Original Article

Existence of Chaos in the Nearest Neighbors Coupled Map Lattices

Yadan Yu

School of Mathematics and Information Science, Henan Polytechnic University, Henan, China

Received: 04 May 2022 Revised: 17 June 2022 Accepted: 26 June 2022 Published: 30 June 2022

Abstract - This paper studies the existence of chaos in a class of Nearest Neighbor Coupled Mapping Lattice (NNCML). Prove that NNCML is chaotic in the sense of Li-Yorke or both Li-Yorke and Devaney by employing the coupled-expanding theory. At the end, two illustrative examples are provided.

Keywords - Chaos, Coupled-expansion theory, Coupled map lattice.

1. Introduction

It has been found that chaos is not only challenging in mathematics theory and engineering technology, but also has a very broad prospect in the application of biological intelligence [1], computer hardware [2], communication systems [3], and other high and new technologies. As a typical class of discrete spatiotemporal systems, CML has been widely studied in application, synchronization and controlling chaos, etc. (see [4-7] and the references therein). The existence of Li-Yorke chaos of CML was investigated in recent years. In 2003, Zheng and Liu proved the existence of nonlinear solutions with time periods in one-dimensional nearest neighbor coupled mapping lattices (NNCMLs). In 2007, Tian and Chen studied some sufficient conditions of Li-Yorke chaos in NNCML [8]. In 2011, Khellat et al. studied chaotic synchronization by analyzing Lyapunov exponents of a class of CML [9]. In 2019, Nag and Poria proved that globally CML with delays is Li-Yorke chaos [10]. Recently, Liang et al. studied the chaotification of first-order partial difference equations (i.e., a special CML) and proved that it is chaotic in the sense of Li-Yorke or Devaney [11-14].

To the best of our knowledge, there are few results such that the NNCML system is chaotic either in the sense of Li-Yorke or both Li-Yorke and Devaney. This fact motivates us to explore mathematically the existence of chaos in the NNCML system. In this paper, the dynamical equation of NNCML is described as follows:

$$x(n+1,m) = (1-\varepsilon)f(x(n,m)) + 0.5\varepsilon \left(f(x(n,m-1)) + f(x(n,m+1))\right)$$
(1)

where $n \ge 0$ is the time step, *m* is the lattice point with $m = 1, 2, \dots, N, N$ is the number of the sites in the NNCML, $\varepsilon \in [0,1]$ is the coupled strength, and $f: R \to R$ is a function.

2. Preliminaries

In this section, definition of coupled-expanding map and two criteria of chaos induced by coupled-expanding maps are introduced.

Definition 1 [15]. Let (X, d) be a metric space and $f: D \subset X \to X$ a map. If there exist $m \ge 2$ subsets $V_i (1 \le i \le m)$ of D with $V_i \cap V_j = \partial_D V_i \cap \partial_D V_j$ for each pair of $(i, j), 1 \le i \ne j \le m$, such that $f(V_i) \supset \bigcup_{j=1}^m V_j, \quad 1 \le i \le m$,

where $\partial_D V_i$ is the relative boundary of V_i with respect to D, then f is said to be a coupled- expanding map in V_i , $1 \le i \le m$. Further, the map f is said to be a strictly coupled- expanding map in V_i , $1 \le i \le m$., if $d(V_i, V_i) > 0$, for all $1 \le i \ne j \le m$.

Lemma 1 [16]. Let (X, d) be a metric space and $V_i (1 \le i \le m)$ disjoint compact sets of X. If a continuous map $f: D \equiv \bigcup_{i=1}^{m} V_i \to X$, is a strictly coupled-expanding map in $V_j, 1 \le j \le m$, then f is chaotic in the sense of Li-Yorke.

Lemma 2 [17,18]. Let (X, d) be a complete metric space and $f: D \subset X \to X$ a map. Assume that there exist k disjoint bounded and closed subsets V_i of D, $1 \le i \le k$, such that f is continuous in $\bigcup_{i=1}^N V_i$ and satisfies

- (i) f is strictly coupled-expanding in V_i , $1 \le i \le k$;
- (ii) there exists a constant $\lambda > 1$ such that

$$d(f(x), f(y)) > \lambda d(x, y), \qquad \forall x, y \in V_i, \ 1 \le i \le k$$

Then, f has an invariant Cantor set $V \subset \bigcup_{i=1}^{N} V_i$ such that $f: V \to V$ is topologically conjugate to the subshift $\sum_{k=1}^{+} V_k$. $\sum_{k=1}^{+} Consequently, f$ is chaotic on V in the sense of Devaney as well as Li-Yorke.

