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Abstract - This paper studies the existence of chaos in a class of Nearest Neighbor Coupled Mapping Lattice (NNCML). Prove 

that NNCML is chaotic in the sense of Li-Yorke or both Li-Yorke and Devaney by employing the coupled-expanding theory. At 

the end, two illustrative examples are provided. 
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1. Introduction  

It has been found that chaos is not only challenging in mathematics theory and engineering technology, but also has a very 

broad prospect in the application of biological intelligence [1], computer hardware [2], communication systems [3], and other 

high and new technologies. As a typical class of discrete spatiotemporal systems, CML has been widely studied in application, 

synchronization and controlling chaos, etc. (see [4-7] and the references therein). The existence of Li-Yorke chaos of CML was 

investigated in recent years. In 2003, Zheng and Liu proved the existence of nonlinear solutions with time periods in one-

dimensional nearest neighbor coupled mapping lattices (NNCMLs). In 2007, Tian and Chen studied some sufficient conditions 

of Li-Yorke chaos in NNCML [8]. In 2011, Khellat et al. studied chaotic synchronization by analyzing Lyapunov exponents of 

a class of CML [9]. In 2019, Nag and Poria proved that globally CML with delays is Li-Yorke chaos [10]. Recently, Liang et al. 

studied the chaotification of first-order partial difference equations (i.e., a special CML) and proved that it is chaotic in the 

sense of Li-Yorke or Devaney [11-14]. 

To the best of our knowledge, there are few results such that the NNCML system is chaotic either in the sense of Li-Yorke 

or both Li-Yorke and Devaney. This fact motivates us to explore mathematically the existence of chaos in the NNCML system. 

In this paper, the dynamical equation of NNCML is described as follows: 

𝑥(𝑛 + 1,𝑚) = (1 − 𝜀)𝑓(𝑥(𝑛,𝑚)) + 0.5𝜀 (𝑓(𝑥(𝑛,𝑚 − 1)) + 𝑓(𝑥(𝑛,𝑚 + 1)))                                        (1) 

where 𝑛 ≥ 0 is the time step,  𝑚 is the lattice point with 𝑚 = 1,2,⋯ ,𝑁, 𝑁 is the number of the sites in the NNCML,  𝜀 ∈ [0,1] 
is the coupled strength, and 𝑓: 𝑅 → 𝑅 is a function. 

2. Preliminaries  

In this section, definition of coupled-expanding map and two criteria of chaos induced by coupled-expanding maps are 

introduced. 

Definition 1 [15]. Let (𝑋, 𝑑) be a metric space and 𝑓:𝐷 ⊂ 𝑋 → 𝑋  a map. If there exist 𝑚 ≥ 2 subsets  𝑉𝑖(1 ≤ 𝑖 ≤
𝑚) of D with 𝑉𝑖 ∩ 𝑉𝑗  =  𝜕𝐷 𝑉𝑖 ∩ 𝜕𝐷𝑉𝑗  for each pair of (𝑖, 𝑗), 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚, such that 

𝑓(𝑉𝑖) ⊃∪𝑗=1
𝑚 𝑉𝑗 ,    1 ≤ 𝑖 ≤ 𝑚,   

where 𝜕𝐷 𝑉𝑖 is the relative boundary of  𝑉𝑖 with respect to D, then 𝑓 is said to be a coupled- expanding map in  𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑚. 

Further, the map f is said to be a strictly coupled- expanding map in  𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑚., if  𝑑(𝑉𝑖,  𝑉𝑗) > 0, for all  1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚. 

