Original Article
 Generating, Minimal Polynomial and Minimum Distance of Quadratic Residue Codes (QR-Codes) of Length $4 p^{n}$

Ranbir Singh ${ }^{1}$, Manoj Kumar ${ }^{2}$, Vinod Bhatia ${ }^{3}$
${ }^{1,2,3}$ Deptt. of Mathematics, Baba Mast Nath University, Rohtak

Received: 16 March 2022
Revised: 11 May 2022
Accepted: 17 May 2022
Published: 07 June 2022

Abstract

Generating, Minimal polynomial and Minimum distance of all $3(2 n+1)$ quadratic residue codes(QR-Codes) of length $4 p^{n}$ over $G F(l)$, where p, l are distinct odd primes, $o(l)_{p^{n}}=\frac{\varphi\left(p^{n}\right)}{2}, o(l)_{4}=\varphi(4), \operatorname{gcd}\left(\varphi\left(p^{n}\right), \varphi(4)\right)=2$, p does not divide 3 , are obtained.

Keywords - Generating polynomials, Minimal polynomial and Minimum distance.
MSC(2010): 11A03;15A07;11R09;11T06;11T22;11T71;94B05;94B15

1. Introduction

Let $F=G F(l)$ be a field of odd prime order l and $\mathrm{k} \geq 1$ be an integer such that $\operatorname{gcd}(l, k)=1$. Let $o(l)_{k}$ denotes the order of l modulo k . Many authors have obtained the complete set of primitive idempotents of the minimal cyclic codes of various lengths. Sahni and Sehgal [1] described the minimal cyclic codes of length $p^{n} q, p, q$ are distinct odd primes and $o(l)_{p^{n}}=\varphi\left(p^{n}\right), o(l)_{q}=\varphi(q), \operatorname{gcd}\left(\varphi\left(p^{n}\right), \varphi(q)\right)=\mathrm{d}, p$ does not divide $q-1$.

In this paper, we extend the results of Rani S. Singh I.J and Kumar P. [13]. We consider the case when $k=4 p^{n}$, where p, l are distinct odd primes, $o(l)_{2 p^{n}}=\varphi\left(2 p^{n}\right) / d=\varphi\left(p^{n}\right), o(l)_{4}=\varphi(4), \operatorname{gcd}\left(\varphi\left(2 p^{n}\right), \varphi(4)\right)=\mathrm{d}, p$ does not divide 3. In Section 2 (Lemmas $2.1-2.4$ and Theorem 2.5), we obtain the generating polynomials, minimal polynomial and minimum distance of all $3(2 n+1)$ quadratic residue codes (QR-Codes) of length $4 p^{n}$.

2. Dimension, generating polynomial and minimum distance of minimal cyclic codes of length $4 p^{n}$

The dimension of minimal cyclic code Ω_{s} is the number of non-zeros of the generating idempotent θ_{s}; which is the cardinality of the cyclotomic coset C_{s} that is $\operatorname{dim}\left(\Omega_{\mathrm{s}}\right)=\left|\mathrm{C}_{\mathrm{s}}\right|$. We denote the minimum distance of Ω_{s} by $\mathrm{d}\left(\Omega_{\mathrm{s}}\right)$.
2.1 Theorem Let p, l be distinct odd primes and $\mathrm{n}, d \geq 1$ be integers. If $o(l)_{p^{n-j}}=\varphi\left(p^{n-j}\right) / 2$ and $o(l)_{4}=\varphi(4)$ with $\operatorname{gcd}\left(\varphi\left(p^{n-j}\right), \varphi(4)\right)=2$ and p does not divide 3 , then for the integer $n \geq 1$, there are $3(2 n+1)$ cyclotomic cosets $\left(\bmod 4 p^{n}\right)$ given by
(i) $\mathrm{C}_{0}=\{0\}$,
(ii) $\quad C_{p^{n}}=\left\{p^{n}, p^{n} l\right\}$,
(iii) $\quad C_{2 p^{n}}=\left\{2 p^{n}\right\}$

