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Abstract - In this paper, we present absolute mean graceful labeling for some graphs in context of barycentric subdivision of 

graph. We have proved that barycentric subdivision of wheel 𝑊𝑛, complete bipartite graph 𝐾𝑚,𝑛 , helm 𝐻𝑛, sunlet graph 𝑆𝑛,  

jelly fish graph 𝐽𝑛,𝑛, alternate quadrilateral snake 𝐴𝑄𝑛 are absolute mean graceful graphs. 
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1. Introduction 
Labeling of graph is the assignment of values to vertices or edges or both subject in certain conditions. A. Rosa[2]  

initiated the concept of labeling with the name of 𝛽-valuation. S. Golomb[3] named such labeling as graceful labeling. Kaneria 

and Chudasama[6] introduced graph labeling namely absolute mean graceful labeling. We begin with a simple, connected and 

undirected graph 𝐺 = (𝑉,𝐸) with 𝑝 vertices and 𝑞 edges. for all terminology and notations, we follow F. Harary[1]. First of all 

we recall  some definitions, which are used in this paper. 
  

Definition 1.1 : A function f is called graceful labeling for a graph G, if f: V(G) ⟶ {0, 1, 2,… , q} is injective and the induced 

function  f ∗: E(G) ⟶ {1, 2, … , q} defined as f ∗(e) = |f(u) − f(v)| is bijective for every edge e = uv ∈ E(G). A graph G is 

called graceful graph, if it admits a graceful labeling. 
 

Definition 1.2 : A function f is said to be absolute mean graceful labeling of a graph G, if f: V(G) ⟶ {0, ±1, ±2,… ,±q} is 

injective and edge labeling function f ∗: E(G) ⟶ {1, 2,… , q} defined as f ∗(e) = ⌈
|f(u)−f(v)|

2
 ⌉ is bijective, for every edge e =

uv ∈ E(G). A graph G is called absolute mean graceful graph, if it admits an absolute mean graceful labeling. 
 

Definition 1.3 : The barycentric subdivision of graph is obtained by inserting a vertex of degree two into every edge of original 

graph. Barycentric subdivision of helm H4 is shown in Fig. 1. 

  

 

 

 

 

 

 

 

 

 

 

Fig. 1 Barycentric subdivision of helm 𝑯𝟒 
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Kaneria and Chudasama[5,6] proved that path graphs 𝑃𝑛, cycles 𝐶𝑛 , complete bipertite graphs 𝐾𝑚,𝑛 , grid graphs 𝑃𝑚 × 𝑃𝑛, step 

grid graphs 𝑆𝑡𝑛 and double step grid graphs 𝐷𝑆𝑡𝑛 are absolute mean graceful graphs and they also proved that path union of 

finite copies in trees 𝑇, path graphs 𝑃𝑛, cycles 𝐶𝑛, complete bipertite graphs 𝐾𝑚,𝑛 , grid graphs 𝑃𝑚 × 𝑃𝑛, step grid graphs 𝑆𝑡𝑛 

and double step grid graphs 𝐷𝑆𝑡𝑛  are absolute mean graceful graphs. Akbari, Kaneria and Parmar[7] proved that jewel graph 

Jn, jewel graph without prime edge Jn
∗ , extended jewel graph EJn, jelly fish graph Jm,n,  jelly fish graph without prime edge 

Jm,n
∗ , extended jelly fish graph EJm,n are absolute mean graceful graphs. for comprehensive learning of graph labeling, we 

reffered Gallian[4]. 
 

2. Main Results  
Theorem 2.1 :  The barycentric subdivision of wheel 𝑊𝑛 is absolute mean graceful graph.  

Proof : Let 𝐺 be the barycentric subdivision of wheel 𝑊𝑛. Let 𝑣1, 𝑣2,… , 𝑣2𝑛 be rim vertices of 𝐺. Let 𝑢1, 𝑢2, … , 𝑢𝑛  be internal 

vertices of 𝐺. Let 𝑣0 be the apex vertex of 𝐺.  

i.e. 𝑉(𝐺) = {𝑣1𝑣2,… , 𝑣2𝑛}⋃{𝑢1, 𝑢2, … , 𝑢𝑛}⋃{𝑣0}  
and 𝐸(𝐺) = {𝑣𝑖𝑣𝑖+1 /1 ≤ 𝑖 < 2𝑛}⋃  {𝑣1𝑣2𝑛}⋃  {𝑣0𝑢𝑖/1 ≤ 𝑖 ≤ 𝑛}⋃  {𝑣2𝑖−1𝑢𝑖/1 ≤ 𝑖 ≤ 𝑛} 
to obtain vertex labeling function 𝑓: 𝑉(𝐺) ⟶ {0, ±1, ±2,… ,±4𝑛}, we take following cases. 

