Some Absolute Mean Graceful Graphs in the Context of Barycentric Subdivision

P. Z. Akbari ${ }^{1}$, V. J. Kaneria ${ }^{2}$, N. A. Parmar ${ }^{3}$
${ }^{1}$ Department of Mathematics, Saurashtra University, Rajkot- 360005, Gujarat, India.
${ }^{2}$ Department of Mathematics, Saurashtra University, Rajkot- 360005, Gujarat, India.
${ }^{3}$ Shree H. N. Shukla College of IT \& MGMT, Rajkot- 360001,Gujarat, India.

Published: 09 June 2022

Abstract

In this paper, we present absolute mean graceful labeling for some graphs in context of barycentric subdivision of graph. We have proved that barycentric subdivision of wheel W_{n}, complete bipartite graph $K_{m, n}$, helm H_{n}, sunlet graph S_{n}, jelly fish graph $J_{n, n}$, alternate quadrilateral snake $A Q_{n}$ are absolute mean graceful graphs.

Keywords - Labeling, Graceful Labeling, Absolute Mean Graceful Labeling.

1. Introduction

Labeling of graph is the assignment of values to vertices or edges or both subject in certain conditions. A. Rosa[2] initiated the concept of labeling with the name of β-valuation. S. Golomb[3] named such labeling as graceful labeling. Kaneria and Chudasama[6] introduced graph labeling namely absolute mean graceful labeling. We begin with a simple, connected and undirected graph $G=(V, E)$ with p vertices and q edges. for all terminology and notations, we follow F. Harary[1]. First of all we recall some definitions, which are used in this paper.

Definition 1.1: A function f is called graceful labeling for a graph G, if $f: V(G) \longrightarrow\{0,1,2, \ldots, q\}$ is injective and the induced function $f^{*}: E(G) \longrightarrow\{1,2, \ldots, q\}$ defined as $f^{*}(e)=|f(u)-f(v)|$ is bijective for every edge $e=u v \in E(G)$. A graph G is called graceful graph, if it admits a graceful labeling.
Definition 1.2 : A function f is said to be absolute mean graceful labeling of a graph G, if $f: V(G) \longrightarrow\{0, \pm 1, \pm 2, \ldots, \pm q\}$ is injective and edge labeling function $f^{*}: E(G) \longrightarrow\{1,2, \ldots, q\}$ defined as $f^{*}(e)=\left\lceil\frac{|f(u)-f(v)|}{2}\right\rceil$ is bijective, for every edge $e=$ $u v \in E(G)$. A graph G is called absolute mean graceful graph, if it admits an absolute mean graceful labeling.
Definition 1.3 : The barycentric subdivision of graph is obtained by inserting a vertex of degree two into every edge of original graph. Barycentric subdivision of helm H_{4} is shown in Fig. 1.

Fig. 1 Barycentric subdivision of helm \boldsymbol{H}_{4}

Kaneria and Chudasama[5,6] proved that path graphs P_{n}, cycles C_{n}, complete bipertite graphs $K_{m, n}$, grid graphs $P_{m} \times P_{n}$, step grid graphs $S t_{n}$ and double step grid graphs $D S t_{n}$ are absolute mean graceful graphs and they also proved that path union of finite copies in trees T, path graphs P_{n}, cycles C_{n}, complete bipertite graphs $K_{m, n}$, grid graphs $P_{m} \times P_{n}$, step grid graphs $S t_{n}$ and double step grid graphs $D S t_{n}$ are absolute mean graceful graphs. Akbari, Kaneria and Parmar[7] proved that jewel graph J_{n}, jewel graph without prime edge J_{n}^{*}, extended jewel graph $E J_{\mathrm{n}}$, jelly fish graph $\mathrm{J}_{\mathrm{m}, \mathrm{n}}$, jelly fish graph without prime edge $J_{\mathrm{m}, \mathrm{n}}^{*}$, extended jelly fish graph $E J_{\mathrm{m}, \mathrm{n}}$ are absolute mean graceful graphs. for comprehensive learning of graph labeling, we reffered Gallian[4].