For $0 \leq j \leq n-1,0 \leq k \leq 1$,
(iv) $\quad C_{g^{k} p^{j}}=\left\{g^{k} p^{j}, g^{k} p^{j} l, g^{k} p^{j} l^{2}, \ldots, g^{k} p^{j} l^{\varphi\left(4 p^{n-j}\right) / 2-1}\right\}$,
(v) $\quad C_{2 g^{k} p^{j}}=\left\{2 g^{k} p^{j}, 2 g^{k} p^{j} l, 2 g^{k} p^{j} l^{2}, \ldots, 2 g^{k} p^{j} l^{\varphi\left(2 p^{n-j}\right) / 2-1}\right\}$,
(vi) $\quad C_{4 g^{k} p^{j}}=\left\{4 g^{k} p^{j}, 4 g^{k} p^{j} l, 4 g^{k} p^{j} l^{2}, \ldots, 4 g^{k} p^{j} l^{\varphi\left(p^{n-j}\right) / 2-1}\right\}$
where g is fixed integer
2.2. Lemma If C is the cyclic code of length m generated by $g(x)$ and is of minimum distance d, then the code \hat{C} is of length mk generated by $\mathrm{g}(\mathrm{x})\left(1+\mathrm{x}^{\mathrm{m}}+\mathrm{x}^{2 \mathrm{~m}}+\ldots+\mathrm{x}^{(\mathrm{k}-1) \mathrm{m}}\right)$ is a repetition code of C repeated k times and minimum distance is kd.
Proof. Trivial.
2.3. Theorem (i) Ω_{0} and $\Omega_{2 p^{n}}$ are equivalent codes, each of length $4 \mathrm{p}^{\mathrm{n}}$, dimension 1 and minimum distance $4 \mathrm{p}^{\mathrm{n}}$.
(ii) $\Omega_{p^{n}}$ and $\Omega_{3 p^{n}}$ are equivalent codes, each of length $4 p^{n}$, dimension $\varphi(4)$ and minimum distance $4 \mathrm{p}^{\mathrm{n}}$.
(iii) $\Omega_{2 p^{j}}$ and $\Omega_{2 g p^{j}}$, for $0 \leq \mathrm{j} \leq \mathrm{n}-1$ are equivalent codes, each of length $4 \mathrm{p}^{\mathrm{n}}$, dimension $4 \mathrm{p}^{\mathrm{n}}$ and minimum distance $8 \mathrm{p}^{\mathrm{j}}$.
Proof (i) Clearly, the minimal polynomial of $\alpha^{0}=1$ is $x-1$, therefore the generating polynomial of Ω_{0} is $\frac{\mathrm{x}^{4 p^{n}}-1}{\mathrm{x}-1}=1+\mathrm{x}+\mathrm{x}^{2}+\ldots+\mathrm{x}^{4 p^{n}-1}$ and the minimal polynomial of $\alpha^{2 p^{n}}$ is $\mathrm{x}+1$. Therefore, the generating polynomial of $\Omega_{2 p^{n}}$ is $\frac{\mathrm{x}^{4 \mathrm{p}^{n}}-1}{\mathrm{x}+1}=\mathrm{x}^{4 \mathrm{p}^{\mathrm{n}}-1}-\mathrm{x}^{4 \mathrm{p}^{\mathrm{n}}-2}+\ldots \mathrm{x}+1$. These obviously imply that Ω_{0} and $\Omega_{2 p^{n}}$ are equivalent codes, each of length $4 \mathrm{p}^{\mathrm{n}}$, dimension 1 and minimum distance $4 \mathrm{p}^{\mathrm{n}}$.
(ii) The minimal polynomial of $\alpha^{\mathrm{p}^{\mathrm{n}}}$ and $\alpha^{3 p^{n}}$ are
$\mathrm{M}^{\left(p^{n}\right)}(x)=\mathrm{x}^{2}+1$
and
$\mathrm{M}^{\left(3 p^{n}\right)}(x)=1+\mathrm{x}^{2}$ respectively.
Therefore, $\frac{x^{4 p^{n}}-1}{\mathrm{M}^{\left(p^{n}\right)}(x)}=\left(x^{2}-1\right)\left(1+x^{4}+x^{8}+\ldots+x^{4\left(p^{n}-1\right)}\right)$
and
$\frac{x^{4 p^{n}-1}}{\mathrm{M}^{\left(3 p^{n}\right)}(x)}=\left(x^{2}-1\right)\left(1+x^{4}+x^{8}+\ldots+x^{4\left(p^{n}-1\right)}\right)$
are generating polynomials of the minimal cyclic codes $\Omega_{\mathrm{p}^{n}}$ and $\Omega_{3 p^{n}}$. This implies that $\Omega_{\mathrm{p}^{n}}$ and $\Omega_{3 p^{n}}$ are equivalent codes. Trivially, the dimension of each code is 2 .
The minimal cyclic code $\Omega_{\mathrm{p}^{n}}$ is p^{n} times repetition of a code generated by $\left(x^{2}-1\right)$ and of minimum distance
2. Therefore, by Lemma 2.2, the minimum distance of $\Omega_{p^{n}}$ is $2 p^{n}$.

