Original Article

Neighborhood Sombor Indices

V. R. Kulli
Department of Mathematics, Gulbarga University, Gulbarga, India

Received: 25 May 2022
Revised: 04 July 2022
Accepted: 07 July 2022
Published: 09 July 2022

Abstract

A molecular graph is a simple graph related to the structure of a chemical compound. In this paper, we introduce the modified neighborhood Sombor index and the modified neighborhood Sombor exponential of a graph. Also we compute the neighborhood Sombor and modified neighborhood Sombor indices and their corresponding exponentials of some important dendrimers. Some properties of the neighborhood Sombor index are obtained.

Keywords - Neighborhood Sombor index, Modified neighborhood Sombor index, Dendrimer.
Mathematics Subject Classification: 05C69, 05C07, 05C35.

1. Introduction

All graphs considered here are finite, undirected without isolated vertices, loops and multiple edges. For all further notation and terminology we refer the reader to [1].

A molecular graph is simple graph related to the structure of a chemical compound. Each vertex of this graph represents an atom of the molecule and its edge to the bonds between atoms.

Let $S_{G}(u)$ denote the sum of the degrees of all neighborhood vertices of a vertex u in G.
In [2], Graovac et al. defined the following indices:

$$
N_{1}(G)=\sum_{u v \in E(G)}\left(S_{G}(u)+S_{G}(v)\right), \quad N_{2}(G)=\sum_{u v \in E(G)} S_{G}(u) S_{G}(v) .
$$

In [3], Kulli defined the neighborhood Sombor index and the neighborhood Sombor exponential of a graph G as

$$
\begin{aligned}
& N S O(G)=\sum_{u v \in E(G)} \sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}} \\
& N S O(G, x)=\sum_{u v \in E(G)} x^{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}}
\end{aligned}
$$

Recently, some Sombor indices were studied, for example, in $[4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$, 20].

We introduce the modified neighborhood Sombor index of a graph G and defined it as

$$
{ }^{m} N S O(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}}
$$

Considering the modified neighborhood Sombor index, we define the modified neighborhood Sombor exponential of a graph G as

$$
{ }^{m} N S O(G, x)=\sum_{u e} x^{\frac{1}{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}}} .
$$

The forgotten topological index was studied by Furtula et al. in [21] and it is defined as

$$
F(G)=\sum_{u v \in E(G)}\left[d_{G}(u)^{2}+d_{G}(v)^{2}\right]
$$

The F-neighborhood index of a graph G is defined as

$$
N F(G)=\sum_{u v \in E(G)}\left[S(u)^{2}+S(v)^{2}\right]
$$

In this paper, we determine the neighborhood Sombor index and the modified neighborhood Sombor index for some important dendrimers such as tetrathiafulvalene, POPAM, $N S_{2}[n]$ and $N S_{3}[n]$ dendrimers.

2. Results for tetrathiafulvalene dendrimers $\boldsymbol{T D}_{\mathbf{2}}[\boldsymbol{n}]$

In this section, we focus on the molecular graph of a tetrathiafulvalene dendrimer. This family of tetrathiafulvalene dendrimers is denoted by $T D_{2}[n]$, where n is the steps of growth in this type of dendrimers for $n \square 0$. The molecular graph of $T D_{2}[2]$ is shown in Figure 1.

Fig. 1 The molecular graph of $\boldsymbol{T D}_{2}[2]$
Let G be the molecular graph of tetrathiafulvalene dendrimer $T D_{2}[n]$. By algebraic method, we obtain that $|V(G)|=31 \times 2^{n+2}-74$ and $|E(G)|=35 \times 2^{n+2}-85$. Also the edge partition of $T D_{2}[n]$ based on the degree sum of neighbors of end vertices of each edge is obtained as given in Table 1.

Table 1. Edge partition of $T D_{2}[n]$ based on $S_{G}(u)$ and $S_{G}(v)$

Table 1. Edge partition of $\boldsymbol{D}_{2}[\boldsymbol{n}]$ based on $\boldsymbol{S}_{G}(\boldsymbol{u})$ and $\boldsymbol{S}_{G}(\boldsymbol{v})$	
$S_{G}(u), S_{G}(v) \backslash u v \square E(G)$	Number of edges
$(2,4)$	2^{n+2}
$(3,6)$	$2^{n+2}-4$
$(4,6)$	2^{n+2}
$(5,5)$	$7 \times 2^{n+2}-16$
$(5,6)$	$11 \times 2^{n+2}-24$
$(5,7)$	$3 \times 2^{n+2}-8$
$(6,6)$	$2^{n+2}-4$
$(6,7)$	$8 \times 2^{n+2}-24$
$(7,7)$	$2 \times 2^{n+2}-5$

