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Abstract - By applying a direct symmetry method, we get the symmetry group of the (3+1)-dimensional Kadomtsev-
Petviashvili-Benjamin-Bona-Mahony (KPBBM) equation. Using the associated vector fields of the obtained symmetry, we get
the optimal system of group-invariant solutions. To every case of the optimal system, we derive the reductions and some exact
solutions of the (3+1)-dimensional KPBBM equation.
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1. Introduction

In recent years, with the development of science and technology, nonlinear science has gradually entered people’s vision.
At the same time, a large number of nonlinear partial differential equations have emerged. There are many important theories
and research directions in the study of nonlinear partial differential equations, among which the study of the exact solution of
nonlinear partial differential equations is the focus of attention.

Up to now, there are many methods for solving nonlinear partial differential equations. Commonly used are Darboux
transformation[1], Variational iteration method[2], Hirota’s method[3], Lie symmetric method[4], Finite difference method[5]
and so on. Some methods can be said to be enduring and have been applied by scholars in the study of the exact solutions of
partial differential equations. In this paper, we study the symmetry reductions and the exact solutions of (3+1)-dimensional
KPBBM equation,

U, +ku, +K,(uu,), =k, +ku, +ku, =0, (1.1)

XXXt

where U =u(X, Y, z,t), Kk, ,K,, K, , Kk, and K are arbitrary constants. Eq.(1.1) describes the fluid flow in the case of an

offshore structure. When K, =Kk; =0, Eq.(1.1) is reduced to Benjamin-Bona-Mahony equation[6]. When k, =1, k, =0,

Eq.(1.1) is reduced to (2+1)-dimensional KPBBM equation[7]. Lump waves and breather waves, numerical simulation and
soliton solutions for Eq.(1.1) have been presented in Refs.[8-10].

The outline of this paper is as follows. In section 2, we obtain the symmetry group of (3+1)-dimensional KPBBM
equation by applying a direct symmetry method. In section 3, by using the equivalent vector of the symmetry, we get the
optimal system of group-invariant solutions. Based on the optimal system, some reductions and exact solutions of (3+1)-
dimensional KPBBM equation are obtained. In section 4, some conclusions and discussions are given.

2. Symmerty Group

It is well known that symmetry groups provide a useful method for obtaining solutions of partial differential equation
[11,12]. A growing number of mathematicians and physicists have done outstanding work on symmetry and reduction[13-
20].However, there are almost always an infinite number of the subgroups, we need an optimal system to classifying all
possible group-invariant solutions to the system[11]. Based on the application of classical method we consider the one-
parameter group of infinitesimal transformations in (X, Y, Z,t) of Eq.(1.1) given by
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X =x+&£(X,Y,2,t,u)+0(g%),

Yy =y+en(x,y, z,t,u)+o(s%),

7 =z+ec(x Y, 2,t,u)+0(s?), (2.1)
t" =t+er(x, Y, 2z,t,u)+0(g?),

u =u+ew(xy,ztu)+o(s?),

where & is a group parameter. It is required that the set of Eqg.(1.1) be invariant under the transformation (2.1), and this yields
a system of overdetermined, linear equations for the infinitesimals f 1,6 ,7 and i . Solving these equations, one can have

f =GCq,
n=k,cy+k,C,z+c;,
s=k,cz-kc,y+c,, (2.2)

7 =2k,ct+cC;,
v =2Kk,cu+ 2K,

where C,(i=12,...,6) are arbitrary constants. And the associated vector fields for the one-parameter Lie group of

infinitesimal transformations are V,,V, ..., Vg given by
v, =0,,V,=0,,V,=0,,V,=0,,Vs =K,20, —k;y0,,
Ve =k,¥0, +K,20, + 2k,to, + (2k,u + 2k,)0, . (2.3)

