Original Article

Z-regular Spaces in Topological Spaces

Poonam Sharma¹, Indukala Tripathi²

¹Department-Mathematics, Mewar University, Gangrar, Chittorgrah(Raj.), India. ²Department-Mathematics, Mewar University.

Received: 06 May 2022 Revised: 15 June 2022 Accepted: 22 June 2022 Published: 02 July 2022

Abstract - The aim of this paper is to introduce and study a new class of spaces, namely Z-regular spaces by using Z-open sets. The relationships among regular, strongly rg-regular, almost regular, softly regular, weakly regular, α -regular and ξ -regular spaces are investigated. Also we obtain some characterizations of Z-regular spaces, properties of the forms of gZ-closed, Zg-closed functions and preservation theorems for Z-regular spaces.

Keywords - Z-open sets, Z-regular, s-regular, almost regular and softly regular spaces, gZ-closed and Z-gZ-closed functions.

1. Introduction

O. Njastad [7] introduced and studied the notion of α -open sets. M. K. Singal and S. P. Arya [9] introduced two new classes of regular spaces, namely almost regular and weakly regular. S. S. Benchalli [1] introduced and studied the notion of α -regular spaces. M. C. Sharma, P. Sharma and M. Singh [8] introduced a new class of regular spaces called ξ -regular spaces. H. Kumar [6] obtained some more characterizations and preservation theorems for ξ -regular spaces. H. Kumar and M. C. Sharma [5] introduced two new classes of separation axioms, namely softly regular and partly regular spaces which are weaker than regular spaces.

In this paper, we utilize Z-open sets to define and study a new class of spaces, called z-regular spaces in topology. The relationships among regular, strongly rg-regular, almost regular, softly regular, weakly regular, α -regular and ξ -regular spaces are investigated. Also we obtain some characterizations and preservation theorems for Z-regular spaces.

2. Preliminaries

Throughout this paper, spaces (X, τ) , (Y, σ) , and (Z, γ) always mean topological spaces X, Y and Z on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by cl(A) and int(A) respectively. A subset A of a space X is called δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed.

- **2.1 Definition**. A subset A of a space X is said to be:
- (1) α -open [7] if $A \subset int(cl(int(A)))$.
- (2) *Z-open* [2] if $A \subseteq cl(int_{\delta}(A)) \cup int(c(A))$.
- 2.2 Remark. We have the following implications for the properties of subsets:

open \rightarrow α -open \rightarrow Z-open

Where none of the implications is reversible as can be seen from [2s].

The complement of a α -open (resp. Z-open) set is called α -closed (resp. Z-closed).

The intersection of all Z-closed sets containing A, is called the Z-closure of A and is denoted by Z-cl(A). Dually, the Z-interior of A, denoted by Z-int(A) is defined to be the union of all Z-open sets contained in A.

The family of all Z-open (resp. Z-closed) sets of a space X is denoted by Z-O(X) (resp. Z-C(X)).

- **2.3 Definition.** A subset A of a space X is said to be
- (1) Generalized Z-closed [11]
- (2) Z-generalized closed [11] (briefly Zg-closed) if Z-cl(A) $\subset U$ whenever $A \subset U$ and $U \in Z$ -O(X).

The complement of gZ-closed (resp. Zg-closed) set is said to be gZ-open (resp. Zg-open).

2.4 Remark. We have the following implications for the properties of subsets:

closed
$$\rightarrow$$
 Z-closed \rightarrow gZ-closed \rightarrow Zg-closed

Where none of the implications is reversible as can be seen from [11]:

- **2.5 Lemma** [2]. Let A be a subset of a space X and $x \in X$. The following properties hold for z-cl(A):
- (i) $x \in Z$ -c1(A) if and only if $A \cap U \neq \emptyset$ for every $U \in Z$ -O(X) containing x.
- (ii) A is Z-closed if and only if A = Z-cl(A).
- (iii) Z-c1(A) \subset Z-c1(B) if A \subset B.
- (iv) Z-c1(Z-c1(A)) = Z-c1(A).
- (v) Z-c1(A) is Z-closed.
- **2.6 Lemma** [11]. A subset A of a space X is gZ-open in X if and only if $F \subset Z$ -int(A) whenever $F \subset A$ and F is closed in X.

