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Abstract  -  In this paper, we introduced kth Fibonacci prime labeling of graphs and prove that path, cycle, PnK1, Triangular 

snake, Quadrilateral snake and Tadpole graph are kth Fibonacci prime graphs.  
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1. Introduction 
By a graph, we mean a finite, undirected graph without loops and multiple edges, for terms not defined here, we refer to 

Bondy and Murthy [1]. For standard terminology and notations related to number theory we refer to Burton [2] and graph 

labeling, we refer to Gallian [5]. The notion of prime labeling for graphs originated with Roger Entringer and was introduced in 

a paper by Tout et al. [24] in the early 1980s and since then it is an active field of research for many scholars. In [25], Vaidya et 

al. introduced the concept of k-prime labeling of graph. A generalization of graceful graphs is the notion of k-graceful graphs 

introduced independently by Slater [20] in 1982 and by Maheo et al. [8] in 1982. In [21], Sundaram et al. introduced the notion 

of prime cordial labeling of graphs. Ponraj et al. [18], introduced a new graph labeling called k-prime cordial labeling of 

graphs. In [15], Ponraj et al. introduced the concept of difference cordial labeling of graphs. Ponraj et al. [17], introduced the 

concept of k-difference cordial labeling of graphs.   

 

Patel et al. [14] introduce the notion of neighborhood-prime labeling of graphs. In [6], Lawrence et al. introduce the 

notation of k-neighborhoodprime labeling of labeling of graphs. In [7], Lourdusamy et al. investigated some new construction 

of SD-prime cordial graph. In [4], Delman et al.  introduced the concept of k-SD-prime cordial labeling of graph and discussed 

k-SD-prime cordial labeling of some standard graphs. The concept of one raised sum prime labeling was introduced by Sunoj 

and Mathew Varkey in [22]. Muthaiyan et al. introduced the concept of k-one raised sum prime labeling and investigated some 

new families of k-one raised sum prime graph in [11]. In [23], Sunoj and Mathew Varkey introduced the concept of one raised 

product prime labeling of graphs. In [10], Muthaiyan et al. introduced the concept of k-one raised product prime labeling of 

graphs. In [16], Ponraj et al introduced the concept of parity combination cordial labeling of graph. Motivated by the concept 

of parity combination cordial labeling, Muthaiyan et al. [9] introduced a new concept, which is called k-parity combination 

cordial labeling of graphs.  

 

Sekar et al. introduced the concept of Fibonacci Prime Labeling of Graphs in [19]. Chandrakala et al. [3] studied various 

types of cycle related Fibonacci Prime Labeling of Graphs. We introduce kth Fibonacci Prime Labeling of Graphs and kth 

Fibonacci Prime Labeling of some path related graphs are discussed in [12] and some cycle related graphs are discussed in 

[13]. In this paper the kth Fibonacci prime labeling of path, cycle, PnK1, Triangular snake, Quadrilateral snake and Tadpole 

graph are studied. 

 

 Definition :1.1 A graph labeling is the assignment of unique identifiers to the edges and vertices of a graph. 

  Definition :1.2 Let G = (V,E) be a graph with n vertices. A function f : V(G) → {1,2,3,…,n} is said to be a prime labeling, 

if it is bijective and for every pair of adjacent vertices u and v, gcd(f(u),f(v)) = 1. A graph which admits prime labeling is called 

a prime graph. 

 Definition : 1.3 A k-prime labeling of a graph G is an injective function f : V → {k, k+1,…, k+|V|–1} for some positive integer k 

that induces a function f+: E(G) → N of the edges of G defined by f+(uv) = gcd(f(u),f(v)), e = uvE(G) such that gcd(f(u), f(v)) = 1, 

e = uv  E(G). The graph which admits a k-prime labeling is called a k-prime graph. 

 Definition : 1.4 The Fibonacci number fn is defined recursively by the equations f1 = 1, f2 = 1, fn+1 = fn + fn–1 (n  2). Then 

gcd (fn,fn–1) = 1 and gcd (fn,fn+1) = 1 for all n  1.  

 Definition : 1.5 The Tadpole graph Tm,n also called a dragon graphs obtained by connecting cycle graph Cm and path graph 

Pn in series with an edge from any vertex of cycle graph to a pendant of path graph for integers m  3 and n  1. 
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 Definition : 1.6 A Fibonacci prime labeling of a graph G = (V,E) with |V(G)| = n is an injective function g : V(G) → 

{f2,f3,…,fn+1}, where fn is the nth  Fibonacci number, that induces a function g∗ : E(G) → N defined by g∗(uv) = gcd{g(u),g(v)} 

= 1,  uv  E(G).  

