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Abstract - This paper discusses the reliability analysis of a complex system comprising two subsystems in series 

configuration together with the switching and human failure. The two subsystems, consist of three identical units in a 

parallel arrangement and functioning under 1-out-of-3: G operational policy. Switch work is to transfer a load of the 

failed unit to a new operative unit in both subsystems. The system may have an unforeseeable human failure due to which 

the system may cause a complete failed state. The failure rate of the units is constant and follows the exponential 

distribution. The two kinds of repair namely general repair and Gumbel-Hougaard copula repair are used to restore the 

present failed units and entire subsystem. Using Stochastic theory, differential equations, and supplementary variable 

approach essential features of reliability such as availability of the system, reliability of the system, MTTF, and profit 

analysis. It brings a different aspect to the research world to adopt multi-dimensional repair in the form of the copula. In 

addition, the findings of the model are useful for system engineers and maintenance managers. 

Keywords - k-out-of-n: G/F type of redundant system, Availability, Reliability, MTTF, Switching failure, Human failure, 

Gumbel-Hougaard family copula distribution.  
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 1. Introduction  
The design of complex engineering systems, particularly in the manufacturing industry, lacks the research community 

for the prospect of developing new models and designing uninterruptible systems capable of attaining high-level standards 

of availability and reliability. Any improvement in system reliability is often followed by the imposed cost amount; the 

improvement in trustworthiness is defensible to the degree that the cost of system non-approachability is greater than that 

of the standard service rendered. In maintaining integrity and customer loyalty, reliability controls for the program play a 

crucial role. Redundancy is a strategy that is commonly used to boost measures of device stability and benefit sustained. It 

is used in the form of connected similar components in such a way that, if one element fails, the others can keep the device 

operational. There are three types of standby in general: Cold standby in which the standby unit is only used when the main 

or working unit fails. Here the inactive components have a zero-failure rate and cannot fail when standby; (ii) hot standby 

in which the standby device has the same fault rate as when running with the operating unit; (iii) hot standby in which the 

standby unit operates in the operating unit's background; It is an intermediate case and, in this situation, the unit may fail, 

but its failure rate is lower than that of the working group. In addition, redundancy is particularly beneficial in maintaining 

a certain degree of system reliability. Hence reliability and adequate performance in system configuration type k-out-of-n 

with at least k components out of n operating for the system to be in operational mode play an important role. To explore 

some relevant literature on such a designed structure, a four-transmitter telecommunications system can be modeled as a 2-

out-of-4: a G system, a wide six-tire bus with four tires is a (4-out-of-6: G) system. In system reliability theory, a 

conclusively k-out-of-n system plays a very crucial role in proper system operation. The warm standby system model k-

out-of-n has found numerous applications in the fields of reliability including reduction system monitoring, network 

design, power generation, transmission system, etc. 

 

Authors Kullstam (1981) have made comprehensive efforts over the past decades to formulate and solve the reliability 

characteristics of k-out-of-n systems, such as availability, MTBF, and MTTR for a repairable system. Together with Coit 

(2001), Park and Pham (2012), Xing et al. (2012), and Ram et al. (2013) researched the performance of complex system 

repairable systems employing k-out-of-n G/ F, operational schemes. Malinowski (2016) analyzed the reliability of a flow 

network with a series-parallel-reducible structure. Levitin et al. (2013) evacuated the reliability of mixed configured series-

parallel systems with random failure propagation time. The exact reliability formula for consecutive repairable k-out-of-n-

:G type operative systems was demonstrated by Liang et al, (2010). Sharma and Kumar (2017) computed availability and 

other reliability measures of the successive k-out-of- n machining system using standby with multiple working vacations.   
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Eryilmaz, S, (2010), have developed formulas for consecutive k-out-of-n: F system using lifetime distribution, reliability, 

and properties of the k-out-of-n system with arbitrarily dependent components and mixture representations for the 

reliability of consecutive- k systems. Singh and Poonia (2019) have premeditated two-unit systems under correlated 

lifetimes under inspection employing the regenerative point technique. Levitin and Dai (2012) considered a generalized 

linear multi-state sliding window system proposed in case of multiple failures. The structure consists of independently 

linearly ordered multistate elements in this model. Rawal et al. (2013) analyzed a model of the internet data center (IDC) 

with the redundant server with the main mail server trickling different types of failure and two types of repairs employing 

copula distribution. Confirming the various operational possibilities in the network, some crucial research was performed 

to determine the network's different reliability features. 