 

Case-I: 𝑛 ≡ 0 (mod 2) 

𝑓(𝑣𝑖) = {

(−1)𝑖  (𝑞 + 2 − 2𝑖) ; 𝑖𝑓 𝑖 = 1, 2,… , 𝑛 + 1

(−1)𝑖  (2𝑖 − 1) ; 𝑖𝑓 𝑖 = 𝑛 + 2, 𝑛 + 3, … , 2𝑛
𝑛 + 1 ; 𝑖𝑓 𝑖 = 0

  

𝑓(𝑢𝑖) = {
2𝑖 − 2 ; 𝑖𝑓   𝑖 = 1, 2, 3, … ,

𝑛 + 2

2

𝑛 − 2𝑖 + 1 ; 𝑖𝑓 𝑖 =
𝑛 + 4

2
,
𝑛 + 6

2
, … , 𝑛

 

 Case-II: 𝑛 ≡ 1 (mod 2) 

𝑓(𝑣𝑖) = {

(−1)𝑖  (𝑞 + 2 − 2𝑖) ; 𝑖𝑓 𝑖 = 1, 2,… , 𝑛 + 1

(−1)𝑖  (2𝑖 − 1) ; 𝑖𝑓 𝑖 = 𝑛 + 2, 𝑛 + 3, … , 2𝑛
𝑛 + 1 ; 𝑖𝑓 𝑖 = 0

  

𝑓(𝑢𝑖) = {
2𝑖 − 2 ; 𝑖𝑓   𝑖 = 1, 2, 3, … ,

𝑛 + 1

2

𝑛 − 2𝑖 + 2 ; 𝑖𝑓 𝑖 =
𝑛 + 3

2
,
𝑛 + 5

2
, … , 𝑛

 

By defined pattern of function 𝑓, we can se that 𝑓 is one-one.  

Now we shall prove that induced function 𝑓∗ is 𝑎 bijection. First of all we obtain range of 𝑓∗. 
for all cases,  

{ 𝑓∗(𝑣0𝑢𝑖)/ 1 ≤ 𝑖 ≤ 𝑛} = {1, 2,… , 𝑛}, {𝑓
∗(𝑣2𝑖−1𝑢𝑖)/1 ≤ 𝑖 ≤ 𝑛} = (𝑛 + 1, 𝑛 + 2,… , 2𝑛}, and  

{𝑓∗(𝑣𝑖𝑣𝑖+1)/1 ≤ 𝑖 < 2𝑛}⋃{𝑣1𝑣2𝑛} = (2𝑛 + 1, 2𝑛 + 2,… , 4𝑛},  

i.e. 𝑓∗(𝐸(𝐺)) = {1, 2, … , 𝑞 = 4𝑛} 

Hence, 𝑓∗ is onto. Further, domain of 𝑓∗ and range of 𝑓∗ have same cardinality, gives 𝑓∗ is one-one. Therefore, 𝑓∗ is bijection. 

Thus, 𝑓 is absolute mean graceful labeling for 𝐺.  

Therefore, barycentric subdivision of wheel is absolute mean graceful graph.  
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Illustration 2.2 : Absolute mean graceful labeling for barycentric subdivision of wheel 𝑊6  with 𝑝 = 19 and 𝑞 = 24  is shown 

in following Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Absolute mean graceful labeling for barycentric subdivision of wheel 𝑾𝟔 

 

Theorem 2.3 : The barycentric subdivision of complete bipartite graph 𝐾𝑚,𝑛  is absolut mean graph. 

Proof : Let 𝐺 be the barycentric subdivision of complete bipartite graph 𝐾𝑚,𝑛 . 

