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Abstract

Around the world, the Hidden Markov Models (HMM) are the most popular methods in the machine learn-
ing and statistics for modeling sequences, especially in speech recognition domain. According to the num-
ber of patent applications for speech recognition technology form 1988 to 1998, the trend shows that this
method has become very mature. The Hidden Markov Model (HMM) is a stochastic model where the mod-
eled system is considered as a Markov process with unknown parameters. The challenge is to determine
the hidden parameters of the observed parameters. It provides a probabilistic framework for time series
forecast modeling. If the causal factors are not directly observed and have the properties of the Markov
chain, therefore, a pair of observations and its causative factors are hidden Markov model. The proposed
model was applied to a variation in the price of cereal products on the Togolese market between January
2015 and December 2021. The price of these cereal products was influenced by several factors, such as the
international recession, government policy, climate, etc. The Forward-Backward, Viterbi and Baum-Welch
algorithm was used to estimate the estdimated parameters were used to calculate the expected state of price

for those grain product to find the most likely sequence and our proposed model would be coded using
Matlab.
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In most sub-Saharan countries, economic development depends heavily on the agricultural sector as Togo,
a country located to the west of Ghana, to the east by Benin, to the north by state, and also the south by the
Atlantic ocean; with a component of 56,600 km2 and a population of around 8.5 million; the agricultural
sector occupies 65% of the working population and 40% of the gross domestic product. Most of the working
population is therefore directly involved in agricultural activities and also agriculture, therefore, constitutes
a backbone of Togo’s economy due to the value of agricultural products. The physiographic conditions, soil
quality, and climate of the region are remarkably favorable for the assembly of assorted food crops, vegeta-
bles, and fruits, essential for human and animal livelihoods. Thus, for crops grown worldwide for human
and animal consumption, cereal crops constitute the majority. they’re grown in large quantities and function
as a source of energy food over the opposite kind of crop. Cereals are stapled crops of great socio-economic
importance, which give food and play a very important role in the agricultural gross domestic product. The
demand for agricultural products, especially cereals, has increased due to the increase in the world’s popu-
lation. Cereal crops like wheat, rice, and corn provide about 1 two-thirds of all energy in human diets; but
despite everything, There are many factors, which act in numerous directions, and affect the agricultural
production sector. Most farmers depend totally on nature to produce their agricultural products; then certain
products are produced in a very very particular season. Thus, factors like availability of machine power,
accessibility of fine quality seeds and planting material, post-harvest technology, marketing facilities, and
infrastructure influence the price of the raw materials produced. one of the foremost problems of agriculture
in Togo is that of storage and conservation of products which is at the origin of strong price fluctuations
between seasons. This problem is aggravated by the dearth of infrastructure which makes it difficult to
access certain regions, especially the foremost production sites; agriculture also suffers from the difficulties
of farmers’ access to credit and land problems maintained, among other things, by a high population density
and low recourse to irrigation. Marketing of commodities and an unorganized marketing system are other
major problems that make a good gap between producer and consumer. The facilities for transporting goods
from their regions of production to other parts of the state or country are insufficient. Heavy rainfall and
sometimes annual flooding also affect production moreover thanks to the price of products. The demand
for a specific product and therefore the insufficient supply of it can cause price fluctuation. the continual
increase in the price of products creates an unwanted effect on the quality of living of ordinary people. This
study attempts to model the price movements of assorted agricultural products specifically cereal products
and particularly to make forecasts. There are many well-known forecasting methods for solving real-world
problems; samples of these forecasting methods include Autoregressive Moving Average, Autoregressive
Integrated Moving Average, Fuzzy statistic, Artificial Neural Networks, Empirical-SVR-Hybrid Decompo-
sition, empirical mode Decomposition: intrinsic mode functions - hybrid and ANN Machine support-vector.
Each forecasting model has its own advantages and its specialty for solving 2 complex real-world problems.
In this paper, to clarify the interrelationships of our model, the Hidden Markov chain is one of the strong
tools that are developed to unravel complex real-world problems just like the value prediction of our ce-
reals products price. Over the past some years, machine learning has become an important subject in the
trending technological field. It is a subfield of computer science and artificial intelligence that focuses on
the design of systems that can learn and make decisions and predictions based on data, instead of explicitly
programmed instructions. Overall it enables computers to act and make data-driven decisions rather than