Lemma 1 [16]. Let (𝑋, 𝑑)  be a metric space and 𝑉𝑖(1 ≤ 𝑖 ≤ 𝑚) disjoint compact sets of  𝑋. If a continuous map 𝑓:𝐷 ≡
∪𝑗=1
𝑚 𝑉𝑗 → 𝑋, is a strictly coupled-expanding map in 𝑉𝑗,1 ≤ 𝑗 ≤ 𝑚 ,then 𝑓 is chaotic in the sense of Li-Yorke.  
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Lemma 2 [17,18]. Let (𝑋, 𝑑) be a complete metric space and 𝑓: 𝐷 ⊂ 𝑋 → 𝑋 a map. Assume that there exist 𝑘 disjoint bounded 

and closed subsets 𝑉𝑖 of D, 1 ≤ 𝑖 ≤ 𝑘, such that 𝑓 is continuous in ∪𝑖=1
𝑁 𝑉𝑖 and satisfies 

(i) 𝑓 is strictly coupled-expanding in 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑘; 

(ii) there exists a constant 𝜆 > 1 such that 

𝑑(𝑓(𝑥), 𝑓(𝑦)) > 𝜆𝑑(𝑥, 𝑦),          ∀𝑥, 𝑦 ∈ 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑘 

Then,  𝑓 has an invariant   Cantor set 𝑉 ⊂∪𝑖=1
𝑁 𝑉𝑖  such that 𝑓: 𝑉 → 𝑉 is topologically conjugate  to the subshift   ∑𝑘

+ →
  ∑𝑘

+.Consequently, 𝑓 is chaotic on 𝑉 in the sense of Devaney as well as Li-Yorke. 

The following periodic boundary condition is imposed to (1): 

𝑥(𝑛, 0) = 𝑥(𝑛, 𝑁),   𝑥(𝑛, 𝑁 + 1) = 𝑥(𝑛, 1)， 𝑛 ≥ 0.                                                            (2)                                           

For any given initial condition, 𝑥(0,𝑚) = 𝜙(𝑚), 1 ≤ 𝑚 ≤ 𝑁, where 𝜙 satisfies (2). Eq.  (1) has a unique solution 

satisfying the initial condition and the boundary condition (2). 

Let 𝑥𝑛 = (𝑥(𝑛, 1), 𝑥(𝑛, 2),⋯𝑥(𝑛, 𝑁))
𝑇
, then (1) with (2) can be written as 

𝑥𝑛+1 = 𝐹(𝑥𝑛),   𝑛 ≥ 0,                                                                                           (3) 

Where 

𝐹(𝑥𝑛) =

(

  
 

(1 − 𝜀)𝑓(𝑥(𝑛, 1)) + 0.5𝜀 (𝑓(𝑥(𝑛, 𝑁)) + 𝑓(𝑥(𝑛, 2)))

(1 − 𝜀)𝑓(𝑥(𝑛, 2)) + 0.5𝜀 (𝑓(𝑥(𝑛, 0)) + 𝑓(𝑥(𝑛, 3)))

⋮

(1 − 𝜀)𝑓(𝑥(𝑛, 𝑁)) + 0.5𝜀 (𝑓(𝑥(𝑛, 𝑁 − 1)) + 𝑓(𝑥(𝑛, 1))))

  
 
.                                          (4) 

System (3) is called a induced system by (1) with (2). 

Definition 2 [19]. Equation (1) with (2) is said to be chaotic in the sense of   Devaney (or Li-Yorke) on 𝑉 ⊂ 𝑅𝑁 if its induced 

system (3) is chaotic in the sense of Devaney (or Li-Yorke) on  𝑉. 

3. Existence of Chaos in (1) 
 In this section, we establish two criteria of Li-Yorke and Devaney chaos for (1) in the two cases of 0 ≤ ε < 1 and ε = 1.  

Theorem 1 (𝟎 ≤ 𝛆 < 𝟏). Consider (1) with (2). Assume that 

(i) 𝑓(0) = 0  and there exist positive constants 𝑟 and 𝐿, such that 

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿|𝑥 − 𝑦|,       ∀𝑥, 𝑦 ∈ [−𝑟, 𝑟];                                                            (5)                     

(ii)  there exist constants a, b, c, d with−𝑟 < 𝑎 < 0 < 𝑏 < 𝑐 < 𝑑 < 𝑟, such that 

𝑓(𝑎) ∙ 𝑓(𝑏) < 0, 𝑓(𝑐) ∙ 𝑓(𝑑) < 0,   |𝑓(𝑗)| > 𝜇, 𝑗 = 𝑎, 𝑏, 𝑐, 𝑑,                                                      (6) 

where  𝜇 = max{|𝑎|, 𝑏}. 

