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Abstract - By applying a direct symmetry method, we get the symmetry group of the  (3+1)-dimensional Kadomtsev-

Petviashvili-Benjamin-Bona-Mahony (KPBBM) equation. Using the associated vector fields of the obtained symmetry, we get 

the optimal system of group-invariant solutions. To every case of the optimal system, we derive the reductions and some exact 

solutions of the (3+1)-dimensional KPBBM equation. 

Keywords - Direct symmetry method, (3+1)-dimensional KPBBM equation, Optimal system, Exact solutions. 
 

1. Introduction  
 In recent years, with the development of science and technology, nonlinear science has gradually entered people’s vision. 

At the same time, a large number of nonlinear partial differential equations have emerged. There are many important theories 

and research directions in the study of nonlinear partial differential equations, among which the study of the exact solution of 

nonlinear partial differential equations is the focus of attention. 

 Up to now, there are many methods for solving nonlinear partial differential equations. Commonly used are Darboux 

transformation[1], Variational iteration method[2], Hirota’s method[3], Lie symmetric method[4], Finite difference method[5] 

and so on.  Some methods can be said to be enduring and have been applied by scholars in the study of the exact solutions of 

partial differential equations. In this paper, we study the symmetry reductions and the exact solutions of (3+1)-dimensional 

KPBBM equation, 

                                1 2 3 4 5( ) 0xt xx x x xxxt yy zzu k u k uu k u k u k u+ + − + + = ,                                                (1.1) 

where ( , , , )u u x y z t= , 1k , 2k , 3k , 4k and 5k are arbitrary constants. Eq.(1.1) describes the fluid flow in the case of an 

offshore structure. When 4 5 0k k= = , Eq.(1.1) is reduced to Benjamin-Bona-Mahony equation[6]. When 1 1k = , 5 0k = , 

Eq.(1.1) is reduced to (2+1)-dimensional KPBBM equation[7]. Lump waves and breather waves, numerical simulation and 

soliton solutions for Eq.(1.1) have been presented in Refs.[8-10]. 

The outline of this paper is as follows. In section 2, we obtain the symmetry group of (3+1)-dimensional KPBBM 

equation by applying a direct symmetry method.  In section 3, by using the equivalent vector of the symmetry, we get the 

optimal system of group-invariant solutions. Based on the optimal system, some reductions and exact solutions of (3+1)-

dimensional KPBBM equation are obtained. In section 4, some conclusions and discussions are given. 

2. Symmerty Group 
It is well known that symmetry groups provide a useful method for obtaining solutions of partial differential equation 

[11,12]. A growing number of mathematicians and physicists have done outstanding work on symmetry and reduction[13-

20].However, there are almost always an infinite number of the subgroups, we need an optimal system to classifying all 

possible group-invariant solutions to the system[11]. Based on the application of classical method we consider the one-

parameter group of infinitesimal transformations in ( , , , )x y z t  of Eq.(1.1) given by 

http://www.internationaljournalssrg.org/
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* 2( , , , , ) ( )x x x y z t u o = + + , 

 
* 2( , , , , ) ( )y y x y z t u o = + + , 

                                                         
* 2( , , , , ) ( )z z x y z t u o = + + ,                                                 (2.1) 

* 2( , , , , ) ( )t t x y z t u o = + + , 

  
* 2( , , , , ) ( )u u x y z t u o = + + , 

 

where   is a group parameter. It is required that the set of Eq.(1.1) be invariant under the transformation (2.1), and this yields 

a system of overdetermined, linear equations for the infinitesimals  , , , and  . Solving these equations, one can have 

6c = , 

2 1 4 2 3k c y k c z c = + + , 

                                                                   2 1 5 2 4k c z k c y c = − + ,                                                                       (2.2) 

2 1 52k c t c = + , 

2 1 1 12 2k c u k c = + , 

 

where ( 1,2,...,6)ic i =  are arbitrary constants. And the associated vector fields for the one-parameter Lie group of 

infinitesimal transformations are 1v , 2v ,…, 6v  given by 

1 xv =  , 2 yv =  , 3 zv =  , 4 tv =  , 5 4 5y zv k z k y=  −  , 

                                           6 2 2 2 2 12 (2 2 )y z t uv k y k z k t k u k=  +  +  + +  .                                                (2.3) 