Analogously, the minimal cyclic code $\Omega_{3 p^{n}}$ is p^{n} times repetition of a code generated by same generating polynomial $\left(x^{2}-1\right)$ and of minimum distance 2 . Therefore, again by Lemma 2.2, the minimum distance of $\Omega_{3 p^{n}}$ is $2 \mathrm{p}^{\mathrm{n}}$.
(iii) For $0 \leq \mathrm{i} \leq \mathrm{n}-1$, the minimal polynomial of $\alpha^{2 p^{j}}, \alpha^{2 g p^{j}}$ over GF (l) is
$\mathrm{M}^{\left(2 p^{j}\right)}(x) \mathrm{M}^{\left(2 g p^{j}\right)}(x)=1-x^{p^{n-j-1}}+x^{2 p^{n-j-1}}-\ldots+x^{(p-1) p^{n-j-1}}$.
Also,

$$
\begin{aligned}
& \mathrm{x}^{4 \mathrm{p}^{\mathrm{n}}}-1=\left(\mathrm{x}^{2 \mathrm{p}^{\mathrm{n}-j}}-1\right)\left(1+x^{2 p^{n-j}}+x^{4 p^{n-j}}+\ldots+x^{\left(2 p^{j}-1\right) 2 p^{n-j}}\right) \\
& =\left(\mathrm{x}^{\mathrm{p}^{\mathrm{n}-\mathrm{j}}}-1\right)\left(\mathrm{x}^{\mathrm{p} \cdot \mathrm{j}-1}\right. \\
& \quad+1)\left(1-x^{p^{n-j-1}}+x^{2 p^{n-j-1}}-\ldots+x^{(p-1) p^{n-j-1}}\right) \\
& \quad\left(1+x^{2 p^{n-j}}+x^{4 p^{n-j}}+\ldots+x^{\left(2 p^{j}-1\right) 2 p^{n-j}}\right)
\end{aligned}
$$

Thus, generating polynomial of cyclic code $\Omega_{2 p^{j}}$ is
$\left(\mathrm{x}^{\mathrm{p}^{\mathrm{n}-\mathrm{j}}}-1\right)\left(\mathrm{x}^{\mathrm{p}^{\mathrm{n}-\mathrm{j}-1}}+1\right)\left(1+x^{2 p^{n-j}}+x^{4 p^{n-j}}+\ldots+x^{\left(2 p^{j}-1\right) 2 p^{n-j}}\right)$.
Similarly, the minimal polynomial of $\alpha^{4 p^{j}}$ over GF (l) is
$\mathrm{M}^{\left(4 p^{j}\right)}(x) \mathrm{M}^{\left(4 g p^{j}\right)}(x)=1+x^{p^{n-j-1}}+x^{2 p^{n-j-1}}+\ldots+x^{(p-1) p^{n-j-1}}$.
Also, $\mathrm{x}^{4 \mathrm{p}^{\mathrm{n}}}-1=\left(\mathrm{x}^{\mathrm{p}^{\mathrm{n}-\mathrm{j}}}-1\right)\left(1+x^{p^{n-j}}+x^{2 p^{n-j}}+\ldots+x^{\left(4 p^{j}-1\right) p^{n-j}}\right)$
$=\left(\mathrm{x}^{\mathrm{p}-\mathrm{j}-1}-1\right)\left(1+x^{p^{n-j-1}}+x^{2 p^{n-j-1}}+\ldots+x^{(p-1) p^{n-j-1}}\right)$

$$
\left(1+x^{p^{n-j}}+x^{2 p^{n-j}}+\ldots+x^{\left(4 p^{j}-1\right)} p^{n-j}\right)
$$

Thus, generating polynomial of cyclic code $\Omega_{4 p^{j}}$ is
$\left(\mathrm{x}^{\mathrm{n} \mathrm{m}^{\mathrm{nj}-1}}-1\right)\left(1+x^{p^{n-j}}+x^{2 p^{n-j}}+\ldots+x^{\left(4 p^{j}-1\right)} p^{n-j}\right)$.