Then for any 𝜀 satisfying 

0 ≤ 𝜀 ≤
𝜇 − 𝛾

𝜇(1 + 𝐿)
, 

where 𝛾 = min{|𝑎|, 𝑏}, there exists a Cantor set Λ ⊂ [𝑎, 𝑏]𝑁 ∪ [𝑐, 𝑑]𝑁 such that (1) is chaotic onΛ in the sense of Li-Yorke. 

Furthermore, suppose that 

(iii) there exist constants 𝜆 > 1 such that 

|𝑓(𝑥) − 𝑓(𝑦)| ≥ 𝜆|𝑥 − 𝑦|,       ∀𝑥, 𝑦 ∈ [𝑎, 𝑏] ∪ [𝑐, 𝑑].                                                  (7) 

then for any 𝜀 satisfying 
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0 ≤ 𝜀 ≤ min {
𝜇 − 𝛾

𝜇(1 + 𝐿)
,
𝜆 − 1

𝜆 + 𝐿
}, 

there exists a Cantor set  Λ1 ⊂ [𝑎, 𝑏]
𝑁 ∪ [𝑐, 𝑑]𝑁, such that (1) is chaotic on  Λ1  in the sense of both Li-Yorke and Devaney. 

Proof. Lemmas 1 and 2 are used to prove the theorem. 

 Set 

V1 = [𝑎, 𝑏]
𝑁,    V2 = [𝑐, 𝑑]

𝑁, 

then V1, V2 ⊂ [−𝑅, 𝑅]
𝑁, V1 and  V2 are compact sets, and 

d(V1, V2) = inf{||𝑥 − 𝑦||: 𝑥 ∈ V1, 𝑦 ∈ V2} = 𝑐 − 𝑏 > 0. 

Now, we prove that 𝐹 satisfies all the assumptions of Lemmas 1 and 2 on V1 and  V2. The whole proof is divided into two parts. 

Step 1. 𝐹 is strictly coupled-expanding in V1 and  V2. 

By assumption (ii), there are four cases. 𝐶𝑎𝑠𝑒 𝐼: 𝑓(𝑎) < −𝜇, 𝑓(𝑏) > 𝜇, 𝑓(𝑐) < −𝜇, 𝑓(𝑑) > 𝜇;  𝐶𝑎𝑠𝑒 𝐼𝐼: 𝑓(𝑎) > 𝜇, 𝑓(𝑏) <

−𝜇, 𝑓(𝑐) > 𝜇, 𝑓(𝑑) < −𝜇;  𝐶𝑎𝑠𝑒 𝐼𝐼𝐼: 𝑓(𝑎) < −𝜇, 𝑓(𝑏) > 𝜇, 𝑓(𝑐) > 𝜇, 𝑓(𝑑) < −𝜇;  𝐶𝑎𝑠𝑒 𝐼𝑉: 𝑓(𝑎) > 𝜇, 𝑓(𝑏) < −𝜇, 𝑓(𝑐) <

−𝜇, 𝑓(𝑑) > 𝜇.  Next, we will prove that (1) is Li-Yorke chaos in this four cases. 