Eq.(2.3) shows that the following transformations (defined by exp(sV,) (i =1,2,...,6)) of variables (X, Y, z,t,u) leave the
solutions of Eq.(1.1) invariant:

exp(evy): (Y, z,t,u) >(x+¢,y,z,t,u),

exp(ev,): (X y,z,t,u) > (X, y+¢&,z,t,u),

exp(evs) (%, Y, z,t,u) > (X, v,z +&,t,u),

exp(ev,): (X y,z,t,u) > (X, y, z,t+&u),

exp(evs) : (X, Y, Z,1,u) —> (X, (\Jk ks Sin(y/k ks £)2) 1 kg +cos(fk,ks )Y,
(—kssin(yfk,ks€)y) / Jk ks +cos(fkks€)z,t,u)
exp(eVg) 1 (X, ¥, 2,t,U) = (X, ye', 2" 1™ [ (k,u + k) —k 1/k, ). (24)

Then the following theorem holds:
Theorem 1 If 7 = p(X, Y, Z,t) is a solution of Eq.(1.1), then so are

y® =p(x-¢y,21),
v =p(x,y—e,1.1t),
v =p(xy,z-¢&t),
v =p(xy,2,t-¢),
v =p(xyzt-g).
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3. Symmetry Reductions and Solution

In this section, we will discuss the symmetry reductions and solutions of the Eq.(1.1). In general, to each subgroup of the
symmetry group, there will correspond a family of group- invariant solutions of the equation. It is too complicated to list all
possible group-invariant solutions. By using the method presented in Refs.[13], we can find the optimal system of group-
invariant solutions.

Applying the commutator operators [V,,,V,]=V,V, —V,V, , one get the following table (the entry in row i and the

column J representing [V;,V;])

Table 1. Lie Bracket

Lie A v, A v, Vg Ve
v, 0 0 0 0 0 0
v, 0 0 0 0 —kyv, k,V,
v, 0 0 0 0 K,V, K,V,
Vv, 0 0 0 0 0 2k,V,
Vs 0 KsV, —k,v, 0 0 0
Ve 0 kv, | kv, | =2k, 0 0

Therefore, there is
Proposition 1. The operators V, (i=1,2,...,6) form a Lie algebra, which is a six-dimensional symmetry algebra.

According to the Table 1, one can have the adjoint representation listed in Table 2 with the (i, J) -th entry indicating
Ad (exp(ev)))v; .

Table 2. Adjoint Representation

Ad v, v, Vs
Vl Vl VZ V3
v, v, v, v,
V3 Vl V2 V3
v, v, v, v,
Vs Vi | cos(yfkks)V, — [k sin(\k ks e/ fkoks | TK,sin(y/k ks eV, 17 \fkoks +cos(fk ks )V,
V v, v, ey,

Ad V4 V5 VG

Vl V4 V5 V6

v, v, Vv, + Ksev, Vs —K, eV,

V, v, v, —K,ev, Vs —K, eV,
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v, v, Ve Vv, —2K,ev,
Vg v, A Vg
Vg ey, Vs Vg

If we set V=aV, +a,Vv, +a,V; +a,V, +a.V; +ayV,, applying the formula

Ad (exp(eVv))V, — e[V, v, ]+ %gz[v, [v,v,11- %ﬁ[v, v, v, v 111+,

and Proposition 1, one can get the following theorem by detailed computation:
Theorem 2. The operators generate an optimal system H

(a)vg +Av, + v, a, #0;
(b)vs+v,+ 4y, a5 =0,a, #0;
(b,)vs —v, + Av,,a,=0,a, = 0;
(by)vs + v, 8, =0,a, #0;
(CIv,+v,+Av,,a,=a,=0,a, #0;
(C,)v;—Vv,+Av,,a. =a,=0,a, #0;
(v, +v,,a,=a,=0,a,#0;
(c,)v,—v,,a,=a,=0,a,#0;
(cs)v;,a,=a,=0,a,#0;
(d)v,+v,+Av,,a, =a,=a,=0,a, #0;
(d,)v,-v,+Av,,a, =a,=a,=0,a, #0;
(d,)v,+v,,a,=a,=a,=0,a, #0;
(d)v,-v,,a,=a;=2a,=0,a, #0;
(dy)v,,a,=a,=a,=0,a, #0;
e, +v,,a,=a,=a,=a,=0,a, #0;
(e)v,—v,,a5=a,=a,=a,=0,a, #0;
(e)v,,a,=a,=a,=a,=0,a, #0;
(f)v,,a,=a,=a,=a,=a,=0,a #0.
Solving such reduction equations, one obtains the solutions of the Eq.(1.1).