 The graph admits a Fibonacci prime labeling and is called a Fibonacci prime graph.  

 

2. Main Results 

Definition :2.1 A kth Fibonacci prime labeling of a graph G = (V,E) with |V(G)| = n is an injective function g : V(G) → 

{fk,fk+1,…,fk+n–1}, where fk is the kth  Fibonacci number, that induces a function g∗ : E(G) → N defined by g∗(uv) = 

gcd{g(u),g(v)} = 1,  uv  E(G).  

The graph admits a kth Fibonacci prime labeling and is called a kth Fibonacci prime graph.  

Remark :2.1 A 2nd Fibonacci prime graph is called Fibonacci prime graph. 

Theorem 2.1  

Path graph Pn is a kth Fibonacci prime graph.  

Proof. 

Let G be a path graph Pn with n vertices and n–1 edges.  

Let v1, v2, …, vn be the vertices of G. The edge set of G is E(G)  = {vivi+1 | 1  i  n–1}.  

Then |V(G)| = n and |E(G)| =  n–1. 

Define g : V(G) → { fk,fk+1,…,fk+n–1} as follows g(vi) = fi+k–1, for 1  i  n.  

The induced function g∗ : E(G) → N is defined by g∗(uv) = gcd{g(u),g(v)},  uvE(G).  

Now gcd {f(vi),f(vi+1)} = gcd{fi+k–1,fi+k} = 1, for 1  i  n–1,  vivi+1  E(G).  

Thus G admits a kth Fibonacci prime labeling.  

Hence G is a kth Fibonacci prime graph.  

 

Illustration 2.1 

The Path P7 and its 5th Fibonacci prime labeling are shown in figure 2.1 

 

 

 

 

 
Fig. 1 Path P7 is 5th fibonacci prime graph 

 

Theorem 2.2  

Cycle graph Cn is a kth Fibonacci prime graph for n  3.  

Proof.  

Let G be a cycle graph Cn with n vertices and n edges.  

Let v1, v2, …, vn be the vertices of G. 

The edge set of G is E(G)  = {vivi+1 | 1  i  n–1}{vnv1}.  

Define g : V(G) → {fk,fk+1,…,fk+n–1} as follows  

Case 1 : n is odd. 

g(vi) = fk+2(i–1), for 1  i  
2

1n+
 

g(vi) = fk+2(n+1–i)–1, for 
2

3n+
  i  n  

Then the induced function g∗ : E(G) → N is defined by g∗(xy) = gcd{g(x),g(y)}  xy  E(G).  

Now,      gcd{g(vi),g(vi+1)} = gcd{fk+2(i–1), fk+2(i–1)+2} = 1, 1  i  
2

1n−
 and  

gcd{g(vi),g(vi+1)} = gcd{fk+n–1, fk+n–2} = 1, i = 
2

1n+
 

gcd{g(vi),g(vi+1)} = gcd{fk+2(n+1–i)–1, fk+2(n+1–i)–3} = 1, 
2

3n+
  i  n–1 

gcd{g(vn),g(v1)} = gcd{fk+1, fk} = 1  

Thus g∗(xy) = gcd{f(x),f(y)} = 1,  xy  E(G). 
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Case 2 : n is even. 

g(vi) = fk+2(i–1), for 1  i  
2

n
 

g(vi) = fk+2(n+1–i)–1, for 
2

2n+
  i  n  

Then the induced function g∗ : E(G) → N is defined by g∗(xy) = gcd{g(x),g(y)}  xy  E(G).  

Now,      gcd{g(vi),g(vi+1)} = gcd{fk+2(i–1), fk+2(i–1)+2} = 1, 1  i  
2

2n−
 and  

gcd{g(vi),g(vi+1)} = gcd{fk+n–2, fk+n–1} = 1, i = 
2

n
 

gcd{g(vi),g(vi+1)} = gcd{fk+2(n+1–i)–1, fk+2(n+1–i)–3} = 1, 
2

4n+
  i  n–1 

gcd{g(vn),g(v1)} = gcd{fk+1, fk} = 1  

Thus g∗(xy) = gcd{f(x),f(y)} = 1,  xy  E(G). 

Hence Cn is a kth Fibonacci prime graph.  

 

Illustration 2.2 

The cycle C8 and its 7th Fibonacci prime labeling are shown in figure 2.2 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 C8 is a 7th fibonacci prime graph 

 

Theorem 2.3  

The graph PnK1 is a kth Fibonacci prime graph, for n  2. 

