆𝑡

2Αd
(|𝑊𝑙(𝑟, 𝑡)|)𝑊𝑙(𝑟, 𝑡)|𝑊𝑙(𝑟, 𝑡)| = 0,          (28)  

        𝑊𝑃 −𝑊𝑟 −
𝑔

𝐷𝑠
[𝐿𝑃 − 𝐿𝑟] +

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛∆𝑡

2Αd
(|𝑊𝑟(𝑟, 𝑡)|)𝑊𝑟(𝑟, 𝑡)|𝑊𝑟(𝑟, 𝑡)| = 0,             (29)   

We now solve for 𝑊𝑝 and 𝐿𝑝  in (28) and (29) above.  

 

4.1  Steady State Flow 

Let  
𝑑𝑊(𝑟,𝑡)

𝑑𝑡
= 0 in (24), then  

𝑔

𝐷𝑠
(
dL

dt
)+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0.  

This implies that  

𝑔

𝐷𝑠

dL

dr
.
dr

dt
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2gΑd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0,      

 ⇒
dL

dr
= −

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2gΑd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0.                   (30)  

Thus, the slope pf piezometric head is estimated by the flow constant velocity, 𝑊0.  

Integrating (30) with respect to 𝑟, we have that 

𝐿(𝑟) = −
𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2gΑd
(|𝑊0(𝑟, 𝑡)|) 𝑊0(𝑟, 𝑡)|𝑊0(𝑟, 𝑡)|)𝑟 + 𝑑𝑖 = 0    

Let define 𝐿(𝑟 = 0) = 𝐿𝛼 to represent the head at the reservoir. Then, 

𝐿(0) = 𝐿𝛼 = 𝑑𝑖. 

Also, let 𝐿(𝑟 = 𝑙) = 𝐿𝛽 to represent the lower end of the conduit. Then, 

𝐿(𝑙) = −
𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2gΑd
(|𝑊0(𝑟, 𝑡)|) 𝑊0(𝑟, 𝑡)|𝑊0(𝑟, 𝑡)|)𝑙 + 𝐿𝛼 = 𝐿𝛽.                 (31) 

 Thus, we have, 

|𝑊0(𝑟, 𝑡)|) 𝑊0(𝑟, 𝑡)|𝑊0(𝑟, 𝑡)| =
2𝑔𝐴𝑑
𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

(𝐿𝛽 − 𝐿𝛼). 

Hence, the steady state velocity is defined by: 

                          𝑊0(𝑟, 𝑡) = √
2𝑔𝐴𝑑

𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

3
(𝐿𝛽 − 𝐿𝛼).              (32) 
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Explicitly, we let (𝑖 − 1) and (𝑖 + 1) to refer to points at the left and right of p respectively. Thus, (24) and (25) can be 

rewritten as: 

𝑊𝑝𝑖 =
1

2
[𝑊1−𝑖 +𝑊1+𝑖] +

𝑔

𝐷𝑠
[𝐿1−𝑖 − 𝐿1+𝑖] −

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛∆𝑡

2Αd
(|𝑊1−𝑖(𝑟, 𝑡)|)𝑊1−𝑖(𝑟, 𝑡)|𝑊1−𝑖(𝑟, 𝑡)| + (|𝑊1+𝑖(𝑟, 𝑡)|)𝑊1+𝑖(𝑟, 𝑡)|𝑊1+𝑖(𝑟, 𝑡)|), 

𝐿𝑝𝑖 =
1

2
[
𝐷𝑠

𝑔
(𝑊1−𝑖 −𝑊1+𝑖)] + [𝐿1−𝑖 + 𝐿1+𝑖] −

𝐷𝑠

𝑔

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛∆𝑡

2Αd
(|𝑊1−𝑖(𝑟, 𝑡)|)𝑊1−𝑖(𝑟, 𝑡)|𝑊1−𝑖(𝑟, 𝑡)| −

                    (|𝑊1+𝑖(𝑟, 𝑡)|)𝑊1+𝑖(𝑟, 𝑡)|𝑊1+𝑖(𝑟, 𝑡)|) = 0 ,                 

 (33)   

which is valid in the solution space 2 ≤ 𝑖 ≤ 𝑁 called the interior points. 