3. Z-regular spaces

- 3.1 Definition. A space X is said to be **Z-regular** (resp. α -regular [1], ξ -regular [6, 8]) if for each closed set F of X, and each point $x \in X F$, there exist disjoint Z-open (resp. α -open, ξ -open) set U, V such that $F \subset U$ and $x \in V$.
- 3.2 Definition. A space X is said to be softly regular [5] (resp. almost regular [9], strongly rg-regular [4]) if for every π -closed (resp. regular closed, rg-closed) set F of X, and a point open sets U and V such that $F \subset U$ and $x \in V$.
- **3.3 Definition.** A space X is said to be **weakly regular** [9] if for every point x and every regularly open set U containing x, there is an open set V such that $x \in V \subset cl(V) \subset U$.
- **3.4 Theorem**. Every regular space is Z-regular.

Proof.

By the definitions stated above, we have the following diagram:

$$\begin{array}{c} & \xi\text{-regular}\\ & \uparrow\\ \text{Strongly rg-regular} & \Rightarrow \text{ regular} & \Rightarrow \alpha\text{-regular} & \Rightarrow \text{ Z-regular}\\ & \downarrow & \\ & \text{Softly regular} & \Rightarrow \text{ almost regular} & \Rightarrow \text{ weakly regular} \end{array}$$

Where none of the implications is reversible as can be seen from the following examples:

- 3.5 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the space X is weakly regular. But it is neither almost regular nor softly regular.
- 3.6 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then the space X is almost regular but not strongly rg-regular.
- **3.7 Example.** Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then the space X is regular.

- 3.8 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b, c\}, X\}$. Then the space X is regular but not strongly rg-regular. Since $F = \{b\}$ is a rg-closed set such that $c \notin \{b\}$. We cannot separate c and $\{b\}$ by disjoint open sets.
- **3.9 Theorem.** The following properties are equivalent for a space X:
- (a) X is Z-regular.
- (b) For each $x \in X$ and each open set U of X containing x, there exists $V \in Z$ -O(X) such that $x \in V \subset Z$ -cl(V) $\subset U$.
- (c) For each closed set F of X, $\cap \{Z\text{-cl}(V) : F \subset V \in Z\text{-O}(X)\} = F$.
- (d) For each subset A of X and each open set U of X such that $A \cap U \neq \emptyset$, there exists $V \in Z$ O(X) such that $A \cap V \neq \emptyset$ and Z-cl $(V) \subset U$.
- (e) For each non empty subset A of X and each closed subset F of X such that $A \cap F = \emptyset$, there exist V, $W \in Z$ -O(X) such that $A \cap V \neq \emptyset$, $F \subset W$ and $V \cap W \neq \emptyset$.

Proof.

- (a) \Rightarrow (b). Let U be an open set containing x, then X U is closed in X and $x \notin X U$. By (a), there exist W, $V \in Z$ -O(X) such that $x \in V$, X U \subset W and V \cap W = ϕ .By Lemma 2.5, we have Z-cl(V) \cap W = ϕ and hence $x \in V \subset Z$ -cl(V) $\subset U$.
- (b) \Rightarrow (c). Let F be a closed set of X. If F \subset V, then by Lemma 2.5 (iii), Z-cl(F) \subset Z-cl(V) which gives F \subset Z-cl(V) as F \subset Z-cl(F). Therefore, \cap {Z-cl(V) : F \subset V \in Z-O(X)} \supset F.

Conversely, let $x \notin F$. Then X - F is an open set containing x. By (b), there exists $U \in Z$ -O(X) such that $x \in U \subset Z$ -cl(U) $\subset X - F$. Put V = X - Z-cl(U). By Lemma 2.5, $F \subset V \in Z$ -O(X) and $x \notin Z$ -cl(V). This implies that $\cap \{Z$ -cl(V): $F \subset V \in Z$ -O(X) $\cap F$.