2. Main Results

Theorem 2.1: The barycentric subdivision of wheel W_{n} is absolute mean graceful graph.
Proof: Let G be the barycentric subdivision of wheel W_{n}. Let $v_{1}, v_{2}, \ldots, v_{2 n}$ be rim vertices of G. Let $u_{1}, u_{2}, \ldots, u_{n}$ be internal vertices of G. Let v_{0} be the apex vertex of G.
i.e. $V(G)=\left\{v_{1} v_{2}, \ldots, v_{2 n}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{v_{0}\right\}$
and $E(G)=\left\{v_{i} v_{i+1} / 1 \leq i<2 n\right\} \cup\left\{v_{1} v_{2 n}\right\} \cup\left\{v_{0} u_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{2 i-1} u_{i} / 1 \leq i \leq n\right\}$ to obtain vertex labeling function $f: V(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm 4 n\}$, we take following cases.

Case-I: $n \equiv 0(\bmod 2)$
$f\left(v_{i}\right)=\left\{\begin{array}{cl}(-1)^{i}(q+2-2 i) & ; \text { if } i=1,2, \ldots, n+1 \\ (-1)^{i}(2 i-1) & ; \text { if } i=n+2, n+3, \ldots, 2 n \\ n+1 & ; \text { if } i=0\end{array}\right.$
$f\left(u_{i}\right)=\left\{\begin{array}{cc}2 i-2 & ; \text { if } i=1,2,3, \ldots, \frac{n+2}{2} \\ n-2 i+1 & ; \text { if } i=\frac{n+4}{2}, \frac{n+6}{2}, \ldots, n\end{array}\right.$
Case-II: $n \equiv 1(\bmod 2)$
$f\left(v_{i}\right)=\left\{\begin{array}{cl}(-1)^{i}(q+2-2 i) & ; \text { if } i=1,2, \ldots, n+1 \\ (-1)^{i}(2 i-1) & ; \text { if } i=n+2, n+3, \ldots, 2 n \\ n+1 & ; \text { if } i=0\end{array}\right.$
$f\left(u_{i}\right)=\left\{\begin{array}{cc}2 i-2 & ; \text { if } i=1,2,3, \ldots, \frac{n+1}{2} \\ n-2 i+2 & ; \text { if } i=\frac{n+3}{2}, \frac{n+5}{2}, \ldots, n\end{array}\right.$
By defined pattern of function f, we can se that f is one-one.
Now we shall prove that induced function f^{*} is a bijection. First of all we obtain range of f^{*}. for all cases,
$\left\{f^{*}\left(v_{0} u_{i}\right) / 1 \leq i \leq n\right\}=\{1,2, \ldots, n\},\left\{f^{*}\left(v_{2 i-1} u_{i}\right) / 1 \leq i \leq n\right\}=(n+1, n+2, \ldots, 2 n\}$, and
$\left\{f^{*}\left(v_{i} v_{i+1}\right) / 1 \leq i<2 n\right\} \cup\left\{v_{1} v_{2 n}\right\}=(2 n+1,2 n+2, \ldots, 4 n\}$,
i.e. $f^{*}(E(G))=\{1,2, \ldots, q=4 n\}$

Hence, f^{*} is onto. Further, domain of f^{*} and range of f^{*} have same cardinality, gives f^{*} is one-one. Therefore, f^{*} is bijection. Thus, f is absolute mean graceful labeling for G.
Therefore, barycentric subdivision of wheel is absolute mean graceful graph.

Illustration 2.2 : Absolute mean graceful labeling for barycentric subdivision of wheel W_{6} with $p=19$ and $q=24$ is shown in following Fig. 2.