The following periodic boundary condition is imposed to (1):

$$x(n,0) = x(n,N), \ x(n,N+1) = x(n,1), \ n \ge 0.$$
⁽²⁾

For any given initial condition, $x(0,m) = \phi(m), 1 \le m \le N$, where ϕ satisfies (2). Eq. (1) has a unique solution satisfying the initial condition and the boundary condition (2).

Let $x_n = (x(n, 1), x(n, 2), \dots x(n, N))^T$, then (1) with (2) can be written as

$$x_{n+1} = F(x_n), \ n \ge 0,$$
 (3)

Where

$$F(x_n) = \begin{pmatrix} (1-\varepsilon)f(x(n,1)) + 0.5\varepsilon \left(f(x(n,N)) + f(x(n,2))\right) \\ (1-\varepsilon)f(x(n,2)) + 0.5\varepsilon \left(f(x(n,0)) + f(x(n,3))\right) \\ \vdots \\ (1-\varepsilon)f(x(n,N)) + 0.5\varepsilon \left(f(x(n,N-1)) + f(x(n,1))\right) \end{pmatrix}.$$
(4)

System (3) is called a induced system by (1) with (2).

Definition 2 [19]. Equation (1) with (2) is said to be chaotic in the sense of Devaney (or Li-Yorke) on $V \subset \mathbb{R}^N$ if its induced system (3) is chaotic in the sense of Devaney (or Li-Yorke) on V.

3. Existence of Chaos in (1)

In this section, we establish two criteria of Li-Yorke and Devaney chaos for (1) in the two cases of $0 \le \varepsilon < 1$ and $\varepsilon = 1$.

Theorem 1 ($0 \le \varepsilon < 1$). Consider (1) with (2). Assume that

(i) f(0) = 0 and there exist positive constants r and L, such that

$$f(x) - f(y)| \le L|x - y|, \quad \forall x, y \in [-r, r];$$

$$\tag{5}$$

(*ii*) there exist constants *a*, *b*, *c*, *d* with -r < a < 0 < b < c < d < r, such that

$$f(a) \cdot f(b) < 0, f(c) \cdot f(d) < 0, \ |f(j)| > \mu, j = a, b, c, d,$$
(6)

where $\mu = \max\{|a|, b\}$.

Then for any ε satisfying

$$0 \le \varepsilon \le \frac{\mu - \gamma}{\mu (1 + L)'}$$

where $\gamma = \min\{|a|, b\}$, there exists a Cantor set $\Lambda \subset [a, b]^N \cup [c, d]^N$ such that (1) is chaotic on Λ in the sense of Li-Yorke. Furthermore, suppose that

(*iii*) there exist constants $\lambda > 1$ such that

$$|f(x) - f(y)| \ge \lambda |x - y|, \quad \forall x, y \in [a, b] \cup [c, d].$$

$$\tag{7}$$

then for any ε satisfying

$$0 \le \varepsilon \le \min\left\{\frac{\mu - \gamma}{\mu(1+L)}, \frac{\lambda - 1}{\lambda + L}\right\}$$

there exists a Cantor set $\Lambda_1 \subset [a, b]^N \cup [c, d]^N$, such that (1) is chaotic on Λ_1 in the sense of both Li-Yorke and Devaney.

Proof. Lemmas 1 and 2 are used to prove the theorem.

Set

$$V_1 = [a, b]^N$$
, $V_2 = [c, d]^N$,

then $V_1, V_2 \subset [-R, R]^N$, V_1 and V_2 are compact sets, and

$$d(V_1, V_2) = \inf\{||x - y|| : x \in V_1, y \in V_2\} = c - b > 0$$

Now, we prove that *F* satisfies all the assumptions of Lemmas 1 and 2 on V_1 and V_2 . The whole proof is divided into two parts. **Step 1.** *F* is strictly coupled-expanding in V_1 and V_2 .