 

Eq.(2.3) shows that the following transformations (defined by ( )iexp v ( 1,2,...,6)i = ) of variables ( , , , , )x y z t u  leave the 

solutions of Eq.(1.1) invariant: 

( )1( ) : ( , , , , ) , , , ,exp v x y z t u x y z t u → + ， 

( )2( ) : ( , , , , ) , , , ,exp v x y z t u x y z t u → + ， 

( )3( ) : ( , , , , ) , , , ,exp v x y z t u x y z t u → + ， 

( )4( ) : ( , , , , ) , , , ,exp v x y z t u x y z t u → + ， 

                                                   
5 4 5 4 5 5 4 5( ) : ( , , , , ) ( ,( ( ) ) / ( ) ,exp v x y z t u x k k sin k k z k cos k k y  → +  

              
5 4 5 4 5 4 5( ( ) ) / ( ) , , )k sin k k y k k cos k k z t u − + ， 

                                                            ( )2 2 2 22 2

6 2 1 1 2( ) : ( , , , , ) , , , ,[ ( ) ]/ .
k k k k

exp v x y z t u x ye ze te e k u k k k
    → + −    (2.4) 

 

Then the following theorem holds: 

Theorem 1 If ( , , , )p x y z t =  is a solution of Eq.(1.1), then so are 

(1) ( , , , )p x y z t = − , 

(2) ( , , , )p x y z t = − , 

(3) ( , , , )p x y z t = − , 

(4) ( , , , )p x y z t = − , 

(4) ( , , , )p x y z t = − . 
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3. Symmetry Reductions and Solution  

In this section, we will discuss the symmetry reductions and solutions of the Eq.(1.1). In general, to each subgroup of the 

symmetry group, there will correspond a family of group- invariant solutions of the equation. It is too complicated to list all 

possible group-invariant solutions. By using the method presented in Refs.[13], we can find the optimal system of group- 

invariant solutions. 

Applying the commutator operators [ , ]m n m n n mv v v v v v= − , one get the following table (the entry in row i  and the 

column j  representing [ , ]i jv v ) 

Table 1. Lie Bracket 

Lie  
1v  2v  3v  4v  5v  6v  

1v  0  0  0  0  0  0  

2v  0  0  0  0  
5 4k v−  2 2k v  

3v  0  0  0  0  
4 2k v  2 3k v  

4v  0  0  0  0  0  
2 42k v  

5v  0  
5 3k v  4 2k v−  0  0  0  

6v  0  
2 2k v−  2 3k v−  2 42k v−  0  0  

 

Therefore, there is 

Proposition 1. The operators iv  ( 1,2,...,6)i =  form a Lie algebra, which is a six-dimensional symmetry algebra. 

According to the Table 1, one can have the adjoint representation listed in Table 2 with the ( , )i j -th entry indicating 

( ( ))i jAd exp v v . 

Table 2. Adjoint Representation  

Ad  
1v  2v  3v  

1v  1v  2v  3v  

2v  1v  2v  3v  

3v  1v  2v  3v  

4v  1v  2v  3v  

5v  1v  
4 5 2 2 4 5 3 4 5( ) [ ( ) ]/cos k k v k sin k k v k k −  

4 4 5 2 4 5 4 5 3[ ( ) ]/ ( )k sin k k v k k cos k k v +  

6v  1v  2

2

k
e v


 2

3

k
e v


 

 

Ad  
4v  5v  6v  

1v  4v  5v  6v  

2v  4v  5 5 3v k v+  6 2 2v k v−  

3v  4v  5 4 2v k v−  6 2 3v k v−  
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4v  4v  5v  6 2 42v k v−  

5v  4v  5v  6v  

6v  22

4

k
e v


 5v  6v  

 

If we set 1 1 2 2 3 3 4 4 5 5 6 6v a v a v a v a v a v a v= + + + + + , applying the formula 

2 3

0 0 0 0

1 1
( ( )) [ , ] [ ,[ , ]] [ ,[ ,[ , ]]] ...