 

  Many researchers around the globe use the switching device to present their work on the functionality of complex 

repairable systems. Authors such as Singh et al. (2013) have studied cost analysis of an engineering system involving two 

subsystems in a series configuration with controllers and human failure under the concept of k-out-of-n: G policy. It is 

worth noting that if the device is in service and operating under minor or major partial failure mode, we can employ 

general repair. Since the system stops working due to complete shutdown mode and therefore it must be repaired quickly 

for this purpose the copula repair particularly [Gumbel-Hougaard family copula] distribution must be deployed to restore 

the failed system see R B Nelson (2006).  To cite some related work presented by some authors Singh et al. (2013), Gulati 

et al. (2016), Ibrahim et al. (2017), Jia et al. (2017), and Kumar et al. (2017), studied the reliability measures of systems 

comprising subsystems in series configurations and k-out-of-n: G/ F policy with implications of a joint probability 

distribution. Recently Singh et al. (2020) examined a complex system with two subsystems in a series configuration with 

an imperfect switching device with implications of the copula linguistic approach and have concluded that copula repair 

predicts better performance over general repair.  

 

2. Model description and notations 
2.1. System description 

Conferring to the listed examined literature in the introduction, the scheme consisting of the k-out-of-n: G. was not 

evaluated by anyone among the authors. We examined the performance of a repairable hot standby system with two 

subsystems (namely subsystem-1 and 2) in a series configuration to bridge this gap. Each subsystem has three parallel units 

operating under 1-out-of-3: good policy in a parallel configuration. For the proper functioning of the system, the units of 

both subsystems connected to the switch can be unstable at the time of need, and the switching time is immediate. If an 

operating unit fails, it is replaced immediately by a standby unit using the available switch. In addition, during service, the 

device could face unexpected human failure due to the mishandling of the subsystem. For the operation of the system, 

there are four types of potential states: perfect operation, minor partial failure, major partial failure, and maximum failure. 

It is assumed that failure rates in both operating and standby units have exponential distributions. Using the supplementary 

variables and consequences of Laplace transformation, system reliability is evaluated to test different characteristics such 

as transition state probabilities, system availability, system reliability, MTTF, and benefits analysis. This paper's system is 

structured as follows.  

 

We checked the relevant work presented in different papers in Section 1. The summary of the system description along 

with assumptions and notations is described in section 2; the description of the state is given in section 3, while the system 

configuration and transition diagram are provided in section 4. Mathematical modeling using differential equations is 

discussed in section 5. The system performance analysis results such as reliability, availability, MTTF, and expected profit 

margin were simulated by considering some specific cases presented in Section 6. We have explained a summary of our 

results in Section 7. With the support of MAPLE (software), explicit expressions for reliability characteristics are obtained. 

The state definition of the system under investigation is provided in Table 1, and the transition state diagram is given in 

Figure 1. 

 
2.2. Assumptions 

The following assumptions are made in this paper: 

1. The subsystem-1 / subsystem-2 works successfully until one or more than one unit is in good working condition, i.e., 

1-out-of-3:G policy. 

2. Both the subsystems have a switching device, which in the system is unreliable and the function of the switch is to 

change failed units to operative units. Switch failure may treat as a complete failed state. 

3. There may be an unpredictable human failure to the system at any time (t). 

4. The system has four states: Good, minor partially failed, major partially failed, and utterly failed. 

5. The units in both the subsystems are in active mode as a hot standby and ready to start within a slight time after the 

failure of any unit in the subsystems. 

6. The repairman is available full-time and ready to restore minor and major faults.  

7. All failure rates are constant and follow the exponential distribution. 
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8. In a complete failed situation system restore using copula distribution.  

9. The repaired unit is trickled as a new and it is ready to perform the task as required.  

2.3. Notations 

s , t    Laplace transform / Time scale variable 

𝜆1/𝜇1   The failure rate of each unit in subsystem-1/subsystem-2. 

𝜆𝑠1
/𝜆𝑠2

   Failure rate of switch for the subsystem-1/subsystem-2. 

𝜆ℎ               Failure rate related to the catastrophic failure mode.  

𝜑1(𝑥)/𝜓1(𝑦)  Repair rate of one unit in subsystem-1/subsystem-2. 

𝜑2(𝑥)/𝜓2(𝑦)  Repair rate of two units in subsystem-1/subsystem-2. 

𝑃(𝑡)/ 𝑃̄(𝑠)              State transition / Laplace transform of state transition probability. 

𝑃𝑖(𝑥, 𝑡)                         The probability that the system is in the state iS  for 1 to 8i = and the system is under repair 

with elapsed repair time is ,x t x  repaired variable and t  is time variable. 

𝐸𝑝(𝑡) Expected profit in the interval [0, t) 

𝐾1/ 𝐾2               Revenue generation/ service cost per unit time, respectively.   