Hence $\cap \{Z\text{-cl}(V) : F \subset V \in Z\text{-O}(X)\} = F$.

- (c) \Rightarrow (d). Let A be a subset of X and let U be open in X such that $A \cap U \neq \emptyset$. Let $x \in A \cap U$, then X U is a closed set not containing x. By (c), there exists $W \in Z$ -O(X) such that $X U \subset W$ and $x \notin Z$ -cl(W). Put V = X Z-cl(W). Then $V \subset X W$. Also $x \in V \cap A$. By using Lemma 2.5, we obtain $V \in Z$ -O(X), and Z-cl(V) $\subset Z$ -cl(X W) = X W $\subset U$.
- (d) \Rightarrow (e). Let A be a subset of X and let F be a closed set in X such that $A \cap F = \emptyset$, where $A \neq \emptyset$. Since X F is open in X and $A \neq \emptyset$, by (d), there exists $V \in Z$ -O(X) such that $A \cap V \neq \emptyset$ and Z-c1(V) $\subset X F$. Put W = X Z-c1(V), then $F \subset W$. Also, $V \cap W = \emptyset$. By Lemma 2.5, $W \in Z$ -O(X).
- (e) \Rightarrow (a). This is obvious.
- **3.10 Theorem.** A topological space X is Z-regular if and only if for each closed set F of X and each $x \in X F$, there exist Z-open sets U and V of X such that $x \in U$ and $F \subset V$ and Z-cl(U) $\cap Z$ -cl(V) = ϕ .

Proof: Let F be a closed set in X and $x \notin F$. Then there exist Z-open sets U_x and V such that $x \in U_x$, $F \subset V$ and $U_x \cap V = \phi$. This Implies that $U_x \cap Z$ -cl(V) = ϕ . Since Z-cl(V) is Z-closed and $x \notin Z$ -cl(V). Since X is Z-regular, there exist Z-open sets G and H of X such that $x \in G$, Z-cl(V) \subset H and $G \cap H = \phi$. This implies Z-cl(G) \cap H = ϕ . Take U = $U_x \cap G$. Then U and V are Z-open sets of X such that $x \in U$ and $F \subset V$ and Z-cl(U) \cap Z-cl(V) = ϕ , since Z-cl(U) \cap Z-cl(V) \subset Z-cl(G) \cap H = ϕ . Conversely, suppose for each closed set F of X and each $x \in X - F$, there exist Z-open sets U and V of X such that $x \in U$, $F \subset V$ and and Z-cl(U) \cap Z-cl(V) = ϕ . Now $U \cap V \subset Z$ -cl(U) \cap Z-cl(V) = ϕ . Therefore $U \cap V = \phi$. Thus X is Z-regular.

- **3.11 Definition.** A space X is said to be Z-T₃ space if it is Z-regular as well as Z-T₁ space.
- **3.12 Theorem**. Every Z-T₃ space is a Z-T₂ space.

Proof. Let X be Z-T₃, so it is both Z-T₁ and Z-regular. Also X is Z-T₁ \Rightarrow every singleton subset $\{x\}$ of X is an Z-closed. Let $\{x\}$ be an Z-closed subset of X and $y \in X - \{x\}$. Then we have $x \neq y$ since X is Z-regular, there exist disjoint Z-open sets U and V such that $\{x\} \subset U$, $y \in V$, and such that $U \cap V = \phi$ (or) U and V are disjoint Z-open sets containing x and y respectively. Since x and y are arbitrary, for every pair of distinct points, there exist disjoint Z-open sets. Hence X is Z-T₂ space.