Fig. 2 Absolute mean graceful labeling for barycentric subdivision of wheel W_{6}
Theorem 2.3 : The barycentric subdivision of complete bipartite graph $K_{m, n}$ is absolut mean graph.
Proof: Let G be the barycentric subdivision of complete bipartite graph $K_{m, n}$.
Let $V\left(K_{m, n}\right)=V_{1} \cup V_{2}$ be the bipartition of vertex set of complete bipartite graph $K_{m, n}$. Let $\left\{u_{i} / 1 \leq i \leq m\right\}$ denote the vertices of V_{1} and $\left\{v_{j} / 1 \leq j \leq n\right\}$ denote the vertices of V_{2}. Let $\left\{w_{i j} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the vertices formed by barycentric subdivision of $K_{m, n}$, where $w_{i j}$ is the vertex adjacent to u_{i} and $v_{j}, i \in\{1,2, \ldots, m\}, j \in\{1,2, \ldots, n\}$.
i.e. $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cup\left\{w_{i j} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and
$E(G)=\left\{u_{i} w_{i j} / 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{w_{i j} v_{j} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
The vertex labeling function $f: V(G) \longrightarrow\{0, \pm 1, \pm 2, \ldots, \pm 2 m n\}$ defined as follows.
$f\left(u_{i}\right)=4 i-q-2 \quad ;$ if $i=1,2, \ldots, m$
$f\left(v_{j}\right)=\left\{\begin{array}{cl}4 m j-2 m n+1 & ; \text { if } j=1,2, \ldots, n-1 \\ -2 m n & ; \text { if } j=n\end{array}\right.$
$f\left(w_{i j}\right)=2(i+j m-m) \quad ; \forall i, j$
By defined pattern of function f, we can see that f is one-one.
Now we shall prove that induced function f^{*} is a bijection. First of all we obtain range of f^{*}.
$\left\{f^{*}\left\{w_{i j} v_{j} / 1 \leq j<n, 1 \leq i \leq m\right\}=\{1,2, \ldots, m(n-1)\}\right.$
$\left.f^{*}\left(w_{i j} v_{j}\right) / j=n, 1 \leq i \leq m\right\}=\{2 m n-m+1,2 m n-m+2, \ldots, 2 m n\}$
$\left.f^{*}\left(u_{i} w_{i j}\right) / 1 \leq i \leq m, 1 \leq j \leq n\right\}=\{m(n-1)+1, m(n-1)+2, \ldots, 2 m n-m\}$
i.e. $f^{*}(E(G))=\{1,2, \ldots, q=2 m n\}$

Hence, f^{*} is onto. Further, domain of f^{*} and range of f^{*} have same cardinality, gives f^{*} is one-one. Therefore, f^{*} is bijection. Thus, f is absolute mean graceful laebling for G.

Therefore, barycentric subdivision of complete bipartite graph is absolute mean graceful graph.

Illustration 2.4 : Absolute mean graceful labeling for barycentric subdivision of complete bipartite graph $K_{3,4}$ with $p=19$ and $q=24$ is shown in following Fig. 3.

Fig. 3 Absolute mean graceful labeling for barycentric subdivision of complete bipartite graph $\boldsymbol{K}_{3,4}$
Theorem 2.5 : The barycentric subdivision of Helm H_{n} is absolute mean graceful graph.
Proof: Let G be the barycentric subdivision of helm H_{n}. Let $v_{1}, v_{2}, \ldots, v_{2 n}$ be rim vertices on cycle of G. Let v_{0} be the apex vertex of G. Let $w_{1}, w_{2}, \ldots, w_{2 n}$ be vertices formed by barycentric subdivision of H_{n}, which is shown in figure.
i.e. $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{2 n}, u_{1}, u_{2}, \ldots, u_{n}, w_{1}, w_{2}, \ldots, w_{2 n}, v_{0}\right\}$ and
$E(G)=\left\{v_{0} u_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{2 i-1} u_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1} / 1 \leq i<2 n\right\} \cup\left\{v_{1} v_{2 n}\right\} \cup\left\{v_{2 i-1} w_{i} / 1 \leq i \leq n\right\}$
$\cup\left\{w_{i} w_{i+n} / 1 \leq i \leq n\right\}$
to obtain vertex labeling function $f: V(G) \longrightarrow\{0, \pm 1, \pm 2, \ldots, \pm 6 n\}$, we take following cases.