being explicitly programmed to carry out a certain task. One of the important uses of machine learning has
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been the growth of its potential in predicting the stock market; hence our use of the Hidden Markov Model
is the one in which we observe a sequence of emissions, but do not know the sequence of states the model
went through to generate the emissions. Analysis of hidden Markov models seek to recover the sequence of
states from the observed data. The hidden Markov model was proved appropriate for modeling the dynamic

system and can be beneficial for finding unknown parameters of HMM.

2 LITERATURE REVIEW

Hidden Markov models (HMM) were early used in the application of pattern recognition such as speech,
gesture and handwriting with many successful research results. In contrast, the application of hidden
Markov models in stock market forecasting is still quite new but researchers could already show posi-
tive results.For example, the modelling of daily return series with HMMs has been investigated by several
authors. One of the first and most influential works was done by Rydén et al. in 1998 where the authors
showed that the temporal and distributional properties of daily returns series are well reproduced by two-

and three-state HMMs with normal components.

Hassan and Nath (2005) presented Hidden Markov Models (HMM) approach for forecasting slock price
at the interrelated markets. Any fluctuation in market influences personal and corporate financial lives, and
the economic health of a country. Hassan et al, (2005) consider 4 input features for a stock, which is the
opening price, closing price, highest price, and the lowest price. The next day’s closing price is taken as the
target price associated with the four input features. The idea behind new approach in using HMM is that
the using of training dataset for estimating the parameter set (A, B, 7). Using the trained HMM, likelihood
value for current day’s dataset is calculated. For instance the likelihood value for the day is then from the
past dataset using the HMM locate those instances that would produce the same or nearest to the likelihood
value. Assuming that the next day’s stock price should follow about the same past data pattern, from the
located past day(s) simply calculate the difference of that day’s closing price and next to that day’s closing
price. Thus the next day’s stock closing price forecast is established by adding the above difference to the

current day’s closing price. The results show potential of using HMM for time series prediction.

Maryam Farshchian and Majid Vafaei Jahan’s proposed Hidden Markov Model was proved appropriate
for modelling the dynamic system and it has been shown how Baum-Welch and Progressive algorithm can
be beneficial for finding unknown parameters of HMM. In implementation phase Baum-Welch was used to
train model to learn progressively and incrementally and calculates error possibility after each transition.
In their research they have compared their predicted values with actual data for different industries and got
maximum 81% accuracy Poonam Somani et al have shown how Hidden Markov Model is used to locate
patterns from past data sets that matched the current days stock price behavior. Baum Welch algorithm was
used to train the data set for developing model. Input features were Open, Close, High, Low and stock
data was stored in 3-d vector form in training phase to calculate the fractional change in testing phase for
analysis purpose. Once the model was trained and testing was done, result analysis and accuracy was done
by using Mean Absolute Percentage Error (MAPE).

Research in the field of prediction using Hidden markov model is a new breakthrough, because most

of them are used for bio technology or recognition or stock market trading startegy. Previous literature
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suggests that there has been no or few research on the agriculture commodities(Maize, Soyabeans, Rice)
market price scientifically. This research was intended to study time-series trends using Hidden Markov
Model to give a scientific description by finding the most probable next price state and the most likely

sequence of our commodities price

3 METHODOLOGY

3.1 Basics of Markov Model

A Markov chain is a stochastic process, but it differs from a general stochastic process in that a Markov
chain must be "memory-less." That is, (the probability of) future actions are not dependent upon the steps
that led up to the present state. This is called the Markov property. While the theory of Markov chains
is important precisely because so many "everyday" processes satisfy the Markov property, there are many

common examples of stochastic properties that do not satisfy the Markov property.