Theorem 1. The neighborhood Sombor index of a tetrathiafulvalene dendrimer $T D_{2}[n]$ is

$$
\begin{gathered}
N S O(G)=(5 \sqrt{5}+2 \sqrt{13}+55 \sqrt{2}+11 \sqrt{61}+3 \sqrt{74}+8 \sqrt{85}) 2^{n+2} \\
-(5 \sqrt{5}+2 \sqrt{13}+55 \sqrt{2}+11 \sqrt{61}+3 \sqrt{74}+8 \sqrt{85})
\end{gathered}
$$

Proof: From the definition and by using Table 1, we have

$$
\begin{aligned}
& N S O(G)=\sum_{u v \in E(G)} \sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}} \\
& \quad=2^{n+2} \sqrt{2^{2}+4^{2}}+\left(2^{n+2}-4\right) \sqrt{3^{2}+6^{2}}+2^{n+2} \sqrt{4^{2}+6^{2}} \\
& \quad+\left(7 \times 2^{n+2}-16\right) \sqrt{5^{2}+5^{2}}+\left(11 \times 2^{n+2}-24\right) \sqrt{5^{2}+6^{2}}+\left(3 \times 2^{n+2}-8\right) \sqrt{5^{2}+7^{2}}
\end{aligned}
$$

$$
+\left(2^{n+2}-4\right) \sqrt{6^{2}+6^{2}}+\left(8 \times 2^{n+2}-24\right) \sqrt{6^{2}+7^{2}}+\left(2 \times 2^{n+2}-5\right) \sqrt{7^{2}+7^{2}}
$$

After simplification, we get the desired result.

Theorem 2. The modified neighborhood Sombor index of a tetrathiafulvalene dendrimer $T D_{2}[n]$ is

$$
\begin{aligned}
{ }^{m} N S O(G) & =\left(\frac{1}{2 \sqrt{5}}+\frac{1}{3 \sqrt{5}}+\frac{1}{2 \sqrt{13}}+\frac{7}{5 \sqrt{2}}+\frac{11}{\sqrt{61}}+\frac{3}{\sqrt{74}}+\frac{1}{6 \sqrt{2}}+\frac{8}{\sqrt{85}}+\frac{2}{7 \sqrt{2}}\right) 2^{n+2} \\
& -\left(\frac{4}{3 \sqrt{5}}+\frac{16}{5 \sqrt{2}}+\frac{24}{\sqrt{61}}+\frac{8}{\sqrt{74}}+\frac{4}{6 \sqrt{2}}+\frac{24}{\sqrt{85}}+\frac{5}{7 \sqrt{2}}\right) .
\end{aligned}
$$

Proof: From the definition and Table 1, we have

$$
\begin{aligned}
{ }^{m} N S O(G) & =\sum_{u v \in E(G)} \frac{1}{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}} \\
& =\frac{2^{n+2}}{\sqrt{2^{2}+4^{2}}}+\frac{2^{n+2}-4}{\sqrt{3^{2}+6^{2}}}+\frac{2^{n+2}}{\sqrt{4^{2}+6^{2}}}+\frac{7 \times 2^{n+2}-16}{\sqrt{5^{2}+5^{2}}}+\frac{11 \times 2^{n+2}-24}{\sqrt{5^{2}+6^{2}}} \\
& +\frac{3 \times 2^{n+2}-8}{\sqrt{5^{2}+7^{2}}}+\frac{2^{n+2}-4}{\sqrt{6^{2}+6^{2}}}+\frac{8 \times 2^{n+2}-24}{\sqrt{6^{2}+7^{2}}}+\frac{2 \times 2^{n+2}-5}{\sqrt{7^{2}+7^{2}}}
\end{aligned}
$$

gives the desired result after simplification.
Theorem 3. The neighborhood Sombor exponential of a tetrathiafulvalene dendrimer $T D_{2}[n]$ is

$$
\begin{gathered}
N S O(G, x)=2^{n+2} x^{2 \sqrt{5}}+\left(2^{n+2}-4\right) x^{3 \sqrt{5}}+2^{n+2} x^{2 \sqrt{13}}+\left(7 \times 2^{n+2}-16\right) x^{5 \sqrt{2}}+\left(11 \times 2^{n+2}-24\right) x^{\sqrt{61}} \\
+\left(3 \times 2^{n+2}-8\right) x^{\sqrt{74}}+\left(2^{n+2}-4\right) x^{6 \sqrt{2}}+\left(8 \times 2^{n+2}-24\right) x^{\sqrt{85}}+\left(2 \times 2^{n+2}-5\right) x^{7 \sqrt{2}}
\end{gathered}
$$