Let 𝑉(𝐾𝑚,𝑛) = 𝑉1⋃𝑉2 be the bipartition of vertex set of complete bipartite graph 𝐾𝑚,𝑛 . Let {𝑢𝑖/1 ≤ 𝑖 ≤ 𝑚} denote the vertices 

of 𝑉1 and {𝑣𝑗/1 ≤ 𝑗 ≤ 𝑛} denote the vertices of 𝑉2. Let {𝑤𝑖𝑗/1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} be the vertices formed by barycentric 

subdivision of 𝐾𝑚,𝑛 , where 𝑤𝑖𝑗 is the vertex adjacent to 𝑢𝑖 and 𝑣𝑗, 𝑖 ∈ {1, 2, … ,𝑚}, 𝑗 ∈ {1, 2, … , 𝑛}.  

i.e. 𝑉(𝐺) = {𝑢1, 𝑢2, … , 𝑢𝑚}⋃{𝑣1, 𝑣2,… , 𝑣𝑛}⋃{𝑤𝑖𝑗/1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and 

𝐸(𝐺) = {𝑢𝑖𝑤𝑖𝑗/1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}⋃{𝑤𝑖𝑗𝑣𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛}. 

The vertex labeling function 𝑓: 𝑉(𝐺) ⟶ {0, ±1,±2,… , ±2𝑚𝑛} defined as follows. 

𝑓(𝑢𝑖) =  4𝑖 − 𝑞 − 2               ; 𝑖𝑓 𝑖 = 1, 2, … ,𝑚 

 

𝑓(𝑣𝑗) = {
4𝑚𝑗 − 2𝑚𝑛 + 1 ; 𝑖𝑓 𝑗 = 1, 2, … , 𝑛 − 1

−2𝑚𝑛 ; 𝑖𝑓 𝑗 = 𝑛
 

 

𝑓(𝑤𝑖𝑗  ) = 2(𝑖 + 𝑗𝑚−𝑚)    ;  ∀ 𝑖, 𝑗 

By defined pattern of function 𝑓, we can see that 𝑓 is one-one. 

Now we shall prove that induced function 𝑓∗ is a bijection. First of all we obtain range of 𝑓∗. 

{𝑓∗{𝑤𝑖𝑗𝑣𝑗/1 ≤ 𝑗 < 𝑛, 1 ≤ 𝑖 ≤ 𝑚} = {1, 2,… ,𝑚(𝑛 − 1)} 

𝑓∗(𝑤𝑖𝑗𝑣𝑗)/𝑗 = 𝑛, 1 ≤ 𝑖 ≤ 𝑚} = {2𝑚𝑛 −𝑚 + 1, 2𝑚𝑛 −𝑚 + 2,… , 2𝑚𝑛} 

𝑓∗(𝑢𝑖𝑤𝑖𝑗)/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛} = {𝑚(𝑛 − 1) + 1,𝑚(𝑛 − 1) + 2, … , 2𝑚𝑛 − 𝑚} 

i.e. 𝑓∗(𝐸(𝐺)) = {1, 2, … , 𝑞 = 2𝑚𝑛} 

Hence, 𝑓∗ is onto. Further, domain of 𝑓∗ and range of 𝑓∗have same cardinality, gives 𝑓∗ is one-one. Therefore, 𝑓∗ is bijection. 

Thus, 𝑓 is absolute mean graceful laebling for 𝐺.  

Therefore, barycentric subdivision of complete bipartite graph is absolute mean graceful graph.  
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Illustration 2.4 : Absolute mean graceful labeling for barycentric subdivision of complete bipartite graph 𝐾3,4 with 𝑝 = 19 and 

𝑞 = 24  is shown in following Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Absolute mean graceful labeling for barycentric subdivision of complete bipartite graph 𝑲𝟑,𝟒 

 

Theorem 2.5 : The barycentric subdivision of  Helm 𝐻𝑛 is absolute mean graceful graph.  