Case-I: $n \equiv 0(\bmod 2)$
$f\left(v_{i}\right)=\left\{\begin{array}{cl}(-1)^{i}(q+2-2 i) & \text {;if } i=1,2, \ldots, n+1 \\ (-1)^{i}(2 i+2 n-1) & ; \text { if } i=n+2, n+3, \ldots, 2 n \\ -(n+1) & \text { if } i=0\end{array}\right.$
$f\left(u_{i}\right)= \begin{cases}2 n+2 i-3 & ; \text { if } i=1,2,3,4, \ldots, \frac{n+2}{2} \\ 3 n-2 i+1 & ; \text { if } i=\frac{n+4}{2}, \frac{n+6}{2}, \ldots, n\end{cases}$
$f\left(w_{i}\right)=\left\{\begin{array}{cl}2 \mathrm{i}-2 & ; \text { if } \mathrm{i}=1,2, \ldots, \frac{n+2}{2} \\ \mathrm{n}-2 \mathrm{i}+1 & ; \text { if } \mathrm{i}=\frac{n+4}{2}, \frac{n+6}{2}, \ldots, n \\ 1 & ; \text { if } i=\mathrm{n}+1 \\ 2 \mathrm{n}-2 i+2 & ; \text { if } \mathrm{i}=\mathrm{n}+2, \mathrm{n}+3, \ldots, \frac{3 \mathrm{n}+2}{2} \\ 2 \mathrm{i}-3 \mathrm{n}-1 & ; \text { if } \mathrm{i}=\frac{3 n+4}{2}, \frac{3 n+6}{2}, \ldots, 2 n\end{array}\right.$
Case-II: $n \equiv 1(\bmod 2)$
$f\left(v_{i}\right)=\left\{\begin{array}{cl}(-1)^{i}(q+2-2 i) & ; \text { if } i=1,2, \ldots, n+1 \\ (-1)^{i}(2 i+2 n-1) & \text {;if } i=n+2, n+3, \ldots, 2 n \\ -n & \text { if } i=0\end{array}\right.$
$f\left(u_{i}\right)= \begin{cases}2 n+2 i-2 & ; \text { if } i=1,2,3, \ldots, \frac{n+1}{2} \\ 3 n-2 i+2 & ; \text { if } i=\frac{n+3}{2}, \frac{n+5}{2}, \ldots, n\end{cases}$
$\left(2 \mathrm{i}-2 \quad ;\right.$ if $\mathrm{i}=1,2, \ldots, \frac{n+1}{2}$
$f\left(w_{i}\right)=\left\{\begin{array}{cl}\mathrm{n}-2 \mathrm{i}+2 & ; \text { if } \mathrm{i}=\frac{n+3}{2}, \frac{n+5}{2}, \ldots, n \\ -2 \mathrm{n} & ; \text { if } i=\mathrm{n}+1 \\ 2 \mathrm{n}-2 i+2 & ; \text { if } \mathrm{i}=\mathrm{n}+2, \mathrm{n}+3, \ldots, \frac{3 \mathrm{n}+1}{2} \\ 2 \mathrm{i}-3 \mathrm{n}-2 & ; \text { if } \mathrm{i}=\frac{3 n+3}{2}, \frac{3 n+5}{2}, \ldots, 2 \mathrm{n}\end{array}\right.$
By defined pattern of function f, we can see that f is one-one
Now we shall prove that induced function f^{*} is a bijection. First of all we obtain range of f^{*}.
for all cases,
$\left\{f^{*}\left(v_{0} u_{i}\right) / 1 \leq i \leq n\right\}=(n+1, n+2, \ldots, 2 n\},\left\{f^{*}\left(w_{i} w_{n+i}\right) / 1 \leq i \leq n\right\}=\{1,2, \ldots, n\}$,
$\left\{f^{*}\left(w_{i} v_{2 i-1}\right) / 1 \leq i \leq n\right\}=\{2 n+1,2 n+2, \ldots, 3 n\},\left\{f^{*}\left(v_{2 i-1} u_{i}\right) / 1 \leq i \leq n\right\}=\{3 n+1,3 n+2, \ldots, 4 n\}$,
$\left\{f^{*}\left(v_{i} v_{i+1}\right) / 1 \leq i<2 n\right\} \cup\left\{v_{1} v_{2 n}\right\}=\{4 n+1,4 n+2, \ldots, 6 n\}$
i.e. $f^{*}(E(G))=\{1,2, \ldots, q=6 n\}$

Hence, f^{*} is onto. Further, domain of f^{*} and range of f^{*} have same cardinality, gives f^{*} is one-one. Therefore, f^{*} is bijection. Thus, f is absolute mean graceful labeling for G.

Therefore, barycentric subdivision of helm is absolute mean graceful graph.
Illustration 2.6: Absolute mean graceful labeling for barycentric subdivision of helm H_{4} with $p=21$ and $q=24$ is shown in Fig. 4.

Fig. 4 Absolute mean graceful labeling for barycentric subdivision of helm \boldsymbol{H}_{4}.