Definition
The stochastic process {X (), € T} is said to exhibit Markov dependence if for a finite (or countable infi-
nite) set of points (19,11, ,ty,1), fo <t <th <---<t, <t wheret,t, €T (r=0,1,2,...,n).
PX(t) <x|X(tn) =xn, X(ta—1) = Xn—1,---,X(to) = X0)
=P[X(t) <x|X(tn) = xn) = F[Xn,x;1,,1]

Transition Matrice
A transition matrix P, for Markov chain {X} at time 7 is a matrix containing information on the probability
of transitioning between states. In particular, given an ordering of a matrix’s rows and columns by the state
)th

space S, the (i, /)™ element of the matrix P, is given by

(Pt>i7j =PXr1=j|X=1i)

This means each row of the matrix is a probability vector, and the sum of its entries is 1 . Transition matrices
have the property that the product of subsequent ones describes a transition along the time interval spanned
by the transition matrices. That is to seition Py- Py has in its (i, j)™ position the probability that X, = j given
that Xy = i. And, in general, the (i, j) position of B, -P., 1 - --- P, is the probability P (X, ;41 = j | X; = i).

The k-step transition matrix is P,(k) =P -P1--- P11 and, by the above, satisfies

P(Xl+k:1|X[:1) P(Xt+k:2|Xt:1) ]:P)(Xl+k:n|Xt:1)
t - . . . .
PXx=1|X=n) Pxu=2[X=n ... PXux=nl|X,=n)

Properties

A variety of descriptions of either a specific state in a Markov chain or the entire Markov chain allow
for better understanding of the Markov chain’s behavior. Let P be the transition matrix of Markov chain
{Xo0,X1,...,Xn}.
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- A state i has period k > 1 if any chain starting at and returning to state i with positive probability must
take a number of steps divisible by k. If k = 1, then the state is known as aperiodic, and if k > 1, the state
is known as periodic. If all states are aperiodic, then the Markov chain is known as aperiodic.

- A Markov chain is known as irreducible if there exists a chain of steps between any two states that has
positive probability.

- An absorbing state i is a state for which P; ; = 1. Absorbing states are crucial for the discussion of absorbing
Markov chains.

- A state is known as recurrent or transient depending upon whether or not the Markov chain will eventually
return to it. A recurrent state is known as positive recurrent if it is expected to return within a finite number
of steps, and null recurrent otherwise.

- A state is known as ergodic if it is positive recurrent and aperiodic. A Markov chain is ergodic if all its
states are. Irreducibility and periodicity both concern the locations a Markov chain could be at some later
point in time, given where it started. Stationary distributions deal with the likelihood of a process being in a
certain state at an unknown point of time. For Markov chains with a finite number of states, each of which

is positive recurrent, an aperiodic Markov chain is the same as an irreducible Markov chain.

3.2 Basics of HMM

HMM is a stochastic model where the system is assumed to be a Markov Process with hidden states. HMM
gives better accuracy than other models. Using the given input values, the parameters of the HMM (1)
denoted by A, B and 7 are found out.

Figure 1: Graphical representation of the dependence structure in a hidden Markov model

HMM consists of :
> A set of hidden or latent states (S)
> A set of possible output symbols (O)
> A state transition probability matrix (A)
> Probability of making transition from one state to each of the other states
> (Observation emission probability matrix (B)
> Probability of emitting/observing a symbol at a particular state
> Prior probability matrix (7)
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> probability of starting at a particular state

An HMM is defined as A =(S, O, A, B, 7w ) where :

S=251,%2,...,5y 1s a set of N possible states ; O = 01,0, ...,0y is a set of M possible observation sym-
bols ; A is an (NxN) state Transition Probability Matrix (TPM) ; B is an (NxM) observation or Emission
Probability Matrix (EPM) and 7 is an N dimensional initial state probability distribution vector and A, B

and 7 should satisfy the following conditions:

Zaijzl where 1<i1<N

j=1

M

Zb,jzl where 1<i<N
j=1

N

Zn’i = where m; >0

i=1
The main problems of HMM are: Evaluation, Decoding, and Learning.