 

4.2 Initial and Boundary Conditions Estimate 

At the valve, the velocity remains at a steady state during the initial two seconds. Thereafter, there is an exponential decay of the 

velocity to zero as the valve closes. Suppose 𝑊0  denotes the velocity at the steady state,  

 𝑊𝑁+1(𝑡) = {
𝑊0          𝑡 < 2

𝑊0 −70
(𝑡−2)     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                    (34) 

Initial and final pressures of the pipeline is given as: 

           𝑃0(𝑡) = 𝑃0 , 𝑃𝑁+1(𝑡) = 0.                     (35) 

Initial pressure and velocity distribution along the pipeline is given as: 

  𝑃𝑁+1(0) = [𝑃𝑖(0) = 𝑃0 (1− 𝑖
𝑑𝑥

𝐿
)] , 𝑖 = 1…𝑁,               

    [𝑊𝑖(0) = 𝑊0], 𝑖 = 1. .𝑁.                          (36)  

Since, there is no change in velocity at the node 0, we have that the velocities at the nodes 0 and 1 are equal, that is,  

𝑊0(𝑡) = 𝑊1(𝑡) . 

The 𝑃0 and 𝑊0  can be calculated the steady state pipeline velocity from the Darcy-Weisbach  equation [9] : 

     𝑊0 = 𝑃0 = 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑊)
𝐿

𝐴𝑑

𝜌𝑉2

2
,                      (37) 

where, L is the length of pipe work (m), 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑊) is the frictional factor, 𝜌 is the liquid density, Αd is the pipe diameter, 

𝑉 is the cross-sectional area of the pipe. 

The frictional factor , 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑊) in a laminar flow in a pipe (circular) is given as [12] 

          𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑊) =
1

(1.8𝑙𝑜𝑔10(
6.9

𝑅𝑒𝑦
+(

𝑒

3.7𝐴𝑑
)
1.11

))

2 ,           (38) 

where Rey denotes Reynolds number [13], [14] given as 

                   𝑅𝑒𝑦 =
𝑉𝐴𝑑

𝜇 
 ,               (39) 

where 𝜇 is the kinematic viscosity. 
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5. Discretization of the Partial Differential Equations 

Discretizing the PDEs (equation (1) and (2)) by replacing the spatial derivatives with a central difference approximation gives 

these equations: 

     
𝑑

𝑑𝑡
𝑊𝑖(𝑡) +

1

𝜌

𝑃𝑖+𝑖(𝑡)−𝑃𝑖−1(𝑡)

2Δ𝑥
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0 ,             (40) 

          𝐷𝑠
2 𝜕𝑊(𝑟,𝑡)

𝜕𝑟
+

𝜕𝑃(𝑟,𝑡)

𝜕𝑡
= 0 ,                (41) 

where 𝑖 = 1…𝑁.      

 

5.1  Discretizing the PDE into ODE 

 Let the number of nodes be given as N, and the length, L of each node be defined as 𝑑𝑥 =
𝐿

𝑁
, then the Spatially discretized 

form of each PDE is given as 

     
𝑑

𝑑𝑡
𝑊𝑖(𝑡) +

1

𝜌

𝑃𝑖+𝑖(𝑡)−𝑃𝑖−1(𝑡)

2Δ𝑥
+

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

2Αd
(|𝑊(𝑟, 𝑡)|) 𝑊(𝑟, 𝑡)|𝑊(𝑟, 𝑡)|) = 0 ,       (42) 

           𝐷𝑠
2 𝜕𝑊(𝑟,𝑡)

𝜕𝑟
+

𝜕𝑃(𝑟,𝑡)

𝜕𝑡
= 0 ,          (43) 

where for 𝑖 = 1. .𝑁, generate the entire set of ODEs. 

 

6. Solving the ODEs and Plot Pressure at Valve 

 In this section, we solve the entire set of ODEs generated at various nodes N, to establish a pressure plot at the valve of the 

closed pipe. To this effect, the MAPLE 18 software is adopted to implement all computational framework. 