Theorem 2.7: The barycentric subdivision of sunlet graph S_{n} is absolut mean graceful graph.
Proof : Let G be the barycentric subdivision of sunlet graph S_{n}. Let $v_{1}, v_{2}, \ldots, v_{2 n}$ be rim vertices on cycle of G. Let $w_{1}, w_{2}, \ldots, w_{2 n}$ be vertices formed by barycentric subdivision of sunlet graph S_{n}.
i.e. $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{2 n}, w_{1}, w_{2}, \ldots, w_{2 n}\right\}$ and
$E(G)=\left\{v_{i} v_{i+1} / 1 \leq i<2 n\right\} \cup\left\{v_{1} v_{2 n}\right\} \cup\left\{v_{2 i-1} w_{i} / 1 \leq i \leq n\right\} \cup\left\{w_{i} w_{n+i} / 1 \leq i \leq n\right\}$ to obtain vertex labeling function $f: V(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm 4 n\}$, we take following cases.

Case-I: $n \equiv 0(\bmod 2)$
$f\left(v_{i}\right)=\left\{\begin{array}{cc}(-1)^{i}(q+2-2 i) & ; \text { if } i=1,2,3,4, \ldots, n+1 \\ (-1)^{i}(2 i-1) & ; \text { if } i=n+2, n+3, \ldots, 2 n\end{array}\right.$
$f\left(w_{i}\right)=\left\{\begin{array}{cl}2 \mathrm{i}-2 & ; \text { if } \mathrm{i}=1,2, \ldots, \frac{n+2}{2} \\ \mathrm{n}-2 \mathrm{i}+1 & ; \text { if } \mathrm{i}=\frac{n+4}{2}, \frac{n+6}{2}, \ldots, n \\ 1 & ; \text { if } i=\mathrm{n}+1 \\ 2 \mathrm{n}-2 i+2 & ; \text { if } \mathrm{i}=\mathrm{n}+2, \mathrm{n}+3, \ldots, \frac{3 \mathrm{n}+2}{2} \\ 2 \mathrm{i}-3 \mathrm{n}-1 & ; \text { if } \mathrm{i}=\frac{3 n+4}{2}, \frac{3 n+6}{2}, \ldots, 2 \mathrm{n}\end{array}\right.$

Case-II: $n \equiv 1(\bmod 2)$
$f\left(v_{i}\right)=\left\{\begin{array}{cc}(-1)^{i}\left(q+2-2_{i}\right) & ; \text { if } i=1,2,3,4, \ldots, n+1 \\ (-1)^{i}(2 i-1) & \text {;ifi } i=n+2, n+3, \ldots, 2 n\end{array}\right.$
$f\left(w_{i}\right)=\left\{\begin{array}{cl}2 \mathrm{i}-2 & ; \text { if } \mathrm{i}=1,2, \ldots, \frac{n+1}{2} \\ \mathrm{n}-2 \mathrm{i}+2 & ; \text { if } \mathrm{i}=\frac{n+3}{2}, \frac{n+5}{2}, \ldots, n \\ -2 \mathrm{n} & ; \text { if } i=\mathrm{n}+1 \\ 2 \mathrm{n}-2 i+2 & ; \text { if } \mathrm{i}=\mathrm{n}+2, \mathrm{n}+3, \ldots, \frac{3 \mathrm{n}+1}{2} \\ 2 \mathrm{i}-3 \mathrm{n}-2 & ; \text { if } \mathrm{i}=\frac{3 n+3}{2}, \frac{3 n+5}{2}, \ldots, 2 \mathrm{n}\end{array}\right.$
By defined pattern of function f, we can see that f is one-one.
Now we shall prove that induced function f^{*} is a bijection. First of all we obtain range of f^{*}.
for all cases,
$\left\{f^{*}\left(v_{i} v_{i+1}\right) / 1 \leq i<2 n\right\} \cup\left\{v_{1} v_{2 n}\right\}=(2 n+1,2 n+3, \ldots, 4 n\},\left\{f^{*}\left(w_{i} w_{n+i}\right) / 1 \leq i \leq n\right\}=\{1,2, \ldots, n\}$,
$\left\{f^{*}\left(w_{i} v_{2 i-1}\right) / 1 \leq i \leq n\right\}=\{n+1, n+2, \ldots, 2 n\}$
i.e. $f^{*}(E(G))=\{1,2, \ldots, q=4 n\}$

Hence, f^{*} is onto. Further, domain of f^{*} and range of f^{*} have same cardinality, gives f^{*} is one-one. Therefore, f^{*} is bijection. Thus, f is absolute mean graceful labeling for G.
Therefore, barycentric subdivision of sunlet graph is absolute mean graceful graph.