Evaluation problem
Given the HMM A = {A, B,m} and the observation sequence O = O, O3, ..., Oy, the probability that model
A has generated sequence O is calculated. Often this problem is solved by the Forward Backward Algorithm
(Rabiner, 1989) (Rabiner, 1993).
Forward Algorithm :
We define the forward variable oy (i) as o4 (i) = P(01,03,...,01;q: = Si | A)
His interpretation is the probability of observing the sequence O, O3, ..., O; up to time t and state S; at time
t, under the model A. So the algorithm is :
1. Initialisation:

o (i) =mb;i (01),1 <i<N

2. Induction:
01(j) = [E 04 (Daij] bj (Or1), 1<t <T—1
1<j<N

3. Termination:

N
P(O[A)=Y ar(i)

Backward Algorithm :

Similarly to forward, we define a backward variable B (i) as B;(i) = P(O;+1,0:42, ...,O1 | g: = Si, A) The in-
terpretation of the backward variable is instead the probability of observing the sequence O;1,0;2,...,0r
from time 7 4 1 to the end, given state S; at time t under the model A.So the algorithm is :

1. Initialisation: By (i) = 1,1 <i < N 2. Induction:

Zaz] 0t+1 ﬁt-i—l( )

t=T—1,T—2,...,1,1<i<N

Decoding problem
Given the HMM A = {A, B,n} and the observation sequence O = 01,0, ..., Oy, calculate the most likely
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sequence of hidden states that produced this observation sequence O. Usually this problem is handled by
Viterbi Algorithm (Rabiner,1989) (Rabiner,1993).

Viterbi Algorithm

To find the best state sequence Q = {q1,q2,--.,qr} for a given observation sequence O = {01,037, ...,07},

one need to define the quantity

&)= max Plq1,92,---,q: = $i,01,02,...,0; | A]
q1:92;---9t—1
which means the highest probability along a single path, at time ¢, which accounts for the first # observations

and ends in state s;. By induction one have:

8011 = [maxd(iay by (o).

To be able to retrieve the state sequence, one need to keep track of the argument which maximized &4 (j),
for each ¢ and j. This is done via the array y;(j). The complete procedure for finding the best state sequence
can now be stated as follows:
1. Initialization:

01(i) =mbi(01),1 <i<N

vi(i) =0

2. Recursion:
& (j) = maxi<j<n [§—1(i)aij] bj (o), 2<t<T

Vi (j) = argmax, <<y [6—1(i)aij] , 2<t<T

3. Termination:

P = [max [0r ()]

gt = argmax; ;< [6r(i)]

4. Path (state sequence) backtracking:

Q;(:V/t+1(q;k+1), t:T—l,T—Z,...,l

Learning problem

Given some training observation sequences O = O1, 0>, ..., Oy and general structure of HMM (numbers of
hidden and visible states), determine HMM parameters A = {A,B, 7} that best fit data. The most common
solution for this problem is Baum-Welch algorithm (Rabiner,1989) (Rabiner,1993) which is considered as
the traditional method for training HMM.

Baum-Welch algorithm

The third, last, and at the same time most challenging problem with HMMs is to determine a method to
adjust the model parameters A = {A, B, 7} to maximize the probability of the observation sequence given
the model. There is no known analytical solution to this problem, but one can however choose A such
that P(O | A) is locally maximized using an iterative process such as the Baum-Welch method, a type of

Expectation Maximization (EM) algorithm. Baum-Welch is however the most commonly used procedure,
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and will therefore be the one utilized in this the first investigation of HMM.
To be able to re-estimate the model parameters, using the Baum-Welch method, one should start with
defining & (i, j), the probability of being in state s; at time ¢, and state s; at time 7 + 1, given the model and

the observations sequence. In other words the variable can be defined as:

ét(h]) :P(Clz =S8i,qt+1 =S | Oal)

the forward and backward variables as follows:

N %7 ( )au (01+1)ﬁt+1(j) o
gt(laj)_ (0|l) -
()a,] i (0r41) Brr1(J)
121 1 0 (D)aijbj(0i11) Brr1(Jj)

which is a probability measure since the numerator is simply P (g; = si,¢;+1 = 5,0 | l) and denominator
isP(O| 7).