(I)Solving the reduced equation in case (C, ), one can get

K FF.. +KFZ + Ak F.... +K,F, +kF,, +KF

183
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where F =F(&,n,a),and & =—-At+X, n=Y,a=-t+1Z. Let’s solving the Eq.(3.1), we’ll get the solution

Sy (Ly K K
|:(§,77,0!)=i1 C—(e “ g% +1)[Cgsin \/_ +C,.cos \/_405].

24 Sy &

e C, e C?-\/E 6 CZ\/E

So the solution of Eq.(1.1) is

@2 Ly K (—t Lt
iy 2 -2 [C e LppeaindaCled ¢ oo lluCleny
2 e(Cz)e(Cz) Cz\/g CZ\/E

The corresponding projective structure figures are plotted in Fig.1(a).

(I1)Solving the reduced equation in case (C, ), we arrive at

k,FF.. +k,F? —kAF

e TR, HKF,, —K +kF.. +AF,.+F, =0, 3.2)

§§<fa

where F =F(&,n,a),and E=—At+X, n=Y,a =t+1Z. Let’s solving the Eq.(3.1), we’ll get the solution

12k,C,(C,A2+C)tanh(C,¢ +Cn +C,a +C))*  (8C.k; +8C;Ck, +CJk +C;A+Ck, +C,C )

F(&n.a)= " (.C?

So the solution of Eq.(1.1) is

12k,C,(C,A+C,)tanh(C,(-tA+x)+C,y +C,(t +2) +C,)*
k,

u(x,y,zt) =

_ (8C;k, +8C;C,k; +Cik +C7A+Cok, +C C)
kC2

The corresponding projective structure figures are plotted in Fig.1(b).

(11 Solving the reduced equation in case ( C; ), one arrive at

—F., +kF,, +KF2+kFF, +KF, . +kF +kF, =0, (3.3)

aooé nn

where F =F(&,n,a),and £=t, n=Y,a=—X+Z. Let’s solving the Eq.(3.3), we can the solution

8C, 8 (G +Ca) (_(:8C3+_c8(;[2
K (C7+Cy) [(C’;]z 32(a+Cy)l PR AAG R
Fema) = = 32k, (a +C,)
2 8(0£+C3)
Cl CZ 2
G enrer

So one can solution of Eq.(1.1) is
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—-8C,-8(z—x
—8C,—8(z—X) 2 kz(Cly+C2)\/ (C3y+E3 )2 )
_kz(Czy+C2)4[ . 2 ]2 _32(Z_X+C3)[ : 2 _kz f1(y)+k1+k5]
Cy+C) 4
u(x,y,z,t)=
32k,(z-x+C,)
-8(z—x+C
(Cy+Coy [ X )
(Cly + CZ) f
4 - 1(y) .
The corresponding projective structure figures are plotted in Fig.1(c).
e
iy
h‘ ‘
Fig. 1 (a) 3D-plot (y=0); (b) 3D-plot (x=2=0); (c) 3D-plot (x=0).
(IV)Solving the reduced equation in case (Cg ), one arrive at
F.,+kF2 +KF +kFF —kF,  .+kF, =0, (3.4)
where F =F(&,n,a),and £=t, n=X,a =Y. Let’s solving the Eq.(3.4), we can the solution
F(&na)= —,/20177 +2C, o+ Cy/Cln +C, —% .
2
So one can have the solution of Eq.(1.1)
u(x,y,z,t)= —a/2C1x+ 2C,y + CS,/C1X+ ) —% .
2
The corresponding projective structure figures are plotted in Fig.2(d).
(V)Solving the reduced equation in case ( d, ), one can have
—F. +kF. +KF2 +KFF. +kF.... +K,F +kF,, =0, (3.5)

where F =F(&,n,a),and £ =X—t, n =Y, =12. Let’s solving the Eq.(3.5), we can the solution
F(&n,a)=(Cn+C)a+Cn+C,.