𝜇0(𝑥) An expression of the joint probability from failed state Si to good state S0 according to the 

Gumbel-Hougaard family copula is given as 𝜇0(𝑥) = 𝐶𝜃{𝑢1(𝑥), 𝑢2(𝑥)} = 𝑒𝑥𝑝[𝑥𝜃 +

{𝑙𝑜𝑔 𝜑 (𝑥)}𝜃]
1

𝜃 where𝑢1(𝑥) = 𝜑(𝑥) and ( )2

xu x e=  here 𝜃is the parameter1 < 𝜃 < ∞. 

 

3. System configuration and state transition diagram 
The state transition diagram in Fig 1. In the transition diagram, S0 is the perfect state, S1 and S4 are minor partially 

failed, S2 and S5 are major partially failed, and S3, S6, S7, and S8are failed states. Due to the failure of a maximum of one 

unit from subsystem-1 or 2, the transitions approach minors partially failed states S1 and S4, and if two units failed in 

subsystem-1 or 2, the transitions approach to major partially failed states S2 and S5. The state S3 is a complete failed state 

due to the failure of any three units in either of the subsystems. The states S6, S7, and S8 are completely failed states due to 

switching and human failure. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1(a) System structure 
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Fig. 1(b). State transition diagram of the model 

4. State description 
The state explanation of the model is that S0 is a state where both the subsystems are in good working condition. S1 

and S4 are the states where the system is in minor partially failure mode, while S2 and S5 are indicating that the system is in 

major partially failure mode, and the repair is employed, states S3, S6, S7 and S8 are the total failure mode. Repair is being 

employed using the Gumbel-Hougaard (GH)family copula. 

 
Table 1. State Description 

State Description 

S0 This is a perfect state, in which units of both subsystems are in good working condition. 

S1 
The indicated state is an operative state with minor degraded mode after the failure of any one unit in 

subsystem 1. 

S2 
The indicated state is a degraded and operational state after the failure of any two units in subsystem-1, 

but both units of subsystem-2 are in a good functional state. The system is under repair. 

S4 
This indicated a degraded and functioning state after the failure of any one unit in subsystem-2, but all the 

units of subsystem-1 are in a good operational state. The system is under repair. 

S5 
The indicated state is degraded but is in operative nature due to the failure of any two units in subsystem-

2, but all the units of subsystem-1 are in a good operational state. The system is under repair. 

S3 

S6 

S7 

S8 

All these states represent a complete failure state when the system is in shut down mode and the system is 

under repair using the Gumbel-Hougaard family copula distribution. 
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5. Formulation of the mathematical model 
By a probability of considerations and permanency stochastic theory arguments, one can obtain the undermentioned 

set of differential equations allied with the present mathematical model. 

[
𝜕

𝜕𝑡
+ 3𝜆1 + 3𝜇1 + 𝜆𝑠1

+ 𝜆𝑠2
+ 𝜆ℎ] 𝑃0(𝑡)

= [∫ 𝜑1(𝑥)
∞

0

𝑃1(𝑥, 𝑡)𝑑𝑥 + ∫ 𝜓1(𝑦)
∞

0

𝑃4(𝑦, 𝑡)𝑑𝑦 + ∫ 𝜇0(𝑥)
∞

0

𝑃3(𝑥, 𝑡)𝑑𝑥 + ∫ 𝜇0(𝑥)
∞

0

𝑃𝑠1
(𝑥, 𝑡)𝑑𝑥

+ ∫ 𝜇0(𝑦)
∞

0

𝑃𝑠2
(𝑦, 𝑡)𝑑𝑦 + ∫ 𝜇0(𝑧)

∞

0

𝑃ℎ(𝑧, 𝑡)𝑑𝑧]  (1) 

    

 [
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 2𝜆1 + 𝜆𝑠1

+ 𝜆𝑠2
+ 𝜆ℎ + 𝜑1(𝑥)] 𝑃1(𝑥, 𝑡) = 0     (2)

 
 [

𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆1 + 𝜆𝑠1

+ 𝜆𝑠2
+ 𝜆ℎ + 𝜑2(𝑥)] 𝑃2(𝑥, 𝑡) = 0     (3) 

 [
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜇0(𝑥)] 𝑃3(𝑥, 𝑡) = 0                                (4) 

 [
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 2𝜇1 + 𝜆𝑠1

+ 𝜆𝑠2
+ 𝜆ℎ + 𝜓1(𝑦)] 𝑃4(𝑦, 𝑡) = 0     (5) 

 [
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇1 + 𝜆𝑠1

+ 𝜆𝑠2
+ 𝜆ℎ + 𝜓2(𝑦)] 𝑃5(𝑦, 𝑡) = 0     (6) 

 [
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜇0(𝑥)] 𝑃𝑠1

(𝑥, 𝑡) = 0                                 (7) 