𝐂𝐚𝐬𝐞 𝐈: 𝑓(𝑎) < −𝜇, 𝑓(𝑏) > 𝜇, 𝑓(𝑐) < −𝜇, 𝑓(𝑑) > 𝜇; 

 For each 𝑥 ∈ V1 with 𝑥(𝑖) = 𝑎, 𝑖 = 1,2,⋯ ,𝑁, it follows from (2) and (5) that 

𝐹𝑖(𝑥) = (1 − 𝜀)𝑓(𝑎) + 0.5𝜀 (𝑓(𝑥(𝑖 − 1)) + 𝑓(𝑥(𝑖 + 1))) 

                                                             ≤ (1 − 𝜀)𝑓(𝑎) + 𝜀𝐿𝑚𝑎𝑥{|𝑎|, 𝑏}                                                                        (8) 

                                                             < −(1 − 𝜀)𝜇 + 𝜀𝐿𝜇 ≤ 𝑎;              

and for each 𝑥 ∈ V1 with 𝑥(𝑖) = 𝑏, 𝑖 = 1,2,⋯ ,𝑁, (2) and (5) yields that 

𝐹𝑖(𝑥) ≥ (1 − 𝜀)𝑓(𝑏) − 𝜀𝐿𝑚𝑎𝑥{|𝑎|, 𝑏} > (1 − 𝜀)𝜇 − 𝜀𝐿𝜇 ≥ 𝑑.                                   (9) 

For each 𝑥 ∈ V2 with 𝑥(𝑖) = 𝑐, 𝑖 = 1,2,⋯ ,𝑁, by (2) and (5), 

𝐹𝑖(𝑥) ≤ (1 − 𝜀)𝑓(𝑐) + 𝜀𝐿𝑑 < −(1 − 𝜀)𝜇 + 𝜀𝐿𝜇 ≤ 𝑎;                                      (10) 

and for each 𝑥 ∈ V2 with 𝑥(𝑖) = 𝑑, 𝑖 = 1,2,⋯ ,𝑁,one has 

𝐹𝑖(𝑥) ≥ (1 − 𝜀)𝑓(𝑑) − 𝜀𝐿𝑑 > (1 − 𝜀)𝜇 − 𝜀𝐿𝜇 ≥ 𝑑.                                         (11) 

It follows from the assumption (i) that 𝐹 is continuous in V1 ∪ V2. By the intermediate value 

theorem and (8) - (11), one has  𝐹(Vi) ⊃ V1 ∪ V2 for  𝑖 = 1, 2. 

𝐂𝐚𝐬𝐞 𝐈𝐈: 𝑓(𝑎) > 𝜇, 𝑓(𝑏) < −𝜇, 𝑓(𝑐) > 𝜇, 𝑓(𝑑) < −𝜇; 

For each 𝑥 ∈ V1 with 𝑥(𝑖) = 𝑎, 𝑖 = 1,2,⋯ ,𝑁 it follows from (2) and (5) that 

𝐹𝑖(𝑥) > (1 − 𝜀)𝜇 − 𝜀𝐿𝜇 ≥ 𝑑;                                                                         (12) 

and for each 𝑥 ∈ V1 with 𝑥(𝑖) = 𝑏, 𝑖 = 1,2,⋯ ,𝑁, 

𝐹𝑖(𝑥) < −(1 − 𝜀)𝜇 + 𝜀𝐿𝜇 ≤ 𝑎.                                                                   (13) 

For each 𝑥 ∈ V2 with 𝑥(𝑖) = 𝑐, 𝑖 = 1,2,⋯ ,𝑁, 

   𝐹𝑖(𝑥) > (1 − 𝜀)𝜇 − 𝜀𝐿𝜇 ≥ 𝑑;                                                                    (14) 

and for each 𝑥 ∈ V2 with 𝑥(𝑖) = 𝑑, 𝑖 = 1,2,⋯ ,𝑁, 

𝐹𝑖(𝑥) < −(1 − 𝜀)𝜇 + 𝜀𝐿𝜇 ≤ 𝑎.                                                                 (15) 

By the continuity of  𝐹 in V1 ∪ V2, (12) - (15), and the intermediate value theorem, one has𝐹(Vi) ⊃ V1 ∪ V2 for  𝑖 = 1, 2. 
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𝐂𝐚𝐬𝐞 𝐈𝐈𝐈: 𝑓(𝑎) < −𝜇, 𝑓(𝑏) > 𝜇, 𝑓(𝑐) > 𝜇, 𝑓(𝑑) < −𝜇. In this case, 𝐹 satisfies (8), (9), (14) and (15). Hence,  𝐹(Vi) ⊃ V1 ∪ V2 

for  𝑖 = 1, 2. 