This obviously implies that $\Omega_{2 p^{j}}$ and $\Omega_{4 p^{j}}$ are equivalent codes, each of length $4 \mathrm{p}^{\mathrm{n}}$ and dimension $4 \mathrm{p}^{\mathrm{n}}$. By Lemma 2.2, minimum distance of each is $8 \mathrm{p}^{\mathrm{j}}$.
2.4. Lemma Let χ_{j} be the code of length $2 \mathrm{p}^{\mathrm{n}-\mathrm{j}}$ over $\mathrm{GF}(l)$ generated by $\mathrm{g}(\mathrm{x})=\left(\mathrm{x}^{2 \mathrm{p}^{\mathrm{nj}-1}}-1\right)\left(1+\mathrm{x}^{\mathrm{p}^{\mathrm{n}-\mathrm{j}-1}}+\right.$ $\left.\mathrm{x}^{2 \mathrm{p}} \mathrm{m}-\mathrm{j}-1 . .+\mathrm{x}^{(\mathrm{p}-1)} \mathrm{p}^{\mathrm{n}-\mathrm{j}-1}\right)$. Then the minimum distance of χ_{j} is 4 .

Proof. Trivial.

2.5. Lemma Let $\tilde{\chi}_{\mathrm{j}}$ be the code of length $4 \mathrm{p}^{\mathrm{n}-\mathrm{j}}$ over $\mathrm{GF}(l)$ generated by
$\mathrm{g}(\mathrm{x})=\left(\mathrm{x}^{2 \mathrm{p}^{\mathrm{n}-j}}+1\right)\left(\mathrm{x}^{2 \mathrm{p}^{\mathrm{nj-j}}}-1\right)\left(1+\mathrm{x}^{\mathrm{p}^{\mathrm{n}-j-1}}+\mathrm{x}^{2 \mathrm{p}^{\mathrm{nj-j}}}+\ldots+\mathrm{x}^{(\mathrm{p}-1) \mathrm{p}^{\mathrm{n}-\mathrm{j}-1}}\right)$. Then the minimum distance of $\tilde{\chi}_{\mathrm{j}}$ is 8 .
Proof. It is easy to see that $\tilde{\chi}_{j}$ is repetition code of χ_{j} repeated twice as defined in Lemma 2.4 , which is a cyclic code of length $2 \mathrm{p}^{\mathrm{nj-j}}$ and minimum distance 4 . Then by Lemma $2.2, \chi_{\mathrm{j}}$ is the cyclic code of length $4 \mathrm{p}^{\mathrm{nj-j}}$ and minimum distance 8 .
We shall further discuss some results for finding out the minimum distance of the minimal cyclic codes $\Omega_{2 \mathrm{~g}^{k^{k}}{ }^{\mathrm{j}}}$, for $0 \leq \mathrm{j} \leq$ $\mathrm{n}-1$ and $0 \leq \mathrm{k} \leq 1$.
2.6. Theorem For each $\mathrm{j}, 0 \leq \mathrm{j} \leq \mathrm{n}-1$ and $0 \leq \mathrm{k} \leq 1$
(i) $\Omega_{2 g^{k} p^{j}}$ are equivalent codes.
(ii) The minimum distance of $\Omega_{2 g^{k} p^{j}}$ is at least $8 \mathrm{p}^{j}$.

Proof. (i) Trivial..
(ii) Let $0 \leq \mathrm{j} \leq \mathrm{n}$-1 and $0 \leq \mathrm{k} \leq 1$.