 [
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇0(𝑦)] 𝑃𝑠2

(𝑦, 𝑡) = 0                                 (8) 

 [
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
+ 𝜇0(𝑧)] 𝑃ℎ(𝑧, 𝑡) = 0                                 (9) 

Boundary conditions 

 𝑃1(0, 𝑡) = 3𝜆1𝑃0(𝑡)             (10) 

 𝑃2(0, 𝑡) = 2𝜆1𝑃1(0, 𝑡) = 6𝜆1
2𝑃0(𝑡)          (11) 

 𝑃4(0, 𝑡) = 3𝜇1𝑃0(𝑡)             (12) 

 𝑃5(0, 𝑡) = 2𝜇1𝑃4(0, 𝑡) = 6𝜇1
2𝑃0(𝑡)          (13) 

 𝑃3(0, 𝑡) = 𝜆1𝑃2(0, 𝑡) + 𝜇1𝑃5(0, 𝑡) = 6(𝜆1
3 + 𝜇1

3)𝑃0(𝑡)     (14) 

 𝑃𝑠1
(0, 𝑡) = 𝜆𝑠1

[𝑃0(𝑡) + 𝑃1(0, 𝑡) + 𝑃2(0, 𝑡) + 𝑃4(0, 𝑡) + 𝑃5(0, 𝑡)]   (15) 

 𝑃𝑠2
(0, 𝑡) = 𝜆𝑠2

[𝑃0(𝑡) + 𝑃1(0, 𝑡) + 𝑃2(0, 𝑡) + 𝑃4(0, 𝑡) + 𝑃5(0, 𝑡)]   (16) 

 𝑃ℎ(0, 𝑡) = 𝜆ℎ[𝑃0(𝑡) + 𝑃1(0, 𝑡) + 𝑃2(0, 𝑡) + 𝑃4(0, 𝑡) + 𝑃5(0, 𝑡)]   (17) 

Initials conditions 

𝑃0(0) = 1, and 𝑃𝑖(𝑥, 0) = 𝑜, 𝑖 = 𝑜, 1,2,3,4 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜  𝑃𝑠1
(𝑥, 0) = 0, 𝑃𝑠2

(𝑥, 0) = 0 (18) 

Laplace transformation of equations (1) to (17) and using equation (18), one may obtain  [𝑠 + 3𝜆1 + 3𝜇1 + 𝜆𝑠1
+ 𝜆𝑠2

+

𝜆ℎ]𝑃̄0(𝑠) = 1 + ∫ 𝜑1(𝑥)𝑃̄1(𝑥, 𝑠)𝑑𝑥
∞

0
 +  ∫ 𝜓1(𝑦)

∞

0
𝑃̄4(𝑦, 𝑠)𝑑𝑦 + ∫ 𝜇0(𝑥)

∞

0
𝑃̄3(𝑥, 𝑠)𝑑𝑥 + ∫ 𝜇0(𝑥)

∞

0
𝑃̄𝑠1

(𝑥, 𝑠)𝑑𝑥 +

∫ 𝜇0(𝑦)
∞

0
𝑃̄𝑠2

(𝑦, 𝑠)𝑑𝑦 + ∫ 𝜇0(𝑧)
∞

0
𝑃̄ℎ(𝑧, 𝑠)𝑑𝑧]        (19) 

 [𝑠 +
𝜕

𝜕𝑥
+ 2𝜆1 + 𝜆𝑠1

+ 𝜆𝑠2
+ 𝜆ℎ + 𝜑1(𝑥)] 𝑃̄1(𝑥, 𝑠) = 0     (20)

 
 [𝑠 +

𝜕

𝜕𝑥
+ 𝜆1 + 𝜆𝑠1

+ 𝜆𝑠2
+ 𝜆ℎ + 𝜑2(𝑥)] 𝑃̄2(𝑥, 𝑠) = 0      (21) 

 [𝑠 +
𝜕

𝜕𝑥
+ 𝜇0(𝑥)] 𝑃̄3(𝑥, 𝑠) = 0                               (22) 

 [𝑠 +
𝜕

𝜕𝑦
+ 2𝜇1 + 𝜆𝑠1

+ 𝜆𝑠2
+ 𝜆ℎ + 𝜓1(𝑦)] 𝑃̄4(𝑦, 𝑠) = 0     (23) 
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 [𝑠 +
𝜕

𝜕𝑦
+ 𝜇1 + 𝜆𝑠1

+ 𝜆𝑠2
+ 𝜆ℎ + 𝜓2(𝑦)] 𝑃̄5(𝑦, 𝑠) = 0     (24) 

 [𝑠 +
𝜕

𝜕𝑥
+ 𝜇0(𝑥)] 𝑃̄𝑠1

(𝑥, 𝑠) = 0                              (25) 