3.13 Theorem. Every subspace of a Z-regular space is Z-regular.

Proof. Let X be a Z-regular space. Let Y be a subspace of X. Let $x \in Y$ and F be a closed set in Y such that $x \notin F$. Then there is a closed set A of X with $F = Y \cap A$ and $x \notin A$. Since X is Z-regular, there exist disjoint Z-open sets U and V such that $x \in U$ and $A \subset V$. Note that $Y \cap U$ and $Y \cap V$ are Z-open sets in Y. Also $x \in U$ and $x \in Y$, which implies $x \in Y \cap U$ and $x \in Y \cap U$

Proof. Let X be a compact Hausdorff space, that is an Z-T₃ space. But every Z-T₂ space is Z-T₁. To prove that it is Z-T₃ space, it is sufficient to prove that it is Z-regular. Let F be a closed subset of X, and $x \notin F$. Now $x \in X - F$ so that any point $y \in F$ is a point of X which is different from x. Since X is an Z-T₂ space corresponding to x and y, there exists two Z-open sets H_y and G_y such that $G_y \cap H_y = \phi$ where $x \in H_y$ and $y \in G_y$. Now let \mathfrak{I}^* denote the relative topology for F so that the collection $C^* = \{F \cap H_y : y \in F\}$ is an ii- \mathfrak{I}^* open cover of F. But F is closed and since X is Z-compact (F, \mathfrak{I}^*) is also Z-compact. Hence a finite subcover of F (or) there exist points y_1, y_2, \ldots, y_n in F such that $C^* = \{F \cap H_{yi} : i = 1, 2, \ldots, n\}$ is a finite sub cover for F. Now $F = \{F \cap H_{yi} : i = 1, 2, \ldots, n\}$ or $F = F \cap \{\{G \in H_{yi} : i = 1, 2, \ldots, n\}\}$

Hence $F \subset \bigcup$ { H_{yi} : i = 1, 2,n} or $F \subset H$ where $H = \bigcup$ { H_{yi} : i = 1, 2,n} is Z-open set containing H, being the union of Z-open sets. Again G_{yi} for i = 1, 2, 3,n is Z-open set containing H and hence $H = \bigcup$ { H_{yi} : H = 1, 2,n} is also an Z-open set containing H.

Also $G \cap H = \emptyset$, otherwise $G_{yi} \cap H_{yi} \neq \emptyset$ for some i. Hence corresponding to each closed set F and an element x in X - F we have two Z-open sets G and H such that $x \in G$, $F \subset H$ and $G \cap H = \emptyset$. Hence X is Z-regular. Since it is Z-T₂ so Z-T₁ and hence X is Z-T₃.

4. Some related functions with Z-regular spaces

- **4.1 Definition.** A function $f: X \to Y$ is said to be Z-closed [3] if for each closed set F of X, f(F) is Z-closed in Y.
- **4.2 Definition.** A function $f: X \to Y$ is said to be
- (i) generalized Z-closed [11] (briefly gZ-closed) if for each closed set F of X, f (F) is gZ-closed in Y.
- (ii) Z-generalized Z-closed [11] (briefly Z-gZ-closed) if for each ii-closed set F of X, f (F) is gZ-closed in Y.
- **4.3 Remark**. Every closed function is Z-closed but not conversely. Also, every Z-closed function is gZ-closed because every Z-cosed set is gZ-closed. It is obvious that both Z-closedness and Z-gZ-closedness imply gZ-closedness.
- **4.4 Theorem.** A surjective function $f: X \to Y$ is gZ-closed (resp. Z-gZ-closed) if and only if for each subset B of Y and each open (resp. Z-open) set U of X containing $f^{-1}(B)$, there exists a gZ-open set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof. Suppose that f is gZ-closed (resp. Z-gZ-closed). Let B be any subset of Y and U be open (resp. Z-open) set of X containing $f^{-1}(B)$. Put V = Y - f(X - U). Then the complement V^c of V is $V^c = Y - V = f(X - U)$. Since X - U is closed in X and f is gZ-closed, $f(X - U) = V^c$ is gZ-closed. Therefore, V is gZ-open in Y. It is easy to see that $B \subset V$ and $f^{-1}(V) \subset U$.