In line with [9], let the liquid density, 𝜌 = 1000; Viscosity, 𝜇 = 0.001; Pipe diameter, Αd = 0.1; Wall thickness, thick = 

0.001, Roughness, 𝑒 = 0.0001; Length, L=25; Young's modulus, E=70 × 109 , Cross-sectional area, 𝐴 =
1

4
𝜋Αd

2,  Pressure 

at start of pipeline, psource = 0.5 × 106; Bulk modulus, K=200 × 106; Effective modulus of system, 𝐷𝑠 =
1

(
1

𝑘
+

Αd
𝐸×𝑡ℎ𝑖𝑐𝑘

)
, we 

obtain the steady velocity denoted by Wsteady as 14.19058741 via the equations (34) – (37) through MAPLE 18 software. 

Now, let N=30, then equation (42) and (43) generate the set of ODEs as follows: 

𝑑

𝑑𝑡
𝑤1(𝑡) +

1

5000
𝑝2(𝑡) − 100 + 5𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(|𝑤1(𝑡)|𝑤1(𝑡)|𝑤1(𝑡)|) = 0,  

1

5
𝑤2(𝑡) −

1

5
𝑤0(𝑡) + 6.42857143 10

−19 (
𝑑

𝑑𝑡
𝑝1(𝑡)) = 0,  

𝑑

𝑑𝑡
𝑤2(𝑡) +

1

5000
𝑝3(𝑡) −

1

5000
𝑝1(𝑡) + 5𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(|𝑤2(𝑡)|𝑤2(𝑡)|𝑤2(𝑡)|) = 0,  

1

5
𝑤3(𝑡) −

1

5
𝑤1(𝑡) + 6.42857143 10

−19 (
𝑑

𝑑𝑡
𝑝2(𝑡)) = 0,  

𝑑

𝑑𝑡
𝑤3(𝑡) +

1

5000
𝑝4(𝑡) −

1

5000
𝑝2(𝑡) + 5𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(|𝑤3(𝑡)|𝑤3(𝑡)|𝑤3(𝑡)|) = 0,  

1

5
𝑤4(𝑡) −

1

5
𝑤2(𝑡) + 6.42857143 10

−19 (
𝑑

𝑑𝑡
𝑝3(𝑡)) = 0,  
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𝑑

𝑑𝑡
𝑤4(𝑡) +

1

5000
𝑝5(𝑡) −

1

5000
𝑝3(𝑡) + 5𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(|𝑤4(𝑡)|𝑤4(𝑡)|𝑤4(𝑡)|) = 0,  

1

5
𝑤5(𝑡) −

1

5
𝑤3(𝑡) + 6.42857143 10

−19 (
𝑑

𝑑𝑡
𝑝4(𝑡)) = 0,  

𝑑

𝑑𝑡
𝑤5(𝑡) +

1

5000
𝑝6(𝑡) −

1

5000
𝑝4(𝑡) + 5𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(|𝑤5(𝑡)|𝑤5(𝑡)|𝑤5(𝑡)|) = 0,  

1

5
𝑤6(𝑡) −

1

5
𝑤4(𝑡) + 6.42857143 10

−19 (
𝑑

𝑑𝑡
𝑝5(𝑡)) = 0,  

𝑑

𝑑𝑡
𝑤6(𝑡) +

1

5000
𝑝7(𝑡) −

1

5000
𝑝5(𝑡) + 5𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(|𝑤6(𝑡)|𝑤6(𝑡)|𝑤6(𝑡)|) = 0,  

1

5
𝑤7(𝑡) −

1

5
𝑤5(𝑡) + 6.42857143 10

−19 (
𝑑

𝑑𝑡
𝑝6(𝑡)) = 0,  

𝑑

𝑑𝑡
𝑤7(𝑡) +

1

5000
𝑝8(𝑡) −

1

5000
𝑝6(𝑡) + 5𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(|𝑤7(𝑡)|𝑤7(𝑡)|𝑤7(𝑡)|) = 0,  

1

5
𝑤8(𝑡) −

1

5
𝑤6(𝑡) + 6.42857143 10

−19 (
𝑑

𝑑𝑡
𝑝7(𝑡)) = 0,  

𝑑

𝑑𝑡
𝑤8(𝑡) +

1

5000
𝑝9(𝑡) −

1

5000
𝑝7(𝑡) + 5𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(|𝑤8(𝑡)|𝑤8(𝑡)|𝑤8(𝑡)|) = 0,  