By assumption (ii), there are four cases. *Case I*: $f(a) < -\mu$, $f(b) > \mu$, $f(c) < -\mu$, $f(d) > \mu$; *Case II*: $f(a) > \mu$, $f(b) < -\mu$, $f(c) > \mu$, $f(d) < -\mu$; *Case II*: $f(a) < -\mu$, $f(b) > \mu$, $f(c) > \mu$, $f(d) < -\mu$; *Case IV*: $f(a) > \mu$, $f(b) < -\mu$, $f(c) < -\mu$, $f(d) > \mu$. Next, we will prove that (1) is Li-Yorke chaos in this four cases. **Case I**: $f(a) < -\mu$, $f(b) > \mu$, $f(c) < -\mu$, $f(d) > \mu$;

For each $x \in V_1$ with $x(i) = a, i = 1, 2, \dots, N$, it follows from (2) and (5) that

$$F_{i}(x) = (1 - \varepsilon)f(a) + 0.5\varepsilon \left(f(x(i-1)) + f(x(i+1)) \right)$$

$$\leq (1 - \varepsilon)f(a) + \varepsilon Lmax\{|a|, b\}$$
(8)

 $< -(1-\varepsilon)\mu + \varepsilon L\mu \leq a;$

and for each $x \in V_1$ with $x(i) = b, i = 1, 2, \dots, N$, (2) and (5) yields that

$$F_i(x) \ge (1-\varepsilon)f(b) - \varepsilon Lmax\{|a|, b\} > (1-\varepsilon)\mu - \varepsilon L\mu \ge d.$$
(9)

For each $x \in V_2$ with $x(i) = c, i = 1, 2, \dots, N$, by (2) and (5),

$$F_i(x) \le (1-\varepsilon)f(c) + \varepsilon Ld < -(1-\varepsilon)\mu + \varepsilon L\mu \le a;$$
(10)

and for each $x \in V_2$ with $x(i) = d, i = 1, 2, \dots, N$, one has

$$F_i(x) \ge (1-\varepsilon)f(d) - \varepsilon Ld > (1-\varepsilon)\mu - \varepsilon L\mu \ge d.$$
⁽¹¹⁾

It follows from the assumption (i) that F is continuous in $V_1 \cup V_2$. By the intermediate value

theorem and (8) - (11), one has $F(V_i) \supset V_1 \cup V_2$ for i = 1, 2.

Case II: $f(a) > \mu$, $f(b) < -\mu$, $f(c) > \mu$, $f(d) < -\mu$;

For each $x \in V_1$ with $x(i) = a, i = 1, 2, \dots, N$ it follows from (2) and (5) that

$$F_i(x) > (1 - \varepsilon)\mu - \varepsilon L\mu \ge d; \tag{12}$$

and for each $x \in V_1$ with $x(i) = b, i = 1, 2, \dots, N$,

$$F_i(x) < -(1-\varepsilon)\mu + \varepsilon L\mu \le a. \tag{13}$$

For each $x \in V_2$ with $x(i) = c, i = 1, 2, \dots, N$,

$$F_i(x) > (1 - \varepsilon)\mu - \varepsilon L\mu \ge d; \tag{14}$$

and for each $x \in V_2$ with $x(i) = d, i = 1, 2, \dots, N$,

$$F_i(x) < -(1-\varepsilon)\mu + \varepsilon L\mu \le a. \tag{15}$$

By the continuity of F in $V_1 \cup V_2$, (12) - (15), and the intermediate value theorem, one has $F(V_i) \supset V_1 \cup V_2$ for i = 1, 2.

Case III: $f(a) < -\mu$, $f(b) > \mu$, $f(c) > \mu$, $f(d) < -\mu$. In this case, *F* satisfies (8), (9), (14) and (15). Hence, $F(V_i) \supset V_1 \cup V_2$ for i = 1, 2.

Case IV: $f(a) > \mu$, $f(b) < -\mu$, $f(c) < -\mu$, $f(d) > \mu$. In this case, F satisfies (10) -(13). With a similar discussion to Cases I and II, we have $F(V_i) \supset V_1 \cup V_2$ for i = 1, 2.