 Proof.  

Let G be a PnK1.  

Let G be a comb graph with vertices v1, v2, ..., vn  and u1, u2, ..., un.  

Then the edge set of G is E(G)  = { vivi+1 | 1  i  n–1}{ viui | 1  i  n}.  

Then |V(G )| = 2n and | E(G) | = 2n–1. 

Define g : V(G) → {fk,fk+1,…,fk+2n–1} as follows 

g(vi) = fk+2(i–1), for 1  i  n 

g(ui) = fk+2(i–1)+1, for 1  i  n  

Then the induced function g∗ : E(G) → N is defined by g∗(xy) = gcd{g(x),g(y)}  xy  E(G).  

Now,      gcd{g(vi),g(vi+1)} = gcd{fk+2(i–1), fk+2(i–1)+2} = 1, 1  i  n and  

gcd{g(vi),g(ui)} = gcd{fk+2(i–1), fk+2(i–1)+1} = 1, 1  i  n. 

Thus g∗(xy) = gcd{f(x),f(y)} = 1,  xy  E(G). 

Hence PnK1 is a kth Fibonacci prime graph.  
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Illustration 2.3 

The graph P6K1 and its 6th Fibonacci prime labeling are shown in figure 2.3 

 

 

 

 

 

 

 

 
Fig. 3 The graph P6K1 is 6th fibonacci prime graph. 

 

Theorem 2.4 

Triangular snake Tn is a kth Fibonacci prime graph, for n  2. 

Proof.  

Let G be a Triangular snake Tn. 

  Let Tn be a Triangular snake with vertices v1, v2, ..., vn, u1, u2, ..., un−1. 

Then the edge set of G is E(G) = {vivi+1|1  i  n–1}{viui|1  i  n–1}{uivi+1|1  i  n–1}.  

  |V(G)| = 2n–1 and |E(G)| = 3n–3. 

Define g : V(G) → {fk,fk+1,…,fk+2n–2} as follows 

g(vi) = fk+2(i–1), for 1  i  n 

g(ui) = fk+2(i–1)+1, for 1  i  n–1  

Then the induced function g∗ : E(G) → N is defined by g∗(xy) = gcd{g(x),g(y)}  xy  E(G).  

Now,      gcd{g(vi),g(vi+1)} = gcd{fk+2(i–1), fk+2(i–1)+2} = 1, 1  i  n and  

gcd{g(vi),g(ui)} = gcd{fk+2(i–1), fk+2(i–1)+1} = 1, 1  i  n–1, 

gcd{g(ui),g(vi+1)} = gcd{fk+2(i–1)+1, fk+2(i–1)+2} = 1, 1  i  n–1. 

Thus g∗(xy) = gcd{f(x),f(y)} = 1,  xy  E(G). 

Hence, the graph Tn is a kth Fibonacci prime graph, for n  2. 

 

Illustration 2.4 

The triangular snake T5 and its 7th Fibonacci prime labeling are shown in figure 2.4. 

 

 

 

 

 

 

 

 
Fig. 4 The triangular snake T5 is 7th fibonacci prime graph 

 

Theorem 2.5 

Quadrilateral snake Qn is a kth Fibonacci prime graph, for n  2. 

Proof.  

Let G be a Quadrilateral snake Qn. 

  Let Qn be a Quadrilateral snake with vertices v1, v2, ..., vn, u1, u2, ..., un−1 and w1, w2, ..., wn−1 

Then the edge set of G is E(G) = {vivi+1|1  i  n–1}{viui|1  i  n–1}}{uiwi|1  i  n–1}{wivi+1|1  i  n–1}.  

  |V(G)| = 3n–2 and |E(G)| = 4n–4. 

Define g : V(G) → {fk,fk+1,…,fk+3n–3} as follows 

g(vi) = fk+3(i–1), for 1  i  n 

g(ui) = fk+3(i–1)+1, for 1  i  n–1  

g(wi) = fk+3(i–1)+2, for 1  i  n–1  

Then the induced function g∗ : E(G) → N is defined by g∗(xy) = gcd{g(x),g(y)}  xy  E(G).  