𝐂𝐚𝐬𝐞 𝐈𝐕: 𝑓(𝑎) > 𝜇, 𝑓(𝑏) < −𝜇, 𝑓(𝑐) < −𝜇, 𝑓(𝑑) > 𝜇.  In this case, F satisfies (10) -(13). With a similar discussion to Cases I 

and II, we have   𝐹(Vi) ⊃ V1 ∪ V2 for  𝑖 = 1, 2. 

By the above discussion,  𝐹 is strictly coupled-expanding in V1 and V2. Therefore, by Lemma 1, (1) with (2) is chaotic in the 

sense of Li-Yorke. 

Step 2. There exists (1 − 𝜀)𝜆 − 𝜀𝐿 > 1, such that 

||𝐹(𝑥) − 𝐹(𝑦)|| ≥ ((1 − 𝜀)𝜆 − 𝜀𝐿)||𝑥 − 𝑦||,   ∀𝑥, 𝑦 ∈ 𝑉𝑖 , 𝑖 = 1, 2 

It follows from  ||𝑥 − 𝑦|| = max{|𝑥(𝑖) − 𝑦(𝑖)|, 𝑖 = 1, 2,⋯ ,𝑁}  that there exists a constant, 𝑘 ∈ {𝑖 = 1, 2,⋯ ,𝑁},  

such that 

||𝑥 − 𝑦|| = |𝑥(𝑘) − 𝑦(𝑘)|.                                                                           (16) 

Therefore, by (5), (7) and (16), for all  𝑥, 𝑦 ∈ 𝑉1  and  𝑥, 𝑦 ∈ 𝑉2, one has 

    ||𝐹(𝑥) − 𝐹(𝑦)|| = max{|𝐹𝑖(𝑥) − 𝐹𝑖(𝑦)|, 𝑖 = 1, 2,⋯ ,𝑁} 

= max {|(1 − 𝜀) (𝑓(𝑥(𝑖)) − 𝑓(𝑦(𝑖))) + 0.5𝜀 (𝑓(𝑥(𝑖 − 1)) − 𝑓(𝑦(𝑖 − 1)) + 𝑓(𝑥(𝑖 + 1)) − 𝑓(𝑦(𝑖 + 1)))| , 𝑖 = 1, 2,⋯ ,𝑁} 

≥ (1 − 𝜀)|𝑓(𝑥(𝑘)) − 𝑓(𝑦(𝑘))| − 0.5𝜀|𝑓(𝑥(𝑘 − 1)) − 𝑓(𝑦(𝑘 − 1))| − 0.5𝜀|𝑓(𝑥(𝑘 + 1)) − 𝑓(𝑦(𝑘 + 1))| 

≥ (1 − 𝜀) 𝜆|𝑥(𝑘) − 𝑦(𝑘)| − 0.5𝜀𝐿|𝑥(𝑘 − 1) − 𝑦(𝑘 − 1)| − 0.5𝜀𝐿|𝑥(𝑘 + 1) − 𝑦(𝑘 + 1)| 

≥ (1 − 𝜀) 𝜆||𝑥 − 𝑦|| − 𝜀𝐿||𝑥 − 𝑦|| 

= ((1 − 𝜀)𝜆 − 𝜀𝐿)||𝑥 − 𝑦||.    

Note that (1 − 𝜀)𝜆 − 𝜀𝐿 > 1. 