Conversely, let F be a closed (resp. Z-closed) set of X. Put B = Y - f(F), then we have $f^{-1}(B) \subset X - F$ and X - F is open (resp. Z-open) in X. Then by assumption, there exists a gZ-open set V of Y such that $B = Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Now $f^{-1}(V) \subset X - F$ implies $V \subset Y - f(F) = B$. Also $B \subset V$ and so B = V. Therefore, we obtain f(F) = Y - V and hence f(F) is gZ-closed in Y. This shows that f is gZ-closed (resp. Z-gZ-closed).

- **4.5 Remark.** We can prove the necessity part of the above theorem by replacing each set to closed set in the form of the proposition given below:
- **4.6 Proposition.** If a surjective function $f: X \to Y$ is gZ-closed (resp. Z-gZ-closed) then for a closed set F of Y and for any open (resp. Z-open) set U of X containing $f^{-1}(F)$, there exists an Z-open set V of Y such that $F \subset V$ and $f^{-1}(V) \subset U$.
- **Proof.** By **Theorem 4.4**, there exists a gZ-open set W of Y such that $F \subset W$ and $f^{-1}(W) \subset U$. Since F is closed, by Lemma 2.6 we have $F \subset Z$ -int(W). Put V = Z-int(W). Then $V \in Z$ -O(Y), $F \setminus V$ and $f^{-1}(V) \subset U$.
- **4.7 Proposition.** If $f: X \to Y$ is continuous Z-gZ-closed and A is gZ-closed in X, then f(A) is gZ-closed in Y.

Proof. Let V be a open set of Y containing f(A). Then $A \subset f^{-1}(V)$. Since f is continuous, $f^{-1}(V)$ is open in X. Since A is gz-closed in X, by a definition, we get $z\text{-}c1(A) \subset f^{-1}(V)$ and hence $f(z\text{-}c1(A)) \subset V$. Since f is Z-gZ-closed and Z-c1(A) is Z-closed in X, f(Z-c1(A)) is gZ-closed in Y sand hence we have Z-c1($f(Z\text{-}c1(A)) \subset V$. By definition of the Z-closure of a set, $A \subset Z$ -c1(A) which implies $f(A) \subset f(Z\text{-}c1(A))$ and using Lemma 2.5, Z-c1($f(Z\text{-}c1(A)) \subset Z\text{-}c1(f(Z\text{-}c1(A))) \subset U$. This shows that f(A) is gZ-closed in Y.

4.8 Definition. A function $f: X \to Y$ is said to be Z-irresolute [3] if for each $V \in Z$ -O(Y), $f^{-1}(V) \in Z$ -O(X).

4.9 Proposition. If $f: X \to Y$ is an open Z-irresolute bijection and B is gZ-closed in Y, then $f^{-1}(B)$ is gZ-closed in X. **Proof.** Let U be a open set of X containing $f^{-1}(B)$. Then $B \subset f(U)$ and f(U) is open in Y. Since B is gZ-closed in Y, Z-c1(B) $\subset f(U)$ and hence we have $f^{-1}(Z-c1(B)) \subset U$. Since f is Z-irresolute,

 $f^{-1}(Z-c1(B))$ is Z-closed in X (Theorem 2.5 (i) and (v)),we have $Z-c1(f^{-1}(B)) \subset f^{-1}(Z-c1(B) \subset U$. This shows that $f^{-1}(B)$ is gZ-closed in X.

- **4.10 Theorem.** Let $f: X \to Y$ and $h: Y \to Z$ be the two functions, then
- (i) If hof: $X \to Z$ is gZ-closed and if $f: X \to Y$ is a continuous surjection, then $h: X \to Z$ is gZ-closed.
- (ii) If $f: X \to Y$ is gZ-closed with $h: Y \to Z$ is continuous and Z-gZ-closed, then hof: $X \to Z$ is gZ-closed.
- (iii) If $f: X \to Y$ is closed and $h: Y \to Z$ is gZ-closed, then hof: $X \to Z$ is gZ-closed.

Proof.