As described bellow, % (i) is the probability of being in state S; at time #, given the observation sequence
and the model. Therefore there is a close relationship between ¥ (i) and & (i, j). One can express % (i) as

the sum of all & (i, j) over all existing states as follows:

N
=Y &G,))
j=1

By summing ¥ (i) over time one get a number which can be interpreted as the number of times that state
s; is visited. This can also be interpreted as the number of transitions from state s;. Similarly, summation
of & (i, j) over time can be interpreted as the number of transitions from state S; to state S;. By using these

interpretations, a method for the re-estimation of the model parameters 7,A, B for the HMM is as follows:

i = (i)

D Vit é(i j)
Zt 1 /J/t()

_ ZTt:_l %( )

Bi(v) = 2t

Yo ()

3.3 Model Conception

In this paper, Maize monthly price value data during 6 years period is considered. Three observing symbols
"L","M"and"H " have been used: " L indicates Low " , " M indicates Moderate ", " H indicates High
". To define those 3 Observations, we define A; and A as :
A= mean price (1) — (0.5)* standart deviation(t)
A= mean price (1) + (0.5)* standart deviation(t)
So:
If This month price > A, the observation is High.
If This month price > A; the observation is Low.
If This A; < month price < A; the observation is Moderate.
We also have three hidden states assumed and are denoted by the symbol : §1,57,53 .
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If new monthly price value — previous monthly price value > 0O, then observing state is I (Increasing)
and the symbol is §j.
If new monthly price value — previous monthly price value < 0, then observing state is D (Decreasing) and
the symbol is S5.
If new monthly price value — previous monthly price value = 0, then observing state is U (Unchanged) and

the symbol is S3.

The States are not directly observable. The situations of the market are considered hidden. Given a

sequence of observation we can find the hidden state sequence that produced those observations.

3.4 Database

The dataset is a collection of existing information coded in a form suitable for use and processing. Our data
set consists of historical value data in .csv format extracted from the INSEED stock. The csv file contains
monthly data on the prices of the various commodities in my study, namely the price of maize, over the
period from January 2015 to December 2021. These monthly prices are based on the averages of the prices

collected daily.

3.5 HMM Prediction

Once the observable and hidden states were defined, the model was implemented in MATLAB. The algo-

rithm is presented in pseudo code below :

Load data

Get observed sequence and hidden sequence given the data

Get model :

- Estimate the transition and emission matrix with the MATLAB function hmmestimate()
- Train the model with the MATLAB function hmmtrain()

For each upcoming Month :

- Make a prediction using the model and the function hmmviterbi()

4 RESULTS AND DISCUSSION

We chose the true values of maize prices in ” Grand Market of Lome ” fron January 2015 to December
2021 yielding 84 months of observations. In this model, we have three states, on the assumption that the
state space is S = (S1, S2, S3) where S1 = Increasing, S2 = Decreasing and S3 = Unchanged.