Together with the proof of Step 1, 𝐹 satisfies all the assumptions of Lemma 2. Hence, (1) with (2) is chaotic in the sense of 

both Li-Yorke and Devaney. The entire proof is complete. 

Theorem 2 (ε = 1). Suppose that 𝑓 satisfies the assumption (𝑖) of Theorem 1, and there exist constants a, b, c, d with −𝑟 <

𝑎 < 0 < 𝑏 < 𝑐 < 𝑑 < 𝑟,  such  that 

𝑓(𝑎) ∙ 𝑓(𝑏) < 0, 𝑓(𝑐) ∙ 𝑓(𝑑) < 0,   |𝑓(𝑗)| > (2 + 𝐿)𝜇. 

Then there exists a Cantor set   𝛬2 ⊂ [𝑎, 𝑏]
𝑁 ∪ [𝑐, 𝑑]𝑁, such that (1) is chaotic in the sense of Li-Yorke. 

Proof. The proof is similar to that of Theorem 1. The differences are as follows. 

𝐂𝐚𝐬𝐞 𝐈: 𝑓(𝑎) < −(2 + 𝐿)𝜇, 𝑓(𝑏) > (2 + 𝐿)𝜇, 𝑓(𝑐) < −(2 + 𝐿)𝜇, 𝑓(𝑑) > (2 + 𝐿)𝜇;    

For each 𝑥 ∈ V1 with 𝑥(𝑖 − 1) = 𝑎, 𝑖 = 1,2,⋯ ,𝑁, it follows from (2) and (5) that 

𝐹𝑖(𝑥) = 0.5𝑓(𝑎) + 0.5𝑓(𝑥(𝑖 + 1)) ≤ 0.5𝑓(𝑎) + 0.5𝐿𝑚𝑎𝑥{|𝑎|, 𝑏} 

< −0.5(2 + 𝐿)𝜇 + 0.5𝐿𝜇 = −𝜇 ≤ 𝑎;                                                                       (17) 

and for each 𝑥 ∈ V1 with 𝑥(𝑖 − 1) = 𝑏, 𝑖 = 1,2,⋯ ,𝑁 one has 

𝐹𝑖(𝑥) ≥ 0.5𝑓(𝑏) − 0.5𝐿𝑚𝑎𝑥{|𝑎|, 𝑏} > 0.5(2 + 𝐿)𝜇 − 0.5𝐿𝜇 = 𝜇 ≥ 𝑑.                                (18) 

For each 𝑥 ∈ V2 with 𝑥(𝑖 − 1) = 𝑐, 𝑖 = 1,2,⋯ ,𝑁, by (2) and (5), 
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Fig. 1 2-D and 3-D computer simulations for system (1) with (2), where 𝐧 = 𝟎, 𝟏,⋯ , 𝟐𝟎𝟎𝟎𝟎.  In the 2-D graphs, 𝐍 = 𝟐, the initial value is taken as  

𝐱(𝟏) = 𝟎. 𝟏 and  𝐱(𝟐) = 𝟎. 𝟐. In the 3-D graphs, 𝐍 = 𝟑,  the initial value is 𝐱(𝟏) = 𝟎. 𝟏, 𝐱(𝟐) = 𝟎. 𝟐, 𝐱(𝟑) = 𝟏. 

𝐹𝑖(𝑥) ≤ 0.5𝑓(𝑐) + 0.5𝐿𝑑 < −0.5(2 + 𝐿)𝜇 + 0.5𝐿𝜇 = −𝜇 ≤ 𝑎;                                     (19) 

and for each 𝑥 ∈ V2 with 𝑥(𝑖 − 1) = 𝑑, 𝑖 = 1,2,⋯ ,𝑁, 

𝐹𝑖(𝑥) ≥ 0.5𝑓(𝑑 ) − 0.5𝐿𝑑 > 0.5(2 + 𝐿)𝜇 − 0.5𝐿𝜇 = 𝜇 ≥ 𝑑.                                       (20) 

By the intermediate value theorem and (17) - (20), one has 𝐹(Vi) ⊃ V1 ∪ V2 for  𝑖 = 1, 2. 