2! 3!
Ad exp v v v v v v v v v v v   − + − + , 

and Proposition 1 , one can get the following theorem by detailed computation: 

Theorem 2. The operators generate an optimal system   

6 1 5( )a v v v + + , 6 0a  ; 

1 5 4 1( )b v v v+ + , 6 0a = , 5 0a  ; 

2 5 4 1( )b v v v− + , 6 0a = , 5 0a  ; 

3 5 1( )b v v+ , 6 0a = , 5 0a  ; 

1 3 4 1( )c v v v+ + , 5 6 0a a= = , 3 0a  ; 

2 3 4 1( )c v v v− + , 5 6 0a a= = , 3 0a  ; 

3 3 1( )c v v+ , 5 6 0a a= = , 3 0a  ; 

4 3 1( )c v v− , 5 6 0a a= = , 3 0a  ; 

5 3( )c v , 5 6 0a a= = , 3 0a  ; 

1 4 2 1( )d v v v+ + , 3 5 6 0a a a= = = , 4 0a  ; 

2 4 2 1( )d v v v− + , 3 5 6 0a a a= = = , 4 0a  ; 

3 4 1( )d v v+ , 3 5 6 0a a a= = = , 4 0a  ; 

4 4 1( )d v v− , 3 5 6 0a a a= = = , 4 0a  ; 

5 4( )d v , 3 5 6 0a a a= = = , 4 0a  ; 

1 2 1( )e v v+ , 3 4 5 6 0a a a a= = = = , 2 0a  ; 

2 2 1( )e v v− , 3 4 5 6 0a a a a= = = = , 2 0a  ; 

3 2( )e v , 3 4 5 6 0a a a a= = = = , 2 0a  ; 

1( )f v , 2 3 4 5 6 0a a a a a= = = = = , 1 0a  . 

Solving such reduction equations, one obtains the solutions of the Eq.(1.1). 

(I)Solving the reduced equation in case ( 1c ), one can get 

                   
2

2 2 3 4 5 3 1 0k FF k F k F k F k F k F k F F F         + + + + + + − − = ,                (3.1) 
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where ( , , )F F   = , and t x = − + , y = , t z = − + . Let’s solving the Eq.(3.1), we’ll get the solution 

2 23

2 2

2 23

2 2

( ) ( )
4 44

5 6
( ) ( )

2 5 2 5

1
( , , ) ( 1)[ ]

2

C

C C

C

C C

k kC
F e e C sin C cos

C k C k
e e





 
   =  + + . 

So the solution of Eq.(1.1) is 

2 23

2 2

2 23

2 2

( ) ( )
4 44

5 6
( ) ( )

2 5 2 5

( ) ( )1
( , , , ) ( 1)[ ]

2

C y

C C

C y

C C

k t z k t zC
u x y z t e e C sin C cos

C k C k
e e

− + − +
=  + + . 

The corresponding projective structure figures are plotted in Fig.1(a). 

(II)Solving the reduced equation in case ( 2c ), we arrive at 

                               
2

2 2 3 4 5 3 1 0k FF k F k F k F k F k F k F F F         + − + + − + + + = ,                            (3.2) 

where ( , , )F F   = , and t x = − + , y = , t z = + . Let’s solving the Eq.(3.1), we’ll get the solution 

2 4 3 2 2 2

3 2 2 4 2 3 4 1 2 3 2 4 3 2 1 2 3 4 2 4

2

2 2 2

12 ( ) ( ) (8 8 )
( , , )

k C C C tanh C C C C C k C C k C k C C k C C
F

k k C

    
  

+ + + + + + + + +
= − . 

So the solution of Eq.(1.1) is 

2

3 2 2 4 2 3 4 1

2

12 ( ) ( ( ) ( ) )
( , , , )

k C C C tanh C t x C y C t z C
u x y z t

k

 + − + + + + +
=  

4 3 2 2 2

2 3 2 4 3 2 1 2 3 4 2 4

2

2 2

(8 8 )C k C C k C k C C k C C

k C

+ + + + +
− . 