- (i) Let F be a closed set of Y. Then $f^{-1}(F)$ is closed in X since f is continuous. By hypothesis (hof) $(f^{-1}(F))$ is gZ-closed in Z. Hence h is gZ-closed.
- (ii) The proof follows from the Proposition 4.7.
- (iii)The proof is obvious from definitions.
- 4.11 Theorem. The following properties are equivalent for a space X:
- (a) X is Z-regular.
- (b) For each closed set F and each point $x \in X F$, there exists $U \in Z$ -O(X) and a gZ-open set V such that $x \in U$ and $F \subset V$ and $U \cap V = \phi$.
- (c) For each subset A of X and each closed set F such that $A \cap F = \emptyset$, there exist $U \in Z$ -O(X) and a gZ-open set V such that $A \cap U \neq \emptyset$, $F \subset V$ and $U \cap V = \emptyset$.
- (d) For each closed set F of X, $F = \bigcap \{Z c1(V) : F \subset V \text{ and } V \text{ is } gZ \text{-open} \}.$

Proof.

- (a) \Rightarrow (b). The proof is obvious since every Z-open set is gZ-open.
- (b) \Rightarrow (c). Let A be a subset of X and let F be a closed set in X such that $A \cap F = \phi$. For a point $x \in A$, $x \in X F$ and hence there exists $U \in Z$ -O(X) and a gZ-open set V such that $x \in U$ and $F \subset V$ and $U \cap V = \phi$. Also $x \in A$, $x \in U$ implies $x \in A \cap U$. So $A \cap U \neq \phi$.
- (c) \Rightarrow (a). Let F be a closed set and let $x \in X F$. Then, $\{x\} \cap F = \phi$ and there exist $U \in Z$ -O(X) and a gZ-open set W such that $x \in U$, $F \subset W$ and $U \cap W = \phi$. Put V = Z-int(W), then by Lemma 2.6, we have $F \subset V$, $V \in Z$ -O(X) and $U \cap V = \phi$. Therefore X is Z-regular.
- (a) \Rightarrow (d). For a closed set F of X, by Theorem 3.9, we obtain

```
F \subset \ \cap \ \{Z\text{-}c1(V): F \subset V \ \text{and} \ V \ \text{is} \ gZ\text{-}open\}
```

 $\subset \cap \{Z\text{-c1}(V) : F \subset V \text{ and } V \in Z\text{-O}(X)\} = F$

Therefore, $F = \bigcap \{Z - c1(V) : F \subset V \text{ and } V \text{ is } gZ \text{-open} \}.$

- $(d) \Rightarrow (a). \ Let \ F \ be \ a \ closed \ set \ of \ X \ and \ x \in X F. \ by \ (d), \ there \ exists \ a \ gZ-open \ set \ W \ of \ X \ such \ that \ F \subset W \ and \ x \in X Z-c1(W). \ Since \ F \ is \ closed, \ F \subset Z-int(W) \ by \ Lemma \ 2.6. \ Put \ V = Z-int(W), \ then \ F \subset V \ and \ V \in Z-O(X). \ Since \ x \in X Z-c1(W). \ Put \ U = X Z-c1(V) \ then, \ x \in U, \ U \in Z-O(X) \ and \ U \cap V = \varphi. \ This \ shows \ that \ X \ is \ Z-regular.$
- **4.12 Definition**. A function $f: X \to Y$ is said to be Z-open [3] if for each open set U of X, $f(U) \in Z$ -O(Y).

4.13 Theorem. If $f: X \to Y$ is a continuous Z-open gZ-closed surjection and X is regular, then Y is Z-regular.

Proof. Let $y \in Y$ and let V be an open set of Y containing y. Let x be a point of X such that y = f(x). By the regularity of X, there exists an open set U of X such that $x \in U \subset c1(U) \subset f^{-1}(V)$. We have $y \in f(U) \subset f(c1(U)) \subset V$. since f is Z-open and gZ-closed, $f(U) \in Z$ -O(Y) and f(c1(U)) is gZ-closed in Y. So, we obtain, $y \in f(U) \subset Z$ -c1($f(U) \subset Z$ -c1($f(U) \subset Z$ -c1($f(U) \subset Z$ -c1) follows

from Theorem 4.11 that Y is Z-regular.