1

5
𝑤9(𝑡) −

1

5
𝑤7(𝑡) + 6.42857143 10

−19 (
𝑑

𝑑𝑡
𝑝8(𝑡)) = 0,  

𝑑

𝑑𝑡
𝑤9(𝑡) +

1

5000
𝑝10(𝑡) −

1

5000
𝑝8(𝑡) + 5𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(|𝑤9(𝑡)|𝑤9(𝑡)|𝑤9(𝑡)|) = 0,  

1

5
𝑤10(𝑡) −

1

5
𝑤8(𝑡) + 6.42857143 10

−19 (
𝑑

𝑑𝑡
𝑝9(𝑡)) = 0,  

𝑑

𝑑𝑡
𝑤10(𝑡) +

1

5000
𝑝11(𝑡) + 5𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(|𝑤10(𝑡)|𝑤10(𝑡)|𝑤10(𝑡)|) = 0,  

1

5
𝑤11(𝑡) −

1

5
𝑤9(𝑡) + 6.42857143 10

−19 (
𝑑

𝑑𝑡
𝑝10(𝑡)) = 0.  

During the initial two seconds, the velocity at the valve is at a steady state. Thus,  

𝑤6 = {
14.19058741        𝑡 < 2

14.19058741𝑒−70𝑡+140            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Pressure at the start and end of the pipeline is 

𝑝6(0)=0 

Initial pressure and velocity distribution along the pipeline: 

Initial conditons [9]: 

 𝑝1(0) = 4.5 10
5, 𝑝2(0) = 4.0 10

5,  𝑝3(0) = 3.5 10
5, 𝑝4(0) = 3.0 10

5 , 𝑝5(0) = 2.5 10
5, 𝑝6(0) = 2.0 10

5,  𝑝7(0) =

1.5 105, 𝑝8(0) = 1.0 10
5,𝑝9(0) = 0; 𝑤1(0) = 14.19058741,𝑤2(0) = 14.19058741,  𝑤3(0) = 14.19058741,𝑤4(0) =

14.19058741,  𝑤5(0) = 14.19058741,𝑤6(0) = 14.19058741, 𝑤7(0) = 14.19058741,  𝑤8(0) = 14.19058741,  

𝑤9(0) = 14.19058741,  𝑤10(0) = 14.19058741.  

The velocity at node 0 is equal to the velocity at node 1. Hence,  

𝑤0(0) = 𝑤1(0). 
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Fig. 2 A pressure {𝑷𝟑𝟎(𝒕) , 𝒕 = 𝟎 } plot at the valve 

 

Fig. 3 A pressure {𝑷𝟑𝟎(𝒕) , 𝒕 = 𝟐 } plot at the valve 
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Fig 4. A pressure {𝑷𝟑𝟎(𝒕) , 𝒕 = 𝟎. . 𝟒 } plot at the valve 

 

Fig. 5 A pressure {𝑷𝟑𝟎(𝒕) , 𝒕 = 𝟒 } plot at the valve. 

 

 



Jonathan Tsetimi et al. / IJMTT, 68(5), 22-35, 2022 

 

34 

7. Discussion of Results 

 From numerical simulations presented in Fig. 2, 3, 4 and Fig. 5, we make the following observations: 

 The model (with steady friction factor) is appropriate for the simulation of water hammer  in pressurized pipes 

made from polymers such as polyvinyl Chloride. The maximum pressure amplitude simulated by the  model is 

estimated accurately. 

 The pipe wall constraint, liquid density, pipe diameter has a significant influence on  obtained results. The 

lower values of Αd, Ds, and 𝐴 , the lower the amplitudes occurs (see Fig. 5). 

 During the stimulation, the experimental pressure runs show the pressure increases after  the valve closure 

linearly (see Fig. 2, 3 and 4). 

 

8. Conclusion 

 Water hammer is very essential for risk analysis and operation of pipeline system. This work studied the effects of steady 

friction factor, wall constraint, pipe diameter and liquid density for the analysis of water hammer in a pipeline system with 

special emphasis on the finite difference method (FDM) due to its accurate and reliable evaluation of the water hammer 

problem. Numerical validation of the FDM demonstrates that the FDM performs well and is as good as the method of 

characteristics (MOC) ([9]) in terms of computational speed and accuracy. 
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