Transition Matrix
To find the price movement, we need to find the state transition probability by calculating the number of
months that both month day and second month are increasing, we could find the probability from Increas-
ing to Increasing. Then we get the number of months that first month is Decreasing and second month is

Decreasing, and Unchanged; we could find the probability from Decreasing to Decreasing and Unchanged
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to Unchanged. To finish we get the number of months that first month is Decreasing and second month is
Increasing, we get the number of months that first month is Increasing and second month is Decreasing, we
get the number of months that first month is Decreasing and second month is Unchanged and we get the
number of months that first month is Unchanged and second month is Decreasing.
S1=81=064;5 = 5=034;5 = 53=0.02
S =5=05;85=95,=047;5,=53=0.03
S3=83=025;85;=5,=075;85,=95,=0
we get the transition matrix as follows :
1 D U
I (064 034 0.02
A= D| 047 0.50 0.03
u\075 0 025

The explanation ce can have of the transition matrix is that , we have 64% chance that the price of
Maize will increase next month if this month it has Increase; 34% chance that the price of Mais Decrease
next month if this month it has Increase; 2% chance that the Corn price will remain Unchanged next month
if this month it has Increase.

47% chance that the price of Maize will Increase next month if this month it has Decrease; 50% chance that
the price of But Decrease next month if this month it has Decrease; 3% chance that the price of Mais will
remain Unchanged next month if this month it has Decrease

75% chance that the price of Maize will Increase next month if this month remains Unchanged from the
month it preceded, 0% chance that the price of Maize Decrease next month if this month is remains Un-
changed from previous month, 25% chance that Maize price will remain Unchanged next month if this
month remained Unchanged from previous month.

From this Transition matrix we have we can easily make his flow diagram who is just below, Fig 2

0.34

0.64 Decrease 0.50

Unchanged

0.25

Figure 2: Diagram of Transition Matrix

Emission probabilities
To find the emission probabilities or observable state matrix we need to find the Mean deplacement. We

will define our Mean displacement like :

126


admin
Text Box
126

admin
Text Box
Marc Marin Agbodjan et al. / IJMTT, 68(6), 117-130, 2022



Marc Marin Agbodjanetal. / 1IJMTT,68(6),117-130,2022

Histogram of Maize price evolution

Moderate

Low

Density

_ High

N

[ I I I I I I
140 160 180 200 220 240 280

0.000 0.005 0.010 0.015

Maize price

From [126 — 149] the observation is Low (L), between [150 — 180] the observation is Moderate (M) and
finally, from [181 —267] the observation is High (H). From this we have our emission probabilities as :
bs, (L) =0.23, bs, (M) =0.52, bs,(H) = 0.25
bs, (L) = 0.34, bg (M) = 0.53, bs,(H) = 0.13
bs,(L)=0.5,bs,(M)=0.5,bs,(H) =0
we get our Emission matrix as :
L M H
I (023 052 0.25
B= D| 034 053 0.13

U\050 050 O
The initial state distribution (7) is also define as :

7 = (0.57,0.38,0.05).
The model of our HMM is define by : A = (A, B, )

From this Observable state matrix we have we can easily make his flow diagram who is just below,

0.34

Moderate (0.52) [¢—— Increase Decrease ——»{ Moderate (0.53)
-—
B I

| TN

Low (0.23)

Unchanged

Cm g N T

Figure 3: Diagram of HMM

Prediction
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This section shows how to analyze hidden Markov models; and to analyse we need :

(1) To Generate a Test Sequence

(2) To Estimate the State Sequence

(3) To Estimate Posterior State Probabilities
(4) To Change the Initial State Distribution

(5) To Estimate Transition and Emission Matrices

To generate a random sequence of states and emissions from the model, we use in matlab hmmgenerate:
[seq,states] = hmmgenerate(T,TRANS,EMIS). The input T is the length, TRANS the transition matrix and
EMIS the Emission probability. The output seq is the sequence of emissions and the output states is the
sequence of states; hmmgenerate begins in state 1 at step 0, makes the transition to state il at step 1, and
returns il as the first entry in states. In our work i choose T = 20, so the Output of few randomly generated
sequences and states is given below:

Sequences: L—->H—>M—>M—>M—>H->H->H—>L—>L->H—->M—>L—>M—>
M—>L—>L—>L—->L-—>H

States : | —>2—>2—>1->2—->1->2—->1->1->2—->1->2—->3—->1->1—->2—>
2—>2—->1->1

The Forward-Backward algorithm gives us the most probable state at each position in the sequence of
symbols For example, we can say that state 1 is the most likely to generate the initial symbol L of the
sequence O(20) because it has the probability at time = 1 ("¥%(1) = 0.56694).