Now,      gcd{g(vi),g(vi+1)} = gcd{fk+3(i–1), fk+3(i–1)+3} = 1, 1  i  n and  

gcd{g(vi),g(ui)} = gcd{fk+3(i–1), fk+3(i–1)+1} = 1, 1  i  n–1, 
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gcd{g(ui),g(wi)} = gcd{fk+3(i–1)+1, fk+3(i–1)+2} = 1, 1  i  n–1, 

gcd{g(wi),g(vi+1)} = gcd{fk+3(i–1)+2, fk+3(i–1)+3} = 1, 1  i  n–1. 

Thus g∗(xy) = gcd{f(x),f(y)} = 1,  xy  E(G). 

Hence, the graph Qn is a kth Fibonacci prime graph, for n  2. 

 

Illustration 2.5 

The Quadrilateral snake Q4 and its 6th Fibonacci prime labeling are shown in figure 2.5. 

 

 

 

 

 

 

 
Fig. 5 The quadrilateral snake Q4 is 6th fibonacci prime graph 

 

Theorem 2.6 

The Tadpole graph Tm,n is a Fibonacci prime graph for n  3, m  1.  

Proof. 

Let G be the Tadpole graph Tm,n.  

Let v1,v2,…,vm be the vertices of the cycle Cm and u1,u2,…,un  be the vertices of the path Pn. 

The edge set E(G) = {vivi+1 | 1  i  m–1}  {vmv1}  {v1u1}  {uiui+1 | 1  i  n–1}, where v1u1 is the bridge joining 

Cm with Pn. 

Then |V(G)| = m+n and |E(G)| = m+n.  

Define the mapping g : V(G)  → { f2,f3,…, fk+m+n–1} as follows  

Case 1 : m is odd. 

g(vi) = fk+m–1–2(i–1), for 1  i  
2

1m+
 

g(vi) = fk–1+(2i –m–1), for 
2

3m+
  i  m  

g(ui) = fk+m–1+i, for 1  i  n 

Then the induced function g∗ : E(G) → N is defined by g∗(xy) = gcd{g(x),g(y)}  xy  E(G).  

Now,      gcd{g(vi),g(vi+1)} = gcd{fk+m–1–2(i–1), fk+m–1–2(i–1)–2} = 1, 1  i  
2

1m−
 and  

gcd{g(vi),g(vi+1)} = gcd{fk, fk+1} = 1, i = 
2

1m+
 

gcd{g(vi),g(vi+1)} = gcd{fk–1+(2i–m–1), fk–1+(2i–m–1)+2} = 1, 
2

3m+
  i  m–1 

gcd{g(vm),g(v1)} = gcd{fk+m–2, fk+m–1} = 1  

gcd{g(v1),g(u1)} = gcd{fk+m–1, fk+m} = 1  

gcd{g(vi),g(vi+1)} = gcd{fk+m–1+i, fk+m+i} = 1, 1  i  n–1 

Thus g∗(xy) = gcd{f(x),f(y)} = 1,  xy  E(G). 

Case 2 : n is even. 

g(vi) = fk+m–1–2(i–1), for 1  i  
2

m
 

g(vi) = fk+(2i –m–2), for 
2

2m+
  i  m  

g(ui) = fk+m–1+i, for 1  i  n 

Then the induced function g∗ : E(G) → N is defined by g∗(xy) = gcd{g(x),g(y)}  xy  E(G).  

Now,      gcd{g(vi),g(vi+1)} = gcd{ fk+m–1–2(i–1), fk+m–1–2(i–1)–2} = 1, 1  i  
2

2m−
 and  

gcd{g(vi),g(vi+1)} = gcd{fk+1, fk} = 1, i = 
2

m
 

gcd{g(vi),g(vi+1)} = gcd{ fk+2i –m–2, fk+2i –m} = 1, 
2

2m+
  i  m–1 
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gcd{g(vm),g(v1)} = gcd{ fk+m–2, fk+m–1} = 1  

gcd{g(v1),g(u1)} = gcd{fk+m–1, fk+m} = 1  

gcd{g(vi),g(vi+1)} = gcd{fk+m–1+i, fk+m+i} = 1, 1  i  n–1 

Thus g∗(xy) = gcd{f(x),f(y)} = 1,  xy  E(G). 

Hence Tm,n is a kth Fibonacci prime graph for n  3, m  1.  

 

Illustration 2.6 

The Tadpole graph T8,5 and its 5th Fibonacci prime labeling are shown in figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Tadpole graph T8,5 is 5th fibonacci prime graph 

 

3. Conclusion  
We have introduced a new labeling namly kth Fibonacci prime labeling of graphs and kth Fibonacci prime labeling of path, 

cycle, PnK1, Triangular snake, Quadrilateral snake and Tadpole graph are presented. 
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