 [𝑠 +
𝜕

𝜕𝑦
+ 𝜇0(𝑦)] 𝑃̄𝑠2

(𝑦, 𝑠) = 0                               (26) 

 [𝑠 +
𝜕

𝜕𝑧
+ 𝜇0(𝑧)] 𝑃̄ℎ(𝑧, 𝑠) = 0                                          (27) 

 𝑃̄1(0, 𝑠) = 3𝜆1𝑃̄0(𝑠)             (28) 

 𝑃̄2(0, 𝑠) = 6𝜆1
2𝑃̄0(𝑠)                                    (29) 

 𝑃̄4(0, 𝑠) = 3𝜇1𝑃̄0(𝑠)             (30) 

 𝑃̄5(0, 𝑠) = 6𝜇1
2𝑃̄0(𝑠)                              (31) 

 𝑃̄3(0, 𝑠) = 𝜆1𝑃̄2(0, 𝑠) + 𝜇1𝑃̄5(0, 𝑠) = 6(𝜆1
3 + 𝜇1

3)𝑃̄0(𝑠)    (32) 

𝑃̄𝑠1
(0, 𝑠) = 𝜆𝑠1

[1 + 3(𝜆1 + 𝜇1) + 6(𝜆1
2 + 𝜇1

2)]𝑃̄0(𝑠)                         (33) 

𝑃̄𝑠2
(0, 𝑠) = 𝜆𝑠2

[1 + 3(𝜆1 + 𝜇1) + 6(𝜆1
2 + 𝜇1

2)]𝑃̄0(𝑠)                (34) 

𝑃̄ℎ(0, 𝑠) = 𝜆ℎ[1 + 3(𝜆1 + 𝜇1) + 6(𝜆1
2 + 𝜇1

2)]𝑃̄0(𝑠)                         (35) 

Now solving the equations (19) (27) with the boundary conditions, (28)- (35) one may get 

𝑃̄0(𝑠) =
1

𝐷(𝑠)
              (36) 

𝑃̄1(𝑠) =
3𝜆1

𝐷(𝑠)

1

(𝑠+2𝜆1+𝜆𝑐1+𝜆𝑐2+𝜆𝑐𝑇
+∅1)

                            (37) 

𝑃̄2(𝑠) =
6𝜆1

2

𝐷(𝑠)

1

(𝑠+𝜆1+𝜆𝑐1+𝜆𝑐2+𝜆𝑐𝑇
+∅2)

                    (38) 

𝑃̄3(𝑠) =
6(𝜆1

3+𝜇1
3)

𝐷(𝑠)

1

𝑠+𝜇0
                         (39) 

𝑃̄4(𝑠) =
3𝜇1

𝐷(𝑠)

1

(𝑠+2𝜇1+𝜆𝑐1+𝜆𝑐2+𝜆𝑐𝑇
+𝜑1)

                             (40) 

𝑃̄5(𝑠) =
6𝜇1

2

𝐷(𝑠)

1

(𝑠+𝜇1+𝜆𝑐1+𝜆𝑐2+𝜆𝑐𝑇
+𝜑2)

                               (41) 

𝑃̄𝑠1
(𝑠) =

𝜆𝑠1

𝐷(𝑠)
[1 + 3𝜆1 + 3𝜇1 + 6(𝜆1

2 + 𝜇1
2)]

1

𝑠+𝜇0
                                    (42) 

𝑃̄𝑠2
(𝑠) =

𝜆𝑠2

𝐷(𝑠)
[1 + 3𝜆1 + 3𝜇1 + 6(𝜆1

2 + 𝜇1
2)]

1

𝑠+𝜇0
                                    (43)  

𝑃̄ℎ(𝑠) =
𝜆ℎ

𝐷(𝑠)
[1 + 3𝜆1 + 3𝜇1 + 6(𝜆1

2 + 𝜇1
2)]

1

𝑠+𝜇0
                              (44) 

Where: 

 𝐷(𝑠) = 𝑠 + 3𝜆1 + 3𝜇1 + 𝜆𝑠1
+ 𝜆𝑠2

+ 𝜆ℎ − 3𝜆1𝑆̄𝜑1
(𝑠 + 2𝜆1 + 𝜆𝑠1

+ 𝜆𝑠2
+ 𝜆ℎ) −   3𝜇1𝑆̄𝜓1

(𝑠 + 2𝜇1 + 𝜆𝑠1
+

𝜆𝑠2
+ 𝜆ℎ) − 6(𝜆1

3 + 𝜇1
3)𝑆̄𝜇0

(𝑠) − (𝜆𝑠1
+ 𝜆𝑠2

+ 𝜆ℎ)1 + 3𝜆1 + 3𝜇1 + 6(𝜆1
2 + 𝜇1

2)𝑆̄𝜇0
(𝑠) 

 

The Sum of Laplace transformations of the state transitions, for operative states and failed states at any time, is given as. 