So we can have the solution of Eq.(1.1)
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u(x,y,z,t)=(C,y+C,)z+C,y+C,.
The corresponding projective structure figures are plotted in Fig.2(e)
Base on theoreml, we can know that

u(x, y, 2,1) =[c:l(\/m5i”lf\/%‘€)Z +cos(\fk ke £)y)+C ][_kSS"\‘/(l:/f_ksg)y +cos(yfkk2)7]

—k.sin(y/k,k
u(x,y,z,t) =C,[ 53|r\1/(k k4 58)y+cos(«/k4k55)z]+c4.
475

is also the solution of Eq.(1.1).

(VI)Solving the reduced equation in case (d. ), one can have

kF.. +k,F? +k,FF.. +k,F +kF,, =0,

(3.6)
where F =F(&,n,a),and =X, n=Y,a=2. Let’s solving the Eq.(3.6), we get the solution

«/ k. Kk o+
ok, e(CNNKs Lo gk, 1 (R E TR

)+kS -
K, N KK
F(é:JLa):

k2

So we arrive at the solution of Eq.(1.1)

2k X( V:k y+C,2+C,)+ 2k, f, (L KesZ T Y

) klz_
u(x,y,z,t) = ! [ZKiks

k,

The corresponding projective structure figures are plotted in Fig.2(f)
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Fig. 2 (d) 3D-plot ; (e) 3D-plot (x=z=0); (f) 3D-plot (z=0).
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(VIN)Solving the reduced equation in case (€, ), one can have

—F., +KF> +k,F’+k,FF +kF

n nnné

+k,F, +kF, =0, (3.7)

m

where F =F(&,n,a),and =X, n=Y,a=2. Let’s solving the Eq.(3.1), we get the solution

FEma) =S ral@)+ hE),

So we can obtain the solution of Eq.(1.1)

—X+
u(x,y,z,t) =ﬁ+afl(t) +1,(t).
2 1

The corresponding projective structure figures are plotted in Fig.3(h).

(VINSolving the reduced equation in case (€, ), we arrive at

F.,+kF, +KF’+kFF —kF

nn nmng

+k,F,, +kF,, =0, (38)
where F =F(&,n,a),and £=t, n=X+Y,a=1Z.One can get the solution of Eq.(3.8).

1
12k,

_6k20(2 f, (&) +12kn f,(&) +12k;(a f,(£) + £, (E)].

So one arrive at the solution of Eq.(1.1)

F(&ma)= 121k

F(&n,a)= [_2053 fll (&) - 6c” fz(zj) - kza4 fl(é)2 + (—4k2063 f,(&) +12k;na) f,(£)

[-2a° £, (t) —6a” £, (t) —k,a* f,(£) + (—4k,a* f, (1) + 12K, (X + y)2) f,(t)

—6k, 2% £, (t) +12K, (X + ) f, (t) +12K (e F,(t) + £, (1))].
The corresponding projective structure figures are plotted in Fig.3(i).

(1X)Solving the reduced equation in case ( T ), we arrive at

F., +kF

nm

+kFZ+k,FF, —k;F

nnné

+k,F  +kF, =0, (3.9)

nmnn

where F =F(&,n,a),and £=t, 7 =Y, =2 . One can get the solution of Eq.(3.9).
F(&.n,a)=naf(S)+nf(5)+af(5)+ 1,(S).

So one arrive at the solution of Eq.(1.1)
u(x,y,z,t) = yzf, (t) + yf, (t) + zf, (t) + f,(t).

The corresponding projective structure figures are plotted in Fig.3(j).
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Fig. 2 (h) 3D-plot (x=z=0);

(i) 3D-plot (x=y=0); (j) 3D-plot (z=0).

4. Conclusion

By means of a direct symmetry method[21-25], we investigate a (3+1)-dimensional KPBBM equation. The symmetry

group is obtained and its corresponding group invariant solutions are constructed. Then we give the optimal system by using
the equivalent vector of the obtained symmetry. To every case of the optimal system, we find reductions and obtain some new
explicit solutions of the (3+1)-dimensional KPBBM equation.
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