Applying the Baum-Welch algorithm is a bit more complex. Our goal is to reestimate the parameters of
this model from the EM algorithm. To do this, we will first use the functions hmmestimate or hmmtrain
to estimate the transition and emission matrices A and B given a sequence seq of emissions.

The function hmmestimate requires that you know the sequence of states that the model went through to
generate seq. The following takes the emission and state sequences and returns estimates of the transition
and emission matrices:

[A, B] = hmmestimate(seq, states) . From that we have then :

033 067 0 0.30 0.30 0.40
0.56 0.33 0.11 and B= 1045 033 022

1 0 0 1 0 0
By comparing the outputs with the original transition and emission matrices, TRANS and EMIS, we can

A

easily see that there is a big difference and that there is no real convergence... Let’s try in a second step
to generate 100 observation sequences and 1000 with the hmmgenerate function and then re-estimate the
transition and emission matrices.

With [seq,states] = hmmgenerate(100,A,B) we have then :

0.58 0.40 0.02 0.16 0.54 0.30
A= 1037 0.59 0.04 and B=1032 053 0.15
1 0 0 0.67 033 0

With [seq,states] = hmmgenerate(1000,A,B) we have then :
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0.65 0.32 0.03 024 0.51 0.25
A= 1046 0.52 0.02 and B=1036 051 0.13
064 0 0.36 05 05 0

We can first notice that the results obtained are better for 1000 simulations, so the re-estimates converge
better when there are more observations... The parameters that we tried to estimate with the sequence O(20)
did not converge to the true values. Therefore, in order to illustrate the proper functioning of this algorithm,
we must simulate at least 1000 observable symbols.

Viterbi algorithm determine the most likely state sequence to generate the observable symbol sequence.
To generate the symbol sequence O(20) = L- H- M- M- M- H- H- H- L- L- H- M- L- M- M- L- L- L- L-
H, it is more likely to initially start from state y; = 1 then go to state y, = 2 , so immediately, and ending
at time T = 20 in state y,0 = 1 (1-2-2-1-2-1-2-1-1-2-1-2-3-1-1-2-2-2-1-1) and in this case, the most likely

sequence of states agrees with the sequence 56.30% of the time.

S CONCLUSION

During this thesis, we have presented the notion of MMC as a possible extension of Markov chains, a notion
capable of expressing systems more complex dependencies. It has been explained that this dependence
comes from the fact that each state of the chain is linked to a law of probability, which allows to send the
symbols. Understanding MMC:s is simplified by the way the parameters of the model are built. Algorithms
for making inference on MMCs have been coded on MATLAB from the recursive formulas obtained in
the development of Chapter 3. This increases the flexibility of the parameterization of MMCs because
the mathematical indexing is slight and the majority of the formulas developed are often reduced to mere
sums. This way coding in MATLAB is much simplified. We used the Forward-Backward algorithm and the
Viterbi algorithm to to evaluate and provide information on the difference between the states of the model to
from a sequence of observed symbols. Thanks to the results obtained in the chapter 4, we could indeed see
that over time, certain states are more likely than others to generate symbols. Finally, we were also able to
understand how the Baum-Welch algorithm works. The latter, which was used for the re-estimation and the
adjustment of the parameters of the model from an observed sequence of symbols, allowed us to observe
that it strongly depends on the number of data (symbols of states). It was indeed possible to illustrate from a
long sequence of symbols (1000 symbols), that there is a convergence of the parameters re-estimated by this
algorithm. Our Research did not predict the price of our commodities exactly but predicted with probability
that it could be the next state (Increase,Decrease,Unchanged) knowing the current state with other auxiliary

observations, like what the possibility that the state either (Low, Moderate or High) .
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