𝑃̄𝑢𝑝(𝑠) = 𝑃̄0(𝑠) + 𝑃̄1(𝑠) + 𝑃̄2(𝑠) + 𝑃̄4(𝑠) + 𝑃̄5(𝑠)        (45) 

𝑃̄𝑑𝑜𝑤𝑛(𝑠) = 1 − 𝑃̄𝑢𝑝(𝑠)                          (46) 
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6. Analytical Study 

6.1. System Availability Analysis 

1. Repair follows two types of distributions general and (GH) family copula distribution, we have 

Setting 𝑆̄𝜑1
(𝑠) =

𝜑1

𝑠+𝜑1
, 𝑆̄𝜓1

(𝑠) =
𝜓1

𝑠+𝜓1
, 𝑆̄𝜇0

(𝑠) =
𝑒𝑥𝑝[𝑥𝜃+{𝑙𝑜𝑔 𝜑(𝑥)}𝜃]

1
𝜃

𝑠+𝑒𝑥𝑝[𝑥𝜃+{𝑙𝑜𝑔 𝜑(𝑥)}𝜃]
1
𝜃

 

Assigning the specific values 𝜆1 = 0.02, 𝜇1 = 0.03, 𝜆𝑠1
= 0.021, 𝜆𝑠2

= 0.022, 𝜆ℎ = 0.025, 𝜃 = 1, 𝑥 = 1, 𝜑1 = 1, 𝜓1 = 1 

in (45), computing inverse Laplace transform, with Maple 17 software one can obtain the following availability expression 

of the system. Here we have considered the following cases:  

(a) When both the subsystems have switching device, we obtain, 

𝑃𝑢𝑝(𝑡) = 0.030148𝑒−2.8040𝑡 + 0.024319𝑒−1.2900𝑡 − 0.003139𝑒−1.1309𝑡 −  0.011268𝑒−1.0955𝑡 −

0.021207𝑒−1.0481𝑡 − 0.029779𝑒−1.0383𝑡 + 1.007386𝑒−0.0093𝑡 −  0.001840𝑒−1.0880𝑡 + 0.005382𝑒−1.0980𝑡 (47𝑎)                 

(b) When subsystem-2 does not have a switching device, i.e.𝜆𝑠2
= 0, we obtain, 

𝑃𝑢𝑝(𝑡) = −0.001895𝑒−1.0660𝑡 + 0.005182𝑒−1.0760𝑡 + 0.020739𝑒−2.7765𝑡 + 0.027661𝑒−1.2728𝑡 − 0.003152𝑒−1.1089𝑡

− 0.011093𝑒−1.0734𝑡 − 0.021381𝑒−1.0261𝑡 − 0.030907𝑒−1.0162𝑡 + 1.014845𝑒−0.0104𝑡 (47𝑏)   

(c) When both subsystems 1 and 2 do not have a switching device, i.e.𝜆𝑠1
= 𝜆𝑠2

= 0, we obtain, 

  𝑃𝑢𝑝(𝑡) = −0.001948𝑒−1.0450𝑡 + 0.005009𝑒−1.0550𝑡 + 0.011482𝑒−2.7501𝑡 + 0.031176𝑒−1.2564𝑡 − 0.003163𝑒−1.0879𝑡

− 0.010942𝑒−1.0522𝑡 − 0.021381𝑒−1.0261𝑡 − 0.030907𝑒−1.0162𝑡 + 1.014845𝑒−0.0104𝑡(47𝑐) 

For different values of time-variable 𝑡 = 0,10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 units of time, one may get different 

values 𝑃𝑢𝑝(𝑡) with the help of (47a-47c), as presented in table-2 and the corresponding figure-2. 

Table 2. Availability variation with respect to time  

Time (t) a b c 

0 1.0000 1.0000 1.0000 

10 0.9173 0.9141 0.9116 

20 0.8354 0.8234 0.8132 

30 0.7607 0.7417 0.7254 

40 0.6928 0.6681 0.6471 

50 0.6309 0.6019 0.5772 

60 0.5745 0.5421 0.5149 

70 0.5232 0.4883 0.4593 

80 0.4764 0.4399 0.4097 

90 0.4339 0.3962 0.3655 

100 0.3951 0.3569 0.3261 

 