- **4.14 Definition.** A function $f: X \to Y$ is said to be pre Z-open [3] if for each Z-open set U of X, $f(U) \in Z$ -O(Y).
- **4.15 Theorem.** If $f: X \to Y$ is a continuous pre Z-open Z-gZ-closed surjection and X is Z-regular, then Y is Z-regular.

Proof. Let F be any closed set of Y and $y \in Y - F$. Then $f^{-1}(Y) \cap f^{-1}(F) = \phi$ and $f^{-1}(F)$ is closed in X. Since X is Z-regular, for a point $x \in f^{-1}(y)$, there exist U, $V \in Z$ -O(X) such that $x \in U$, $f^{-1}(F) \subset V$ and $U \cap V = \phi$. Since F is closed in Y, by Proposition 4.6, there exists $W \in Z$ -O(Y) such that $F \subset W$ and $f^{-1}(W) \subset V$. Since f pre Z-open, we have $y = f(x) \in f(U)$ and $f(U) \in Z$ -O(Y). Since $U \cap V = \phi$, $f^{-1}(W) \cap U = \phi$ and hence $W \cap f(U) = \phi$. This shows that Y is Z-regular.

5. Conclusion

In this paper, we introduce and study a new class of spaces, namely Z-regular spaces by using Z-open sets. The relationships among regular, strongly rg-regular, almost regular, softly regular, weakly regular, α -regular, β -regular and Z-regular spaces are investigated. Also we obtained some characterizations of Z-regular spaces, properties of the forms of gZ-closed, Zg-closed functions and preservation theorems for Z-regular spaces. Of course, the entire content will be a successful tool for the researchers for finding the way to obtain the results in the context of such types of regular spaces.

References

- [1] S. S. Benchalli and P. G. Patil, "Some New Continuous Maps in Topological Spaces", *J. of Advanced Studied in Topology*, vol. 2, no. 1-2, pp. 53-63, 2009.
- [2] A.I. El-Magharabi and A. M. Mubarki, "Z-Open Sets and Z-Continuity in Topological Spaces", *Internat. J. of Math*, vol. 2, no. 10, pp. 1819-1827, 2011.
- [3] A. I. El-Magharabi and A. M. Mubarki, "Characterizations of Mappings Via Z-Open Sets," *Studied in Math. Sci.*, vol. 5, no. 2, pp. 55-65, 2012.
- [4] P. Gnanachandra and P. Thangavelu, "On Strongly Rg-Regular and Strongly Rg-Normal Spaces," *Int. J. of Math*, vol. 12, no. 2, pp. 2570-2577, 2011.
- [5] H. Kumar and M. C. Sharma, "Softly Regular Spaces in Topological Spaces," *J. of Emerging Technologies and Innovative Research*, vol. 5, no. 11, pp. 183-190, 2018.
- [6] H. Kumar, "ξ-Normal and ξ-Regular Spaces in Topological Spaces," Internat. J. of Sci. Engg. and Res, vol. 5, no. 9, pp. 6-10, 2017.
- [7] O. Njastad, "On Some Class of Nearly Open Sets," Pacific. J. Math., vol. 15, no. 3, pp. 961-970, 1965.
- [8] M. C. Sharma, P. Sharma, S. Sharma and M. Singh, "E-Regular Spaces," J. of Applied Sci. and Tech., vol. 4, no. 1, pp. 1-4, 2014.
- [9] M. K. Singal and S. P. Arya, "On Almost Regular Spaces," Glasnik Math., vol. 4, no. 24, pp. 89-99, 1969.
- [10] N.V. Velicko, "H-Closed Topological Spaces," Amer. Math. Soc. Trans, vol. 78, pp. 103-118, 1968.
- [11] A. Zaghdani, A. I. El-Mubarki, M. Ezzat Mohamed and A. M. Mubarki, "On Z-Generalized Closed Sets in Topology," *Math. Theory and Modeling*, vol. 4, no. 11, pp. 175-182, 2014.