By the above discussion, F is strictly coupled-expanding in V_1 and V_2 . Therefore, by Lemma 1, (1) with (2) is chaotic in the sense of Li-Yorke.

Step 2. There exists $(1 - \varepsilon)\lambda - \varepsilon L > 1$, such that

$$\left| \left| F(x) - F(y) \right| \right| \ge \left((1 - \varepsilon)\lambda - \varepsilon L \right) \left| \left| x - y \right| \right|, \ \forall x, y \in V_i \ i = 1, 2$$

It follows from $||x - y|| = \max\{|x(i) - y(i)|, i = 1, 2, \dots, N\}$ that there exists a constant, $k \in \{i = 1, 2, \dots, N\}$, such that

$$||x - y|| = |x(k) - y(k)|.$$
(16)

Therefore, by (5), (7) and (16), for all $x, y \in V_1$ and $x, y \in V_2$, one has

$$||F(x) - F(y)|| = \max\{|F_i(x) - F_i(y)|, i = 1, 2, \dots, N\}$$

= $\max\{|(1 - \varepsilon)(f(x(i)) - f(y(i))) + 0.5\varepsilon(f(x(i - 1)) - f(y(i - 1)) + f(x(i + 1)) - f(y(i + 1)))|, i = 1, 2, \dots, N\}$
 $\geq (1 - \varepsilon)|f(x(k)) - f(y(k))| - 0.5\varepsilon|f(x(k - 1)) - f(y(k - 1))| - 0.5\varepsilon|f(x(k + 1)) - f(y(k + 1))|$
 $\geq (1 - \varepsilon)\lambda|x(k) - y(k)| - 0.5\varepsilon L|x(k - 1) - y(k - 1)| - 0.5\varepsilon L|x(k + 1) - y(k + 1)|$
 $\geq (1 - \varepsilon)\lambda||x - y|| - \varepsilon L||x - y||$
= $((1 - \varepsilon)\lambda - \varepsilon L)||x - y||$.
Note that $(1 - \varepsilon)\lambda - \varepsilon L > 1$.

Together with the proof of Step 1, F satisfies all the assumptions of Lemma 2. Hence, (1) with (2) is chaotic in the sense of both Li-Yorke and Devaney. The entire proof is complete.

Theorem 2 ($\varepsilon = 1$). Suppose that f satisfies the assumption (i) of Theorem 1, and there exist constants a, b, c, d with -r < a < 0 < b < c < d < r, such that

$$f(a) \cdot f(b) < 0, f(c) \cdot f(d) < 0, |f(j)| > (2 + L)\mu.$$

Then there exists a Cantor set $\Lambda_2 \subset [a, b]^N \cup [c, d]^N$, such that (1) is chaotic in the sense of Li-Yorke.

Proof. The proof is similar to that of Theorem 1. The differences are as follows.

Case I: $f(a) < -(2 + L)\mu$, $f(b) > (2 + L)\mu$, $f(c) < -(2 + L)\mu$, $f(d) > (2 + L)\mu$;

For each $x \in V_1$ with $x(i - 1) = a, i = 1, 2, \dots, N$, it follows from (2) and (5) that

$$F_i(x) = 0.5f(a) + 0.5f(x(i+1)) \le 0.5f(a) + 0.5Lmax\{|a|, b\}$$

$$< -0.5(2+L)\mu + 0.5L\mu = -\mu \le a;$$
 (17)

and for each $x \in V_1$ with $x(i-1) = b, i = 1, 2, \dots, N$ one has

$$F_i(x) \ge 0.5f(b) - 0.5Lmax\{|a|, b\} > 0.5(2+L)\mu - 0.5L\mu = \mu \ge d.$$
(18)