 
Fig. 2 Availability as a function of time 
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6.2 System Reliability analysis  
Reliability is the probabilistic measure of a non-repairable system. Therefore, treating all repair rates equal to zero and 

obtaining inverse Laplace transform in (45), we get an expression for the reliability of the system after taking the failure 

rates as
1 11 10.02, 0.03, 0.021, 0.022,c c   = = = = 0.025

Tc =  considered the same cases like availability, we have  

(a) When both the subsystems have switching device, we obtain, 

𝑅𝑖(𝑡) = 0.049568𝑒−0.0880𝑡 + 12.572026𝑒−0.1280𝑡 + 0.141705𝑒−1.1309𝑡 + 2.15877𝑒−0.1080𝑡 −
4.3843410−41𝑒−1.468𝑡(3.1754 1041 𝑐𝑜𝑠ℎ(1.3332𝑡) +
3.1887 1041 𝑐𝑜𝑠ℎ(1.3332𝑡))                                                                                                                                                                                                                                                                                               
(48a) 

(b) When subsystem-2 does not have switching device i.e. 𝜆𝑠2
= 0, we obtain, 

𝑅𝑖(𝑡) = 1.095203𝑒−0.0860𝑡 + 0.031914𝑒−0.0660𝑡 + 2.619204𝑒−0.1060𝑡 +  0.083085𝑒−0.0760𝑡 −
5.649054 10−37𝑒−1.4571𝑡(5.0086 1036 𝑐𝑜𝑠ℎ(1.3175𝑡) + 5.0799 1036 𝑐𝑜𝑠ℎ(1.3175𝑡))  (48𝑏)                                                                        

(c) When both subsystems 1 and 2 do not have a switching device, i.e.𝜆𝑠1
= 𝜆𝑠2

= 0, we obtain. 

   𝑅𝑖(𝑡) = 0.748776𝑒−0.0650𝑡 + 0.023915𝑒−0.0450𝑡 + 1.502406𝑒−0.0850𝑡 + 0.059838𝑒−0.0550𝑡 −
2.780612 10−35𝑒−1.4466𝑡(4.8008 1034 𝑐𝑜𝑠ℎ(1.3024𝑡) +  4.8808 1034 𝑐𝑜𝑠ℎ(1.3024𝑡))                (48c)                                                                               

For different values of time-variable 0,10,20,30,40,50,60,70,80,90 and 100t = units of time, one may get 

different values of reliability ( )R t with the help of (48a-48c), as shown in table-3 and the corresponding figure-3. 

Table 3. Computed values of reliability corresponding to the different cases 

Time (t) a b c 

0 1.0000 1.0000 1.0000 

10 0.6832 0.7209 0.7645 

20 0.3105 0.3626 0.4329 

30 0.1222 0.1616 0.2237 

40 0.0449 0.0684 0.1121 

50 0.0159 0.0283 0.0558 

60 0.0055 0.0116 0.0278 

70 0.0018 0.0047 0.0140 

80 0.0006 0.0019 0.0071 

90 0.0002 0.0008 0.0037 

100 0.0001 0.0003 0.0019 

 

 
Fig. 3 Reliability as a function of time 
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6.3 Mean Time to Failure (MTTF) 

Taking all repair rates to zero and the limit as s tends to zero in (50) for the exponential distribution; we can obtain the 

MTTF as: 

𝑀𝑇𝑇𝐹 =
1

𝐴
[1 +

3𝜆1

2𝜆1+𝜆𝑠1+𝜆𝑠2+𝜆ℎ
+

6𝜆1
2

𝜆1+𝜆𝑠1+𝜆𝑠2+𝜆ℎ
+

3𝜇1

2𝜇1+𝜆𝑠1+𝜆𝑠2+𝜆ℎ
+

6𝜇1
2

𝜇1+𝜆𝑠1+𝜆𝑠2+𝜆ℎ
]        (50) 

where 𝐴 = 3𝜆1 + 3𝜇1 + 𝜆𝑠1
+ 𝜆𝑠2

+ 𝜆ℎ 
 

Now taking the values of different parameters as 𝜆1 = 0.02, 𝜇1 = 0.03, 𝜆𝑠1
= 0.021, 𝜆𝑠2

= 0.022, and 𝜆ℎ = 0.025 and 

varying𝜆1, 𝜇1, 𝜆𝑐1
, 𝜆𝑐2

, and 𝜆𝑐𝑇
 one by one respectively as 0.01,0.02,0.03,0.04,0.05,0.06, 0.07,0.08,0.09,0.10  in 

(50), the variation of MTTF, for failure rates, can be obtained as given table 3 and figure 3.  