Illustration 2.8 : Absolute mean graceful labeling for barycentric subdivision of sunlet graph S_{5} with $p=20$ and $q=20$ is shown in following Fig. 5.

Fig. 5 Absolute mean graceful labeling for barycentric subdivision of sunlet graph \boldsymbol{S}_{5}
Theorem 2.9: The barycntric subdivision jelly fish graph $J_{n, n}$ is an absolute mean graceful graph.
Proof : Let G be barycentric subdivision of jelly fish graph $J_{n, n}$. Jelly fish graph is 4 -cycle graph with vertices x, y, u, v including the prime edge connecting to x and y and also by appending n pendent edges to u and v.
Let $V\left(J_{n, n}\right)=\left\{x, y, u, v, u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=\left\{u u_{i} / 1 \leq i \leq n\right\} \cup\left\{v v_{j} / 1 \leq j \leq n\right\} \cup\{x u, x v, y u, y v, x y\}$
Now we shall add $x_{1}, x_{2}, y_{1}, y_{2}$ vertices in 4-cycle, x_{0} vertex in prime edge, u_{n+i} vrtex between u and $u_{i}(1 \leq i \leq n)$ and v_{n+j} vertex between v and $v_{j}(1 \leq j \leq n)$ to obtain barycentric subdivision of jelly fish graph $J_{n, n}$.
i.e. $V(G)=\left\{x, y, u, v, x_{0}, x_{1}, x_{2}, y_{1}, y_{2}\right\} \cup\left\{u_{i} / 1 \leq i \leq 2 n\right\} \cup\left\{v_{j} / 1 \leq j \leq 2 n\right\}$ and $E(G)=\left\{u u_{n+i} / 1 \leq i \leq n\right\} \cup\left\{u_{n+i} u_{i} / 1 \leq i \leq n\right\} \cup\left\{v v_{n+j} / 1 \leq j \leq n\right\} \cup\left\{v_{n+j} v_{j} / 1 \leq j \leq n\right\}$
$\cup\left\{x x_{0}, y x_{0}, x x_{1}, x x_{2}, u x_{1}, v x_{2}, y y_{1}, y y_{2}, u y_{1}, v y_{2}\right\}$
The vertex labeling function $f: V(G) \longrightarrow\{0, \pm 1, \pm 2, \ldots, \pm q\}$ is defined as follows.
$f(v)=q, f(u)=q-8, f(x)=q-3, f(y)=q-4, f\left(x_{0}\right)=14-q, f\left(x_{1}\right)=5-q, f\left(x_{2}\right)=1-q, f\left(y_{1}\right)=6-q$,
$f\left(y_{2}\right)=2-q$
$f\left(u_{i}\right)=\left\{\begin{array}{cc}3+2(i-n) & ; \text { if } i=1,2,3, \ldots, n \\ 3-2_{i} & ; \text { if } i=n+1, n+2, \ldots, 2 n\end{array}\right.$
$f\left(v_{j}\right)=\left\{\begin{array}{cc}2 j+8 & ; \text { if } j=1,2,3, \ldots, n \\ 10-2 j+2 n & ; \text { if } j=n+1, n+2, \ldots, 2 n\end{array}\right.$
By defined pattern of function f, we can see that f is one-one.
Now we shall prove that induced function f^{*} is a bijection. First of all we obtain range of f^{*}.
$\left\{f^{*}\left(v_{j} v_{n+j}\right) / 1 \leq j \leq n\right\} \cup\left\{f^{*}\left(u_{i} u_{n+i}\right) / 1 \leq i \leq n\right\}=\{1,2, \ldots, 2 n\}$,
$\left\{f^{*}\left(u u_{n+i}\right) / 1 \leq i \leq n\right\} \cup\left\{f^{*}\left(v v_{n+j}\right) / 1 \leq j \leq n\right\}=\{2 n+1,2 n+2, \ldots, 4 n\}$, and
$\left\{f^{*}\left(x x_{0}\right), f^{*}\left(y x_{0}\right), f^{*}\left(x x_{1}\right), f^{*}\left(x x_{2}\right), f^{*}\left(u x_{1}\right), f^{*}\left(v x_{2}\right), f^{*}\left(y y_{1}\right), f^{*}\left(y y_{2}\right), f^{*}\left(u y_{1}\right), f^{*}\left(v y_{2}\right)\right\}=\{q-9, q-8, \ldots, q\}$
i.e. $f^{*}(E(G))=\{1,2, \ldots, q=4 n+10\}$

Hence, f^{*} is onto. Further, domain of f^{*} and range of f^{*} have same cardinality, gives f^{*} is one-one. Therefore, f^{*} is bijection. Thus, f is absolute mean graceful labeling for G.
Therefore, barycentric subdivision of jelly fish graph is absolute mean graceful graph.