The corresponding projective structure figures are plotted in Fig.1(b). 

(III)Solving the reduced equation in case ( 3c ), one arrive at 

                                      
2

1 2 2 3 4 5 0F k F k F k FF k F k F k F      − + + + + + + = ,                         (3.3) 

where ( , , )F F   = , and t = , y = , x z = − + . Let’s solving the Eq.(3.3), we can the solution 

3
2 1 2 23

4 1 23 2
2 2 2 3 2 1 1 52

1 2

2 3

8 8
( )

( )8 8
( ) [ ] 32( )[ ( ) ]

( ) 4
( , , )

32 ( )

C
k C C

C CC
k C C C k f k k

C C
F

k C





  


  



− −
+

+− −
− + − + − + +

+
=

+
 

2 3
1 2 2

1 2

1

8( )
( )

( )
( )

4

C
C C

C C
f







− +
+

+
− . 

So one can solution of Eq.(1.1) is 



Shuai Zhou / IJMTT, 68(6), 180-189, 2022 

 

185 

3
2 1 2 23

4 1 23 2
2 2 2 3 2 1 1 52

1 2

2 3

8 8( )
( )

( )8 8( )
( ) [ ] 32( )[ ( ) ]

( ) 4
( , , , )

32 ( )

C z x
k C y C

C y CC z x
k C y C z x C k f y k k

C y C
u x y z t

k z x C

− − −
+

+− − −
− + − − + − + +

+
=

− +

 

2 3
1 2 2

1 2

1

8( )
( )

( )
( )

4

z x C
C y C

C y C
f y

− − +
+

+
− . 

The corresponding projective structure figures are plotted in Fig.1(c). 

 

                         Fig. 1 (a) 3D-plot (y=0);                                       (b) 3D-plot (x=z=0);                                           (c) 3D-plot (x=0). 

(IV)Solving the reduced equation in case ( 5c ), one arrive at 

                                                      
2 2

1 2 2 3 4 0F k F k F k FF k F k F     + + + − + = ,                            (3.4) 

where ( , , )F F   = , and t = , x = , y = . Let’s solving the Eq.(3.4), we can the solution 

1
1 2 3 1 2

2

( , , ) 2 2
k

F C C C C C
k

     = − + + + − . 

So one can have the solution of Eq.(1.1)  

1
1 2 3 1 2

2

( , , , ) 2 2
k

u x y z t C x C y C C x C
k

= − + + + − . 

The corresponding projective structure figures are plotted in Fig.2(d). 

(V)Solving the reduced equation in case ( 3d ), one can have 

                                         
2

1 2 2 3 4 5 0F k F k F k FF k F k F k F      − + + + + + + = ,                         (3.5) 

where ( , , )F F   = , and x t = − , y = , z = . Let’s solving the Eq.(3.5), we can the solution 

1 3 2 4( , , ) ( )F C C C C     = + + + . 

So we can have the solution of Eq.(1.1)  
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1 3 2 4( , , , ) ( )u x y z t C y C z C y C= + + + . 

The corresponding projective structure figures are plotted in Fig.2(e). 

Base on theorem1, we can know that 

4 5 4 5 5 4 5

1 4 5 3 4 5

5 4 5

( ) ( )
( , , , ) [ ( ( ) ) ][ ( ) ]

k k sin k k z k sin k k y
u x y z t C cos k k y C cos k k z

k k k

 
 

−
= + + +  

 

5 4 5

2 4 5 4

4 5

( )
( , , , ) [ ( ) ]

k sin k k y
u x y z t C cos k k z C

k k




−
= + + . 

is also the solution of Eq.(1.1). 