Proof : Let 𝐺 be the barycentric subdivision of helm 𝐻𝑛. Let 𝑣1, 𝑣2,… , 𝑣2𝑛 be rim vertices on cycle of 𝐺. Let 𝑣0 be the apex 

vertex of 𝐺. Let 𝑤1 , 𝑤2 , … ,𝑤2𝑛 be vertices formed by barycentric subdivision of 𝐻𝑛, which is shown in figure.  

i.e. 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣2𝑛 , 𝑢1, 𝑢2, … , 𝑢𝑛 , 𝑤1 , 𝑤2 , … ,𝑤2𝑛 , 𝑣0} and  

𝐸(𝐺) = {𝑣0𝑢𝑖/1 ≤ 𝑖 ≤ 𝑛}⋃{𝑣2𝑖−1𝑢𝑖/1 ≤ 𝑖 ≤ 𝑛}⋃{𝑣𝑖𝑣𝑖+1/1 ≤ 𝑖 < 2𝑛}⋃{𝑣1𝑣2𝑛}⋃{𝑣2𝑖−1𝑤𝑖/1 ≤ 𝑖 ≤ 𝑛} 

⋃{𝑤𝑖𝑤𝑖+𝑛/1 ≤ 𝑖 ≤ 𝑛} 

to obtain vertex labeling function 𝑓: 𝑉(𝐺) ⟶ {0, ±1, ±2,… ,±6𝑛}, we take following cases. 

 

Case-I: 𝑛 ≡ 0(mod 2) 

𝑓(𝑣𝑖) = {

(−1)𝑖  (𝑞 + 2 − 2𝑖) ; 𝑖𝑓 𝑖 = 1, 2,… , 𝑛 + 1

(−1)𝑖  (2𝑖 + 2𝑛 − 1) ; 𝑖𝑓 𝑖 = 𝑛 + 2, 𝑛 + 3, … , 2𝑛
−(𝑛 + 1) ; 𝑖𝑓 𝑖 = 0

 

𝑓(𝑢𝑖) = {
2𝑛 + 2𝑖 − 3 ; 𝑖𝑓 𝑖 = 1, 2, 3,4,… ,

𝑛 + 2

2

3𝑛 − 2𝑖 + 1 ; 𝑖𝑓 𝑖 =
𝑛 + 4

2
,
𝑛 + 6

2
, … , 𝑛

 

𝑓(𝑤𝑖) =

{
 
 
 
 

 
 
 
 2i − 2 ; 𝑖𝑓 i = 1, 2,… ,

𝑛 + 2

2

n − 2i + 1 ; 𝑖𝑓 i =
𝑛 + 4

2
,
𝑛 + 6

2
, … , 𝑛

1 ; 𝑖𝑓 𝑖 = n + 1

2n − 2𝑖 + 2 ; 𝑖𝑓 i = n + 2, n + 3,… ,
3n + 2

2

2i − 3n − 1 ; 𝑖𝑓 i =
3𝑛 + 4

2
,
3𝑛 + 6

2
, … , 2𝑛

 

 

Case-II: 𝑛 ≡ 1(mod 2) 
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𝑓(𝑣𝑖) = {

(−1)𝑖  (𝑞 + 2 − 2𝑖) ; 𝑖𝑓 𝑖 = 1, 2,… , 𝑛 + 1

(−1)𝑖  (2𝑖 + 2𝑛 − 1) ; 𝑖𝑓 𝑖 = 𝑛 + 2, 𝑛 + 3, … , 2𝑛
−𝑛 ; 𝑖𝑓 𝑖 = 0

 

𝑓(𝑢𝑖) = {
2𝑛 + 2𝑖 − 2 ; 𝑖𝑓   𝑖 = 1, 2, 3,… ,

𝑛 + 1

2

3𝑛 − 2𝑖 + 2 ; 𝑖𝑓 𝑖 =
𝑛 + 3

2
,
𝑛 + 5

2
, … , 𝑛

 

𝑓(𝑤𝑖) =

{
 
 
 
 

 
 
 
 2i − 2 ; 𝑖𝑓 i = 1, 2,… ,

𝑛 + 1

2

n − 2i + 2 ; 𝑖𝑓 i =
𝑛 + 3

2
,
𝑛 + 5

2
, … , 𝑛

−2n ; 𝑖𝑓 𝑖 = n + 1

2n − 2𝑖 + 2 ; 𝑖𝑓 i = n + 2, n + 3,… ,
3n + 1

2

2i − 3n − 2 ; 𝑖𝑓 i =
3𝑛 + 3

2
,
3𝑛 + 5

2
, … , 2n

 