Illustration 2.10: Absolute mean graceful labeling for barycentric subdivision jelly fish graph $J_{6,6}$ with $p=33$ and $q=33$ is shown in following Fig. 6.

Fig. 6 Absolute mean graceful labeling for barycentric subdivision of jelly fish graph $\boldsymbol{J}_{6,6}$
Theorem 2.11: The barycentric subdivision of alternate quadrilateral snake $A Q_{n}$ is absolute mean graceful graph.
Proof: Let G be the barycentric subdivision of alternate quadrilateral snake $A Q_{n}$. Let $V\left(A Q_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, \ldots\right\}$
Here $v_{i}, v_{i+1}, v_{i+2}, v_{i+3}$ are vertices for $(4 i-3)^{t h}$ number of snake.
Let $\left\{u_{1}, u_{2}, u_{3}, u_{4}, \ldots\right\}$ are vertices insterted into quadrilateral snakes and $\left\{w_{1}, w_{2}, \ldots\right\}$ are vertices insterted into alternate edge between snakes due to barycentric subdivision.
i.e. $V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}, u_{4}, w_{1}, \ldots\right\} E(G)=\left\{v_{1} u_{1}, v_{1} u_{4}, v_{2} u_{1}, v_{2} u_{2}, v_{3} u_{2}, v_{3} u_{3}, v_{4} u_{3}, v_{4} u_{4}, v_{4} w_{1}, \ldots\right\}$

Let k be the number of snakes. The vertex labeling function $f: V(G) \longrightarrow\{0, \pm 1, \pm 2, \ldots, \pm q\}$ defined as follows.
$f\left(v_{i}\right)=\left\{\begin{array}{cl}q-2 i+2 & ; \text { if } i=1,2,3,4 \\ q-\frac{5(i-1)}{2}+1 & ; \text { if } i=5,7, \ldots, 4 k-1 \\ q-\frac{5 i}{2}+3 & ; \text { if } i=6,8, \ldots, 4 k-2 \\ 3 & \text {;if } i=4 k\end{array}\right.$
$f\left(v_{i}\right)=\left\{\begin{array}{cl}2 i-q-1 & \text { if } i=1,2,3 \\ 12-q & \text { if } i=4 \\ f\left(u_{i-4}\right)+10 & \text {;if } i=5,6, \ldots, 4 k-1 \\ 5 & \text {;if } i=4 k\end{array}\right.$
$f\left(w_{i}\right)=10-4 k \quad ;$ if $i=1,2, \ldots, k$.

By defined pattern of function f, we can see that f is one-one.
Now we shall prove that induced function f^{*} is a bijection.
Here, $f^{*}(E(G))=\{1,2, \ldots, q\}$

Hence, f^{*} is onto map. As domain of f^{*} and range of f^{*} have same cardinality, gives f^{*} is one-one. Therefore, f^{*} is bijection. Thus, f is an absolute mean graceful labeling for G. Therefore, barycentric subdivision of alternate quadrilateral snake is absolute mean graceful graph.

Illustration 2.12: Absolute mean graceful labeling for barycentric subdivision of alternate quadrilateral snake with number of snakes $k=3, p=26$ and $q=28$ is shown in following Fig. 7 .

Fig. 7 Absolute mean graceful labeling for barycentric subdivision of alternate quadrilateral snake with $\boldsymbol{k}=\mathbf{3}$

3. Conclusion

Present work contributes some new results. We discussed absolute mean gracefulness of various graphs. The labeling pattern is demonstrated by means of illustrations which is better understanding to derived results.