For each $x \in V_2$ with $x(i - 1) = c, i = 1, 2, \dots, N$, by (2) and (5),

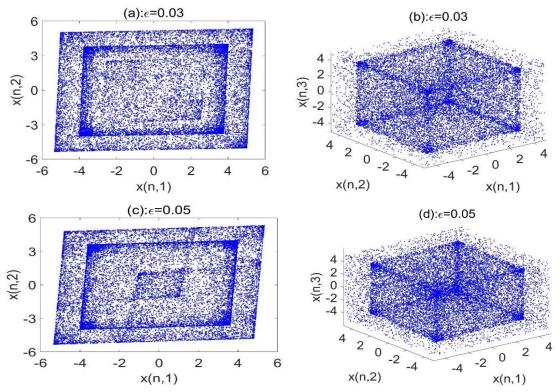


Fig. 1 2-D and 3-D computer simulations for system (1) with (2), where $n = 0, 1, \dots, 20000$. In the 2-D graphs, N = 2, the initial value is taken as x(1) = 0.1 and x(2) = 0.2. In the 3-D graphs, N = 3, the initial value is x(1) = 0.1, x(2) = 0.2, x(3) = 1.

$$F_i(x) \le 0.5f(c) + 0.5Ld < -0.5(2+L)\mu + 0.5L\mu = -\mu \le a;$$
⁽¹⁹⁾

and for each $x \in V_2$ with $x(i-1) = d, i = 1, 2, \dots, N$,

$$F_i(x) \ge 0.5f(d) - 0.5Ld > 0.5(2+L)\mu - 0.5L\mu = \mu \ge d.$$
⁽²⁰⁾

By the intermediate value theorem and (17) - (20), one has $F(V_i) \supset V_1 \cup V_2$ for i = 1, 2.

For the other three cases, we can similarly prove that $F(V_i) \supset V_1 \cup V_2$ for i = 1, 2.

In summary, F satisfies all the assumptions of Lemma 1. So, (1) is Li-Yorke chaos.

Remark 1. In the cases of $\varepsilon = 1$, we can't be sure that (1) is chaotic in the sense of Devaney or not.

4. Examples

In this section, two examples are discussed with computer simulations.

Example 4.1. Consider the NNCML (1) with (2), where

$$f(x) = \begin{cases} -\frac{1}{3}x^3 + 4x, & -4 \le x \le 4\\ 4sinx, & otherwise. \end{cases}$$

Obviously, $f(0) = 0, f(-1.2) \cdot f(1.8) < 0, f(2.1) \cdot f(3.9) < 0$. Therefore, f satisfies assumptions (i) and (ii) of Theorem 1 with r = 4, a = -1.2, b = 1.8, c = 2.1, d = 3.9, and L = 12. Thus, by Theorem 1, for any constants $\varepsilon < 0.053$, there exists a Cantor set $\Lambda \subset [-1.2, 1.8]^N \cup [2.1, 3.9]^N$ such that (1) is chaotic on Λ in the sense of Li-Yorke.

For computer simulation, we take N = 2,3 and $\varepsilon = 0.03,0.05$, respectively. The simulation results in the two-dimensional

space $(x(\cdot,1), x(\cdot,2))$, and three-dimensional space $(x(\cdot,1), x(\cdot,2), x(\cdot,3))$ are shown in Fig.1, which indicates that (1) has very complicated dynamical behaviors on Λ .

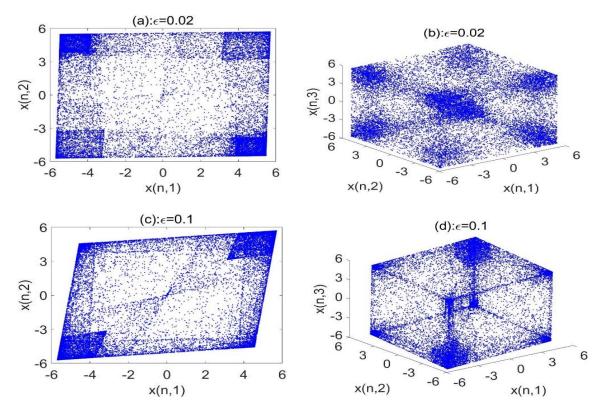


Fig. 2 Simulations for (1) with (2), where e n = 0, 1, \cdots , 20000. In the 2-D graphs, N = 2, the initial value is taken as x(1) = 0.1 and x(2) = 0.2. In the 3-D graphs, N = 3, the initial value is x(1) = 0.1, x(2) = 0.2, x(3) = 1.