By defined pattern of function 𝑓, we can see that 𝑓 is one-one 

Now we shall prove that induced function 𝑓∗is a bijection. First of all we obtain range of 𝑓∗. 

for all cases,  

{𝑓∗(𝑣0𝑢𝑖)/1 ≤ 𝑖 ≤ 𝑛} = (𝑛 + 1, 𝑛 + 2,… , 2𝑛}, {𝑓
∗(𝑤𝑖𝑤𝑛+𝑖)/1 ≤ 𝑖 ≤ 𝑛} = {1, 2,… , 𝑛}, 

{𝑓∗(𝑤𝑖𝑣2𝑖−1) / 1 ≤ 𝑖 ≤ 𝑛} =  { 2𝑛 + 1, 2𝑛 + 2, … , 3𝑛}, {𝑓
∗(𝑣2𝑖−1𝑢𝑖)/1 ≤ 𝑖 ≤ 𝑛} = {3𝑛 + 1, 3𝑛 + 2,… , 4𝑛}, 

{𝑓∗(𝑣𝑖𝑣𝑖+1)/1 ≤ 𝑖 < 2𝑛}⋃{𝑣1𝑣2𝑛} = {4𝑛 + 1, 4𝑛 + 2, … , 6𝑛} 

i.e. 𝑓∗(𝐸(𝐺)) = {1, 2, … , 𝑞 = 6𝑛} 

Hence, 𝑓∗ is onto. Further, domain of 𝑓∗ and range of 𝑓∗ have same cardinality, gives 𝑓∗ is one-one. Therefore, 𝑓∗ is bijection. 

Thus, 𝑓 is absolute mean graceful labeling for 𝐺.  

Therefore, barycentric subdivision of helm is absolute mean graceful graph.  

 

Illustration 2.6 : Absolute mean graceful labeling for barycentric subdivision of helm 𝐻4 with 𝑝 = 21 and 𝑞 = 24 is shown in 

Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Absolute mean graceful labeling for barycentric subdivision of helm 𝑯𝟒. 
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Theorem 2.7: The barycentric subdivision of sunlet graph 𝑆𝑛 is absolut mean graceful graph. 

Proof : Let 𝐺 be the barycentric subdivision of sunlet graph 𝑆𝑛. Let 𝑣1, 𝑣2,… , 𝑣2𝑛 be rim vertices on cycle of 𝐺. Let 

𝑤1 , 𝑤2 , … , 𝑤2𝑛  be vertices formed by barycentric subdivision of sunlet graph 𝑆𝑛. 

i.e. 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣2𝑛 ,𝑤1, 𝑤2 , . . . , 𝑤2𝑛} and  

𝐸(𝐺) = {𝑣𝑖𝑣𝑖+1/1 ≤ 𝑖 < 2𝑛}⋃{𝑣1𝑣2𝑛}⋃{𝑣2𝑖−1𝑤𝑖/1 ≤ 𝑖 ≤ 𝑛}⋃{𝑤𝑖𝑤𝑛+𝑖  /1 ≤ 𝑖 ≤ 𝑛} 

to obtain vertex labeling function 𝑓: 𝑉(𝐺) ⟶ {0, ±1, ±2,… ,±4𝑛}, we take following cases.  

 

Case-I: 𝑛 ≡ 0(mod 2) 

𝑓(𝑣𝑖) = {
(−1)𝑖  (𝑞 + 2 − 2𝑖) ; 𝑖𝑓 𝑖 = 1, 2, 3, 4,… , 𝑛 + 1

(−1)𝑖  (2𝑖 − 1) ; 𝑖𝑓 𝑖 = 𝑛 + 2, 𝑛 + 3, … , 2𝑛
 

𝑓(𝑤𝑖) =

{
 
 
 
 

 
 
 
 2i − 2 ; 𝑖𝑓 i = 1, 2,… ,

𝑛 + 2

2

n − 2i + 1 ; 𝑖𝑓 i =
𝑛 + 4

2
,
𝑛 + 6

2
, … , 𝑛

1 ; 𝑖𝑓 𝑖 = n + 1

2n − 2𝑖 + 2 ; 𝑖𝑓 i = n + 2, n + 3,… ,
3n + 2

2

2i − 3n − 1 ; 𝑖𝑓 i =
3𝑛 + 4

2
,
3𝑛 + 6

2
, … , 2n

 