We observe that, $\mathrm{M}^{\left(2 p^{l}\right)}(x) \mathrm{M}^{\left(2 g p^{l}\right)}(x)=\left(1+x^{2 p^{n-j-1}}+x^{4 p^{n-j-1}}+\ldots+x^{(p-1) 2 p^{n-j-1}}\right)$.
Also, $x^{4 p^{n}}-1=\left(x^{4 p^{n-j}}-1\right)\left(1+x^{4 p^{n-j}}+x^{8 p^{n-j}}+\ldots+x^{\left(p^{j}-1\right) 4 p^{n-j}}\right)$
$=\left(x^{2 p^{n-j}}-1\right)\left(x^{2 p^{n-j}}+1\right)\left(1+x^{4 p^{n-j}}+x^{8 p^{n-j}}+\ldots+x^{\left(p^{j}-1\right) 4 p^{n-j}}\right)$
$=\left(x^{2 p^{n-j}}+1\right)\left(x^{2 p^{n-j-1}}-1\right)\left(1+x^{2 p^{n-j-1}}+x^{4 p^{n-j-1}}+\ldots+x^{(p-1) 2 p^{n-j-1}}\right)$
$\left(1+x^{4 p^{n-j}}+x^{8 p^{n-j}}+\ldots+x^{\left(p^{j}-1\right) 4 p^{n-j}}\right)$.
Therefore, we have

$$
\begin{aligned}
& \frac{x^{4 p^{n}-1}}{\prod_{k=0}^{1} \mathrm{M}^{\left(2 g^{k} p^{j}\right)}(x)}=\left(\mathrm{x}^{2 \mathrm{p}^{\mathrm{n}-\mathrm{j}}}+1\right)\left(\mathrm{x}^{2 \mathrm{p}^{\mathrm{n}-\mathrm{j}-1}}-1\right)\left(1+\mathrm{x}^{\mathrm{p}^{\mathrm{n}-j-1}}+\mathrm{x}^{2 \mathrm{p}^{\mathrm{n}-j-1}}+\ldots+\mathrm{x}^{(\mathrm{p}-1) \mathrm{p}^{\mathrm{n}-j-1}}\right) \\
& \left(1+x^{4 p^{n-j}}+x^{8 p^{n-j}}+\ldots+x^{\left(p^{j}-1\right)} 4 p^{n-j}\right) .
\end{aligned}
$$

Let χ_{j}^{*} be the cyclic code of length $4 \mathrm{p}^{\mathrm{n}}$, generated by $\frac{x^{4 p^{n}-1}}{\prod_{k=0}^{1} \mathrm{M}^{\left(2 g^{k} p^{j}\right)}(x)}$.
Then, by Lemma 2.2, χ_{j}^{*} is a repetition code of $\tilde{\chi}_{j}$ repeated p^{j} times and its minimum distance is $8 p^{j}$. Further, χ_{j}^{*} $=\bigoplus_{k=0}^{1} \Omega_{2 g^{k} p^{j}}$, thus $\Omega_{2 \mathrm{~g}^{k} \mathrm{p}^{j}}$ is sub code of χ_{j}^{*}. Therefore, the minimum distance of $\Omega_{2 \mathrm{~g}^{k} \mathrm{p}^{j}}$ is at least $8 \mathrm{p}^{\mathrm{j}}$.

Theorem 2.7 For each j, $0 \leq \mathrm{j} \leq \mathrm{n}-1$ and $0 \leq \mathrm{k} \leq 1$
(i) $\Omega_{\mathrm{g}^{k} \mathrm{p}^{j}}$ are equivalent codes.
(ii) The minimum distance of each $\Omega_{\mathrm{g}^{k} \mathrm{p}^{j}}$ is at least $8 \mathrm{p}^{\mathrm{j}}$.

Proof. The proof follows on the similar lines as Theorem 2.6.

3. Conclusion

We have discussed three parameters viz generating polynomial, minimal polynomial and minimum distance of quadratic residue codes (QR-Codes) of length $4 p^{n}$. These parameters are useful to detect and correct the transmission errors.