Example 4.2. Consider the NNCML (1) with (2), where

 $f(x) = 5.7 \sin x.$

Obviously, f(0) = 0, $f\left(-\frac{\pi}{4}\right) \cdot f\left(\frac{\pi}{4}\right) < 0$, $f\left(\frac{3\pi}{4}\right) \cdot f\left(\frac{5\pi}{4}\right) < 0$. Therefore, f \satisfy all the assumptions of Theorem 1 with $r = 3\pi$, $a = -\frac{\pi}{4}$, $b = \frac{\pi}{4}$, $c = \frac{3\pi}{4}$, $d = \frac{5\pi}{4}$, $\lambda = 4.03$, and L = 5.7. Thus, by Theorem 1, for any constant $\varepsilon \le 0.119$, there exists a Cantor set $\Lambda \subset \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]^N \cup \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]^N$ such that (1) is chaotic on Λ in the sense of both Li-Yorke and Devaney. For computer simulation, we take N = 2, 3 and $\varepsilon = 0.02, 0.1$, respectively. The simulation results are shown in Fig.2.

References

- [1] W. Freeman, Chaos in the brain: possible roles in biological intelligence, Int. J. Intell. Syst., 10 (1995) 71–88.
- [2] J. Lages and D. Shepelyansky, Suppression of quantum chaos in a quantum computer hardware, Phys. Rev. E., 74 (2006) 026208.
- [3] L. Kocarev, M. Maggio, M. Ogorzalek, et al., Special issue on applications of chaos in modern communication systems, *IEEE Trans.* Circ. Syst. I, 48 (2001) 1385–1527.
- [4] K. Kaneko, Theory and Applications of Coupled Map Lattice. John Wiley & Sons, (1993).
- [5] G. Hu and Z. Qu, Controlling spatiotemporal chaos in coupled map lattice systems, Phys. Rev. Lett., 72 (1994) 68–97.
- [6] J. Singha and N. Gupte, Spatial splay states and splay chimera states in coupled map lattices, Phys. Rev. E, 95 (2016) 052204.
- [7] N. Balmforth, A. Jacobson and A. Provenzale, Synchronized family dynamics in globally coupled maps, Chaos, 9 (1999) 738-754.
- [8] C. Tian and G. Chen, Chaos in the sense of Li-Yorke in coupled map lattices, Physica A, 376 (2007) 246–252.

- [9] A. Khellat, A. Ghaderi and N. Vasegh, Li-Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice, Chaos Solit. Fract., 44 (2011) 934-939.
- [10] M. Nag and S. Poria, Li-Yorke chaos in globally coupled map lattice with delays, Int. J. Bifur. Chaos, 29 (2019) 1950183.
- [11] W. Liang and Z. Zhang, Chaotification schemes of first-order partial difference equations via sine functions, J. Differ. Eq. Appl., 25 (2019) 665–675.
- [12] W. Liang and Z. Zhang, Anti-control of chaos for first-order partial difference equations via sine and cosine functions, Int. J. Bifur. Chaos, 29 (2019) 1950140.
- [13] W. Liang and H. Guo, Chaotification of first-order partial difference equations, Int. J. Bifur. Chaos, 30 (2020) 2050229.
- [14] H. Guo and W. Liang, Existence of chaos for partial difference equations via tangent and cotangent functions, Adv. Diff. Equ., (2021), 1.
- [15] Y. Shi and G. Chen, Chaos of discrete dynamical systems in complete metric spaces, Chaos Solit. Fract., 22 (2004) 555–571.
- [16] X. Zhang, Y. Shi and G. Chen, Constructing chaotic polynomial maps, Int. J. Bifur. Chaos, 19 (2009) 531–543.
- [17] Y. Shi, H. Ju and G. Chen, Coupled-expanding maps and one-sided symbolic dynamical systems, Chaos Solit. Fract., 39 (2009) 2138– 2149.
- [18] Y. Shi and Q. Xing, Dense distribution of chaotic maps in continuous map spaces, Dyna. Sys., 26 (2011) 519–535.
- [19] Y. Shi, P. Yu and G. Chen, Chaotification of discrete dynamical system in Banach spaces, Int. J. Bifurc. Chaos, 16 (2006) 2615-2636.