(VI)Solving the reduced equation in case ( 5d ), one can have 

                                                          
2

1 2 2 4 5 0k F k F k FF k F k F    + + + + = ,                                      (3.6) 

where ( , , )F F   = , and x = , y = , z = . Let’s solving the Eq.(3.6), we get the solution 

22 4 5 4 5 5

2 2 1 2 1 1 1

4 4 5

2

2 ( ) 2 ( )

( , , )

C k k k k k
k C C k f k k

k k k
F

k

 
  

  

− +
+ + + + −

− −
= . 

So we arrive at the solution of Eq.(1.1)  

22 4 5 4 5 5

2 2 1 2 1 1 1

4 4 5

2

2 ( ) 2 ( )

( , , , )

C k k k k z k y
k x y C z C k f k k

k k k
u x y z t

k

− +
+ + + + −

− −
= . 

The corresponding projective structure figures are plotted in Fig.2(f). 

 

               Fig. 2 (d) 3D-plot ;                                                 (e) 3D-plot (x=z=0);                                                      (f) 3D-plot (z=0). 
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(VII)Solving the reduced equation in case ( 1e ), one can have 

                                          
2 2

1 2 2 3 4 5 0F k F k F k FF k F k F k F      − + + + + + + = ,                      (3.7) 

where ( , , )F F   = , and x = , y = , z = . Let’s solving the Eq.(3.1), we get the solution 

1 2

2 1

( , , ) ( ) ( )F f f
k C


     


= + +
− +

. 

So we can obtain the solution of Eq.(1.1)  

1 2

2 1

( , , , ) ( ) ( )
x y

u x y z t f t f t
k t C


− +

= + +
− +

. 

The corresponding projective structure figures are plotted in Fig.3(h). 

(VII)Solving the reduced equation in case ( 2e ), we arrive at 

                                          
2

1 2 2 3 4 5 0F k F k F k FF k F k F k F      + + + − + + = ,                              (3.8) 

where ( , , )F F   = , and t = , x y = + , z = . One can get the solution of Eq.(3.8). 

3 ' 2 ' 4 2 3

1 2 2 1 2 2 5 1

5

1
( , , ) [ 2 ( ) 6 ( ) ( ) ( 4 ( ) 12 ) ( )

12
F f f k f k f k f

k
            = − − − + − +  

2

2 2 5 2 5 3 46 ( ) 12 ( ) 12 ( ( ) ( ))]k f k f k f f      − + + + . 

So one arrive at the solution of Eq.(1.1)  

3 ' 2 ' 4 2 3

1 2 2 1 2 2 5 1

5

1
( , , ) [ 2 ( ) 6 ( ) ( ) ( 4 ( ) 12 ( ) ) ( )

12
F f t f t k f k f t k x y z f t

k
       = − − − + − + +  

2

2 2 5 2 5 3 46 ( ) 12 ( ) ( ) 12 ( ( ) ( ))]k z f t k x y f t k f t f t− + + + + . 

The corresponding projective structure figures are plotted in Fig.3(i). 

(IX)Solving the reduced equation in case ( f ), we arrive at 

                                                   
2

1 1 2 3 4 5 0F k F k F k FF k F k F k F      + + + − + + = ,            (3.9) 

where ( , , )F F   = , and t = , y = , z = . One can get the solution of Eq.(3.9). 

1 2 3 4( , , ) ( ) ( ) ( ) ( )F f f f f         = + + + . 

So one arrive at the solution of Eq.(1.1)  

1 2 3 4( , , , ) ( ) ( ) ( ) ( )u x y z t yzf t yf t zf t f t= + + + . 

The corresponding projective structure figures are plotted in Fig.3(j). 
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                  Fig. 2 (h) 3D-plot (x=z=0);                                       (i) 3D-plot (x=y=0);                                                 (j) 3D-plot (z=0). 

 

4. Conclusion  
By means of a direct symmetry method[21-25], we investigate a (3+1)-dimensional KPBBM equation. The symmetry 

group is obtained and its corresponding group invariant solutions are constructed.  Then we give the optimal system by using 

the equivalent vector of the obtained symmetry. To every case of the optimal system, we find reductions and obtain some new 

explicit solutions of the (3+1)-dimensional KPBBM equation. 
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