For the other three cases, we can similarly prove that 𝐹(Vi) ⊃ V1 ∪ V2 for  𝑖 = 1, 2. 

In summary, 𝐹 satisfies all the assumptions of Lemma 1. So, (1) is Li-Yorke chaos. 

Remark 1. In the cases of  𝜀 = 1, we can’t be sure that (1) is chaotic in the sense of Devaney or not. 

4. Examples 
In this section, two examples are discussed with computer simulations. 

  
Example 4.1. Consider the NNCML (1) with (2), where 

𝑓(𝑥) = {−
1

3
𝑥3 + 4𝑥,   − 4 ≤ 𝑥 ≤ 4

4𝑠𝑖𝑛𝑥,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Obviously, 𝑓(0) = 0, 𝑓(−1.2) ∙ 𝑓(1.8) < 0, 𝑓(2.1) ∙ 𝑓(3.9) < 0. Therefore, 𝑓 satisfies assumptions (i) and (ii) of Theorem 1 

with 𝑟 = 4, 𝑎 = −1.2, 𝑏 = 1.8, 𝑐 = 2.1, 𝑑 = 3.9, and 𝐿 = 12. Thus, by Theorem 1, for any constants 𝜀 < 0.053, there exists a 

Cantor set 𝛬 ⊂ [−1.2, 1.8]𝑁 ∪ [2.1, 3.9]𝑁 such that (1) is chaotic on Λ in the sense of Li-Yorke. 

For computer simulation, we take 𝑁 = 2, 3 and 𝜀 = 0.03,0.05, respectively. The simulation results in the two-dimensional 
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space (𝑥(∙ ,1), 𝑥(∙ ,2)), and three-dimensional space (𝑥(∙ ,1), 𝑥(∙ ,2), 𝑥(∙ ,3))  are shown in Fig.1, which indicates that (1) has 

very complicated dynamical behaviors on Λ. 

 

 

Fig. 2 Simulations for (1) with (2), where e 𝐧 = 𝟎, 𝟏,⋯ , 𝟐𝟎𝟎𝟎𝟎. In the 2-D graphs, 𝐍 = 𝟐, the initial value is taken as 𝐱(𝟏) = 𝟎. 𝟏 and  𝐱(𝟐) = 𝟎. 𝟐. In 

the 3-D graphs, 𝐍 = 𝟑,  the initial value is 𝐱(𝟏) = 𝟎. 𝟏, 𝐱(𝟐) = 𝟎. 𝟐, 𝐱(𝟑) = 𝟏. 
 

Example 4.2. Consider the NNCML (1) with (2), where 

𝑓(𝑥) = 5.7 sin 𝑥. 

Obviously, 𝑓(0) = 0, 𝑓 (−
𝜋

4
) ∙ 𝑓 (

𝜋

4
) < 0, 𝑓 (

3𝜋

4
) ∙ 𝑓 (

5𝜋

4
) < 0.  Therefore, f  \satisfy all the assumptions of Theorem 1 with 

𝑟 = 3𝜋, 𝑎 = −
𝜋

4
, 𝑏 =

𝜋

4
, 𝑐 =

3𝜋

4
, 𝑑 =

5𝜋

4
, 𝜆 = 4.03,  and 𝐿 = 5.7.  Thus, by Theorem 1, for any constant 𝜀 ≤ 0.119, there 

exists a Cantor set 𝛬 ⊂ [−
𝜋

4
,
𝜋

4
]
𝑁

∪ [
3𝜋

4
,
5𝜋

4
]
𝑁

 such that (1) is chaotic on 𝛬 in the sense of both Li-Yorke and Devaney.  

For computer simulation, we take 𝑁 = 2, 3 and 𝜀 = 0.02, 0.1, respectively. The simulation results are shown in Fig.2. 
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