References

[1] F. Harary, Graph Theory, Addition Wesley, Massachusetts, (1972).
[2] A. Rosa, On Certain Valuation of The Vertices of A Graph, Theory of Graphs (Rome, July 1966), Gordon and Breach, N.Y. and Paris. (1967) 349-355.
[3] S. W. Golomb, How to Number A Graph, Graph Theory and Computing (R. C. Read. Ed.) Academic Press, New York, (1972)23-37.
[4] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, 22, \#DS6 (2020).
[5] V. J. Kaneria, H. P. Chudasama and P. P. Andharia, Absolute Mean Graceful Labeling in Path Union of Various Graphs, Math. J. Interdiscip. Sci. 7(1)(2018)51-56.
[6] V. J. Kaneria and H. P. Chudasama, Absolute Mean Graceful Labeling In Various Graphs, Int. J. Math. and Appl. 5(4) (2017) 723-726.
[7] V. J. Kaneria, P. Z. Akbari and N. A. Parmar, Some Absolute Mean Graceful Graphs, Int. J. Math. Trends and Tech. 68(1)(2022)86-93.
[8] V.J.Kaneria and H.M.Makadia, Graceful Labeling for Double Step Grid Graph, Int. J. of Mathematics and Its Applications, 3(1) (2015)33-38.
[9] F.Szabo, Linear Algebra: An Introduction Using Mathematica, Academic Press, (2000).
[10] I.Cahit, Cordial Graphs: A Weaker Version of Graceful and Harmonious Graphs, Ars Combin., 23(1987) 201-207.
[11] V.J.Kaneria and H.M.Makadia, Graceful Labeling for Swastik Graph, Int. J. Math. Appl., 3(3-D)(2015) 25-29.
[12] B.D.Acharya and M. K. Gill, On the Index of Gracefulness of A Graph and the Gracefulness of Two-Dimensional Square Lattice Graphs, Indian J. Math., 23(1981) 81-94.
[13] V.J.Kaneria, H.M.Makadia, M.M.Jariya and Meera Meghpara, Graceful Labeling for Complete Bipartite Graphs, Applied Math. Sci., 8(103)(2014), 5099-5104.
[14] V.Yagnanarayanan and P.Vaidhyanathan, Some Intresting Applications of Graph Labeling, J. Math. Comput. Sci.,2(5) (2012)15221531.
[15] S.K.Vaidya, N.A.Dani, K.K.Kanani and P.L.Vihol, Cordial and 3-Equitable Labeling for Some Star Related Graphs, International Mathematical Forum, 4(2009) 1543-1553.
[16] V.J.Kaneria, H.M.Makadia and R.V.Viradia, Various Graph Operations on Semi Smooth Graceful Graphs, International Journal of Math. and Soft Computing, 6(1) (2016)57-79.
[17] V.J.Kaneria, Meera Meghpara and Maulik Khoda, Semi Smooth Graceful Labeling and Its Application to Produce α-Labeling, J. Graph Labeling, 2(2) (2016)153-160.
[18] S.K.Vaidya and N.B.Vyas, Some New Results on Mean Labeling, Int. J. of Information Science and Computer Mathematics, 6(1-2) (2012)19-29.
[19] V.J.Kaneria and M.M.Jariya, Semi Smooth Graceful Graph and Constraction of New Graceful Trees, Elixir Appl. Math., 76(2014) 28536-28538.
[20] V.J.Kaneria and M.M.Jariya, Smooth Graceful Graphs and Its Applications to Constract Graceful Graphs, Int. J. Sci. and Res., 3(8) (2014) 909-912.
[21] S.K.Vaidya, S.Srivastav, V.J.Kaneria and G.V.Ghodasara, Cordial and 3-Equitable Labeling of Star of A Cycle, Mathematics Today, 24(2008) 54-64.
[22] V. J. Kaneria, Om Teraiya and Meera Meghpara, Double Path Union of α-Graceful Graph and Its α-Labeling, J. of Graph Labeling, 2(2)(2016)107-114.
[23] V. J. Kaneria, Meera Meghpara and H. M. Makadia, Graceful Labeling for Open Star of Graphs, Inter. J. of Mathematics and Statistics Invention, 2(9)(2014)19-23.
[24] V.J.Kaneria and S.K.Vaidya, Index of Cordiality for Complete Graphs and Cycle, IJAMC, 2(4) (2010) 38-46.
[25] V.J.Kaneria, Hardik Makadia and Meera Meghpara, Cordiality of Star of the Complete Graph and a Cycle Graph ($n \cdot K n$) , J. of Math. Research, 6(4)(2014)18-28.