 

 

 

Case-II: 𝑛 ≡ 1(mod 2) 

𝑓(𝑣𝑖) = {
(−1)𝑖  (𝑞 + 2 − 2𝑖) ; 𝑖𝑓 𝑖 = 1, 2, 3, 4, … , 𝑛 + 1

(−1)𝑖  (2𝑖 − 1) ; 𝑖𝑓 𝑖 = 𝑛 + 2, 𝑛 + 3,… , 2𝑛
 

𝑓(𝑤𝑖) =

{
 
 
 
 

 
 
 
 2i − 2 ; 𝑖𝑓 i = 1, 2,… ,

𝑛 + 1

2

n − 2i + 2 ; 𝑖𝑓 i =
𝑛 + 3

2
,
𝑛 + 5

2
, … , 𝑛

−2n ; 𝑖𝑓 𝑖 = n + 1

2n − 2𝑖 + 2 ; 𝑖𝑓 i = n + 2, n + 3,… ,
3n + 1

2

2i − 3n − 2 ; 𝑖𝑓 i =
3𝑛 + 3

2
,
3𝑛 + 5

2
, … , 2n

 

 

By defined pattern of function 𝑓, we can see that 𝑓 is one-one. 

Now we shall prove that induced function 𝑓∗ is a bijection. First of all we obtain range of 𝑓∗ . 

for all cases,  

{𝑓∗(𝑣𝑖𝑣𝑖+1)/1 ≤ 𝑖 < 2𝑛}⋃{𝑣1𝑣2𝑛} = (2𝑛 + 1, 2𝑛 + 3,… , 4𝑛}, {𝑓
∗(𝑤𝑖𝑤𝑛+𝑖)/1 ≤ 𝑖 ≤ 𝑛} = {1, 2, … , 𝑛}, 

{𝑓∗(𝑤𝑖𝑣2𝑖−1)/1 ≤ 𝑖 ≤ 𝑛} = {𝑛 + 1, 𝑛 + 2,… , 2𝑛} 

i.e. 𝑓∗(𝐸(𝐺)) = {1, 2, … , 𝑞 = 4𝑛} 

Hence, 𝑓∗ is onto. Further, domain of 𝑓∗ and range of 𝑓∗ have same cardinality, gives 𝑓∗ is one-one. Therefore, 𝑓∗ is bijection. 

Thus, 𝑓 is absolute mean graceful labeling for 𝐺.  

Therefore, barycentric subdivision of sunlet graph is absolute mean graceful graph. 
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Illustration 2.8 : Absolute mean graceful labeling for barycentric subdivision of sunlet graph 𝑆5 with 𝑝 = 20 and 𝑞 = 20 is 

shown in following Fig. 5. 

 

 

 

 

 

 

 

 

                                 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Absolute mean graceful labeling for barycentric subdivision of sunlet graph 𝑺𝟓 

 

Theorem 2.9 : The barycntric subdivision jelly fish graph 𝐽𝑛,𝑛 is an absolute mean graceful graph.  

Proof : Let 𝐺 be barycentric subdivision of jelly fish graph 𝐽𝑛,𝑛. Jelly fish graph is 4-cycle graph with vertices 𝑥, 𝑦, 𝑢, 𝑣 

including the prime edge connecting to 𝑥 and 𝑦 and also by appending 𝑛 pendent edges to 𝑢 and 𝑣.  

Let 𝑉(𝐽𝑛,𝑛) = {𝑥, 𝑦, 𝑢, 𝑣, 𝑢1, 𝑢2, … , 𝑢𝑛 , 𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐸(𝐺) = {𝑢𝑢𝑖/1 ≤ 𝑖 ≤ 𝑛}⋃{𝑣𝑣𝑗/1 ≤ 𝑗 ≤ 𝑛}⋃{𝑥𝑢, 𝑥𝑣, 𝑦𝑢, 𝑦𝑣, 𝑥𝑦} 

Now we shall add 𝑥1, 𝑥2, 𝑦1, 𝑦2 vertices in 4-cycle, 𝑥0 vertex in prime edge, 𝑢𝑛+𝑖  vrtex between 𝑢 and 𝑢𝑖  (1 ≤ 𝑖 ≤ 𝑛) and 𝑣𝑛+𝑗 

vertex between 𝑣 and 𝑣𝑗  (1 ≤ 𝑗 ≤ 𝑛) to obtain barycentric subdivision of jelly fish graph 𝐽𝑛,𝑛. 