 

Table 4. Computation of MTTF corresponding to the failure rates 

Failure rates 𝝀𝟏 𝝁𝟏 𝝀𝒔𝟏
 𝝀𝒔𝟏

 𝝀𝒉 

0.01 11.2065 12.2242 11.9856 12.1127 12.5101 

0.02 10.7387 11.5194 10.8417 10.9466 11.2732 

0.03 10.1469 10.7387 9.8897 9.9776 10.2506 

0.04 9.5608 10.0101 9.0855 9.1602 9.3916 

0.05 9.0201 9.3626 8.3997 8.4619 8.6605 

0.06 8.5337 8.7955 7.8031 7.8589 8.0309 

0.07 8.1002 8.3002 7.2842 7.3331 7.4836 

0.08 7.7143 7.8666 6.8277 6.8709 7.0035 

0.09 7.3704 7.4852 6.4231 6.4615 6.5793 

0.10 7.0628 7.1480 6.0623 6.0966 6.2018 

 

 
Fig. 4 MTTF as a function of failure rates 

6.4 Cost Analysis 

Let the service facility be always available, then the expected profit during the interval )0, t is 

𝐸𝑝(𝑡) = 𝐾1 ∫ 𝑃𝑢𝑝(𝑡)
𝑡

0
𝑑𝑡 − 𝐾2𝑡      (56) 

For the same set of parameters defined in (47), one can obtain (57). 
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𝐸𝑝(𝑡) = −0.010751𝑒−2.8040𝑡 − 0.018850𝑒−1.2900𝑡 + 0.020233𝑒−1.0481𝑡 − 107.640872𝑒−0.0093𝑡 +

0.002776𝑒−1.130912𝑡 + 0.010286𝑒−1.0954𝑡 + 0.028680𝑒−1.0383𝑡 − 0.004901𝑒−1.0980𝑡 + 0.001691𝑒−1.0880𝑡 +
107.611709 − 𝐾2𝑡  (57) 

 

Setting 𝐾1 = 1 and𝐾2 = 0.6, 0.4, 0.2 𝑎𝑛𝑑 0.1respectively, and varying  𝑡 =
 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100units of time, the results for       expected profit can be obtained as per table-5 

and figure-5.  

Table 5. Profit computation for different values of time 

Time t K2=0.6 K2=0.4 K2=0.2 K2=0.1 

0 0 0 0 0 

10 3.5876 5.5876 7.5876 8.5876 

20 6.3453 10.3453 14.3453 16.3453 

30 8.3205 14.3205 20.3205 23.3205 

40 9.5832 17.5832 25.5832 29.5832 

50 10.1971 20.1971 30.1971 35.1971 

60 10.2200 22.2200 34.2200 40.2200 

70 9.7048 23.7048 37.7048 44.7048 

80 8.6996 24.6996 40.6996 48.6996 

90 7.2482 25.2482 43.2482 52.2482 

100 5.3904 25.3904 45.3904 55.3904 

 

 

Fig. 5 Expected profit as a function of time 

 

7. Conclusion via result analysis 
This paper studies the probabilistic measures of a repairable system consisting of two subsystems in series with 

switching and human failure. Each subsystem is comprised of three alike units in a parallel configuration and working 

under 1-out-of-3: G plan. The following decisions may be drawn based on the study led in this paper: 

Table-2 and Figure-2 give the analysis of the availability of the system in four different cases (Gumbel- Hougaard Copula 

approach, Copula approach and without switching in subsystem2, Copula approach and with switching device and same 
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failure rate of both subsystems), when failure rates are fixed at different values to time. One can observe that the 

availability decreases as time t increases. 

 

Table-3 and figure-3 give evidence for the reliability of the system at different values of the time. The graph was 

showing a steep fall in reliability from top to lowermost in a very short period in all four cases based on the failure rate of 

units. 

 

From table-2 and 3, one can observe that corresponding values of availability are higher than the values of reliability, 

which highlights the requirement of systematic repair for any complex systems for healthier performance. 

Table-4 and figure-4 yield the MTTF of the system concerning variation𝜆1, 𝜇1, 𝜆𝑠1
, 𝜆𝑠2

, and 𝜆ℎ. It can see that the MTTF of 

the system reduces with the increasing values of all the parameters. MTTF was found to be the highest for𝜇1. Thus, MTTF 

of the system in all possible cases is decreasing as failure rates 𝜆1, 𝜇1, 𝜆𝑠1
, 𝜆𝑠2

, and 𝜆ℎincreasing from 0.01 to 0.10.  

 

An acute examination from table 5 and figure 5 reveals that expected profit increases as service cost K2 decreases, 

while the revenue cost per unit time is fixed at K1=1. The calculated expected profit is maximum for K2= 0.1 and minimum 

for K2=0.6. We observe that as service cost decreases, profit increase with the variation of time. In general, for low service 

costs, the expected profit is high in comparison to the high service cost. 

 

In proper maintenance review, decision, and performance assessment, the model built in this paper was found to be 

highly advantageous. The evaluation of the full reliability and functionality of the device under investigation is another 

potential future task. 
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