References

[1] S.K. Arora and Manju Pruthi, Minimal Cyclic Codes Length 2p ${ }^{n}$, Finite Field and Their Applications, 5 (1999) 177-187.
[2] Gurmeet K. Bakshi and Madhu Raka, Minimal Cyclic Codes of Length Pnq, Finite Fields Appl. 9(4) (2003) 432-448.
[3] Sudhir Batra and S.K. Arora, Minimal Quadratic Residue Cyclic Codes of Length Pn (P Odd Prime), Korean J. Comput \& Appl. Math. 8(3) (2001) 531-547.
[4] Sudhir Batra and S.K. Arora, Some Cyclic Codes of Length $2 p^{n}$ (P Odd Prime), Design Codes Cryptography, 57(3) (2010).
[5] F.J. Mac Williams \& N.J.A. Sloane ; the Theory of Error Correcting Codes Bell Laboratories Murray Hill Nj 07974 U.S.A.
[6] Manju Pruthi and S.K. Arora, Minimal Cyclic Codes of Prime Power Length, Finite Field and Their Application, 3 (1997) 99-113.
[7] Raka, M., Bakshi ,G.K.; Sharma,A.,Dumir,V.C. Cyclotomic Numbers and Primitive Idempotents In the Ring $\underline{G F(q)[x] \text {, Finite }}$

$$
\left(x^{p^{n}}-1\right)
$$

Field \& Their Appl.3, 2 (2004) 653-673.
[8] Ferraz,R.A.,Millies,C.P., Idempotents In Group Algebras and Minimal Abelian Codes, Finite Fields and Their Appl,13(2) (2007) 982-993
[9] A.Sahni and P.T.Sehgal,Minimal Cyclic Codes of Length Pn ${ }^{\mathrm{n}}$, Finite Fields Appl. 18 (2012) 1017-1036.
[10] Ranjeet Singh and Manju Pruthi, Primitive Idempotents of Quadratic Residue Codes of Length $\mathrm{P}^{\mathrm{n}} \mathrm{Q}^{\mathrm{m}}$, Int.J.Algebra, 5(2011) 285294.
[11] S. Batra and S.K. Arora,Minimal Quadratic Residue Cyclic Codes of Length Pn (P Odd Prime),Korean J. Comput and Appl. Math, 8(3)(2001) 531-547.
[12] S.Rani, I.J.Singh and S.K. Arora, Minimal Cyclic Codes of Length $2 \mathrm{P}^{\mathrm{n}} \mathrm{q}$ (P Odd Prime), Bull.Calcutta.Math Society ,106(4) (2014)281-296.
[13] S. Rani, P,Kumar and I.J.Singh, Minimal Cyclic Codes of Length 2 Pn,Int. J.Algebra 7, 1-4 (2013) 79 - 90.
[14] S. Rani, P,Kumar and I.J.Singh, Quadratic Residues Codes of Prime Power Length Over Z4,J.Indian Math.Soc.New Series ,78(1-4) (2011) 155-161.
[15] S. Rani, I.J.Singh and S.K.Arora,Primitive Idempotents of Irre-Ducible Cyclic Code sof Length $\mathrm{P}^{\mathrm{n}} \mathrm{q}^{\mathrm{m}}$,Far East Journal of Math. Sciences, 77(1) (2013) 17-32.
[16] R. Singh, V. Kumar and I.J. Singh, ${ }^{\prime}$ Generalized Cyclotomic Cosets Modulo 4p ${ }^{\text {n }}$ Aryabhatta J.of Maths \& Info. 10(1) (2020) 9396.
[17] Vanlint, J.H. Generalised Quadratic Residue Macwilliams, F.J. Codes, Ieee Trans. Infor. Theory, 24(6) (1978) 730 - 737.
[18] Vanlint, J.H. Introduction to Coding Theory, Springer- Verlag, (1999).
[19] Vanlint, J.H. on the Minimum Distance of Wilson, Richard M. Cyclic Codes Ieee Trans. Infor. Theory, 32(1) (1986) 23-40.
[20] Vermani, L.R. Elements of Algebraic Coding Theory, Chapman \& Hall.
[21] Ward, H.N. Quadratic Residue Codes and Symplectic Group, Journal of Algebra 29,150-171 (1974) 168-173.
[22] Mc Coy, N.H. the Theory of Numbers, the Mcmillan Company, New York, (1971).
[23] Niven, I., Zuckerman, H.S. an Introduction To the Theory of Numbers, John Wiley \& Sons, Inc, New York, (1960).
[24] Huffman, D.G. Coding Theory, Marcel Dekker, Inc. New York, (1991).
[25] Jenson, R.A. Information Sets As Permutation Cycles for Quadratic Residue Codes, Internat.J. Math. Sci, 5 (1982).