i.e. 𝑉(𝐺) = {𝑥, 𝑦, 𝑢, 𝑣, 𝑥0, 𝑥1, 𝑥2, 𝑦1, 𝑦2}⋃{𝑢𝑖/1 ≤ 𝑖 ≤ 2𝑛}⋃{𝑣𝑗/1 ≤ 𝑗 ≤ 2𝑛} and  

𝐸(𝐺) = {𝑢𝑢𝑛+𝑖/1 ≤ 𝑖 ≤ 𝑛}⋃{𝑢𝑛+𝑖𝑢𝑖/1 ≤ 𝑖 ≤ 𝑛}⋃{𝑣𝑣𝑛+𝑗/1 ≤ 𝑗 ≤ 𝑛}⋃{𝑣𝑛+𝑗𝑣𝑗/1 ≤ 𝑗 ≤ 𝑛} 

⋃{𝑥𝑥0, 𝑦𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑢𝑥1, 𝑣𝑥2, 𝑦𝑦1, 𝑦𝑦2, 𝑢𝑦1, 𝑣𝑦2} 

The vertex labeling function 𝑓: 𝑉(𝐺) ⟶ {0, ±1,±2,… , ±𝑞} is defined as follows.  

𝑓(𝑣) = 𝑞, 𝑓(𝑢) = 𝑞 − 8, 𝑓(𝑥) = 𝑞 − 3, 𝑓(𝑦) = 𝑞 − 4, 𝑓(𝑥0) = 14 − 𝑞, 𝑓(𝑥1) = 5 − 𝑞, 𝑓(𝑥2) = 1 − 𝑞, 𝑓(𝑦1) = 6 − 𝑞, 

𝑓(𝑦2) = 2 − 𝑞  

𝑓(𝑢𝑖) = {
3 + 2(𝑖 − 𝑛) ; 𝑖𝑓 𝑖 = 1, 2, 3, … , 𝑛
3 − 2𝑖  ; 𝑖𝑓 𝑖 = 𝑛 + 1, 𝑛 + 2, … , 2𝑛

 

𝑓(𝑣𝑗) = {
2𝑗 + 8 ; 𝑖𝑓 𝑗 = 1, 2, 3,… , 𝑛

10 − 2𝑗 + 2𝑛 ; 𝑖𝑓 𝑗 = 𝑛 + 1, 𝑛 + 2, … , 2𝑛
 

By defined pattern of function 𝑓, we can see that 𝑓 is one-one. 

Now we shall prove that induced function 𝑓∗is a bijection. First of all we obtain range of 𝑓∗.  

{𝑓∗(𝑣𝑗𝑣𝑛+𝑗)/1 ≤ 𝑗 ≤ 𝑛}⋃{𝑓
∗(𝑢𝑖𝑢𝑛+𝑖)/1 ≤ 𝑖 ≤ 𝑛} = {1, 2,… , 2𝑛}, 

 {𝑓∗(𝑢𝑢𝑛+𝑖)/1 ≤ 𝑖 ≤ 𝑛}⋃{𝑓
∗(𝑣𝑣𝑛+𝑗)/1 ≤ 𝑗 ≤ 𝑛} = {2𝑛 + 1, 2𝑛 + 2, … , 4𝑛}, and 

{𝑓∗(𝑥𝑥0), 𝑓
∗(𝑦𝑥0), 𝑓

∗(𝑥𝑥1), 𝑓
∗(𝑥𝑥2), 𝑓

∗(𝑢𝑥1), 𝑓
∗(𝑣𝑥2), 𝑓

∗(𝑦𝑦1), 𝑓
∗(𝑦𝑦2), 𝑓

∗(𝑢𝑦1), 𝑓
∗(𝑣𝑦2)} = {𝑞 − 9, 𝑞 − 8, … , 𝑞} 

i.e. 𝑓∗(𝐸(𝐺)) = {1, 2, … , 𝑞 = 4𝑛 + 10} 
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Hence, 𝑓∗ is onto. Further, domain of 𝑓∗ and range of 𝑓∗ have same cardinality, gives 𝑓∗ is one-one. Therefore, 𝑓∗ is bijection. 

Thus, 𝑓 is absolute mean graceful labeling for 𝐺.  

Therefore, barycentric subdivision of jelly fish graph is absolute mean graceful graph.  

 

Illustration 2.10 : Absolute mean graceful labeling for barycentric subdivision jelly fish graph 𝐽6,6  with 𝑝 = 33  and 𝑞 = 33  

is shown in following Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Absolute mean graceful labeling for  barycentric subdivision of  jelly fish graph 𝑱𝟔,𝟔 

 

Theorem 2.11 : The barycentric subdivision of alternate quadrilateral snake 𝐴𝑄𝑛 is absolute mean graceful graph.  

Proof : Let 𝐺 be the barycentric subdivision of alternate quadrilateral snake 𝐴𝑄𝑛. Let 𝑉(𝐴𝑄𝑛) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, … } 

Here 𝑣𝑖 , 𝑣𝑖+1, 𝑣𝑖+2, 𝑣𝑖+3 are vertices for (4𝑖 − 3)𝑡ℎ number of snake.  

Let {𝑢1, 𝑢2, 𝑢3, 𝑢4, … } are vertices insterted into quadrilateral snakes and {𝑤1 , 𝑤2 , … } are vertices insterted into alternate edge 

between snakes due to barycentric subdivision.  

i.e. 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑤1 , … } 𝐸(𝐺) = {𝑣1𝑢1, 𝑣1𝑢4, 𝑣2𝑢1, 𝑣2𝑢2, 𝑣3𝑢2, 𝑣3𝑢3, 𝑣4𝑢3, 𝑣4𝑢4, 𝑣4𝑤1 , … } 

Let 𝑘 be the number of snakes. The vertex labeling function 𝑓: 𝑉(𝐺) ⟶ {0,±1, ±2,… ,±𝑞} defined as follows.  

 

𝑓(𝑣𝑖) =

{
 
 

 
 

𝑞 − 2𝑖 + 2 ; 𝑖𝑓 𝑖 = 1, 2, 3, 4

𝑞 −
5(𝑖 − 1)

2
+ 1 ; 𝑖𝑓 𝑖 = 5, 7, … , 4𝑘 − 1

𝑞 −
5𝑖

2
+ 3 ; 𝑖𝑓 𝑖 = 6, 8, … , 4𝑘 − 2

3 ; 𝑖𝑓 𝑖 = 4𝑘

 

𝑓(𝑣𝑖) = {

2𝑖 − 𝑞 − 1 ; 𝑖𝑓 𝑖 = 1, 2, 3
12 − 𝑞 ; 𝑖𝑓 𝑖 = 4

𝑓(𝑢𝑖−4) + 10 ; 𝑖𝑓 𝑖 = 5, 6, … , 4𝑘 − 1
5 ; 𝑖𝑓 𝑖 = 4𝑘

 

𝑓(𝑤𝑖) = 10 − 4𝑘                 ; 𝑖𝑓 𝑖 = 1, 2, … , 𝑘.  

 

By defined pattern of function 𝑓, we can see that 𝑓 is one-one. 

Now we shall prove that induced function 𝑓∗ is a bijection.  

Here, 𝑓∗(𝐸(𝐺)) = {1, 2,… , 𝑞} 
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Hence, 𝑓∗ is onto map. As domain of 𝑓∗ and range of 𝑓∗ have same cardinality, gives 𝑓∗ is one-one. Therefore, 𝑓∗ is bijection. 

Thus, 𝑓 is an absolute mean graceful labeling for 𝐺. 

Therefore, barycentric subdivision of alternate quadrilateral snake is absolute mean graceful graph. 

 

Illustration 2.12 : Absolute mean graceful labeling for barycentric subdivision of alternate quadrilateral snake with number of 

snakes  𝑘 = 3, 𝑝 = 26  and 𝑞 = 28 is shown in following Fig. 7. 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Absolute mean graceful labeling for barycentric subdivision of alternate quadrilateral snake with 𝒌 = 𝟑 

 

3. Conclusion  
Present work contributes some new results. We discussed absolute mean gracefulness of various graphs. The labeling 

pattern is demonstrated by means of illustrations which is better understanding to derived results.  
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