Proof: Using definition and Table 1, we obtain

$$
\begin{aligned}
& N S O(G, x)=\sum_{u v \in E(G)} x^{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}} \\
& =2^{n+2} x^{\sqrt{2^{2}+4^{2}}}+\left(2^{n+2}-4\right) x^{\sqrt{3^{2}+6^{2}}}+2^{n+2} x^{\sqrt{4^{2}+6^{2}}}+\left(7 \times 2^{n+2}-16\right) x^{\sqrt{5^{2}+5^{2}}} \\
& +\left(11 \times 2^{n+2}-24\right) x^{\sqrt{5^{2}+6^{2}}}+\left(3 \times 2^{n+2}-8\right) x^{\sqrt{5^{2}+7^{2}}}+\left(2^{n+2}-4\right) x^{\sqrt{6^{2}+6^{2}}} \\
& +\left(8 \times 2^{n+2}-24\right) x^{\sqrt{6^{2}+7^{2}}}+\left(2 \times 2^{n+2}-5\right) x^{\sqrt{7^{2}+7^{2}}}
\end{aligned}
$$

After simplification, we obtain the desired result.
Theorem 4. The modified neighborhood Sombor exponential of a tetrathiafulvalene dendrimer $T D_{2}[n]$ is

$$
\begin{gathered}
{ }^{m} N S O(G, x)=2^{n+2} x^{\frac{1}{2 \sqrt{5}}}+\left(2^{n+2}-4\right) x^{\frac{1}{3 \sqrt{5}}}+2^{n+2} x^{\frac{1}{2 \sqrt{13}}}+\left(7 \times 2^{n+2}-16\right) x^{\frac{1}{5 \sqrt{2}}}+\left(11 \times 2^{n+2}-24\right) x^{\frac{1}{\sqrt{61}}} \\
+\left(3 \times 2^{n+2}-8\right) x^{\frac{1}{\sqrt{74}}}+\left(2^{n+2}-4\right) x^{\frac{1}{6 \sqrt{2}}}+\left(8 \times 2^{n+2}-24\right) x^{\frac{1}{\sqrt{85}}}+\left(2 \times 2^{n+2}-5\right) x^{\frac{1}{7 \sqrt{2}}}
\end{gathered}
$$

Proof: From the definition and by using Table 1, we get

$$
\begin{aligned}
& { }^{m} N S O(G, x)=\sum_{u v \in E(G)} x^{\frac{1}{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}}} \\
& \quad=2^{n+2} x^{\frac{1}{\sqrt{2^{2}+4^{2}}}}+\left(2^{n+2}-4\right) x^{\frac{1}{\sqrt{3^{2}+6^{2}}}}+2^{n+2} x^{\frac{1}{\sqrt{4^{2}+6^{2}}}}+\left(7 \times 2^{n+2}-16\right) x^{\frac{1}{\sqrt{5^{2}+5^{2}}}} \\
& \quad+\left(11 \times 2^{n+2}-24\right) x^{\frac{1}{\sqrt{5^{2}+6^{2}}}}+\left(3 \times 2^{n+2}-8\right) x^{\frac{1}{\sqrt{5^{2}+7^{2}}}}+\left(2^{n+2}-4\right) x^{\frac{1}{\sqrt{6^{2}+6^{2}}}}
\end{aligned}
$$

$$
+\left(8 \times 2^{n+2}-24\right) x^{\frac{1}{\sqrt{6^{2}+7^{2}}}}+\left(2 \times 2^{n+2}-5\right) x^{\frac{1}{\sqrt{7^{2}+7^{2}}}}
$$

After simplification, we get the desired result.

3. Results for POPAM dendrimers $P O D_{2}[n]$

In this section, we focus on the molecular graph of POPAM dendrimers. This family of dendrimers is denoted by $P O D_{2}[n]$, where n is the steps of growth in this type of dendrimers. The molecular graph of $P O D_{2}[2]$ is shown in Figure 2.

Fig. 2 The molecular graph of $\mathrm{POD}_{2}[n]$
Let G be the molecular graph of POPAM dendrimers $P O D_{2}[n]$. By algebraic method, we obtain that $\left|V\left(P O D_{2}[n]\right)\right|=2^{n+5}-$ 10 and $\left|E\left(P O D_{2}[n]\right)\right|=2^{n+5}-11$. The edge partition of $P O D_{2}[n]$ based on the degree sum of neighbors of end vertices of each edge is obtained as given in Table 2.

$\boldsymbol{S}_{\boldsymbol{G}}(\boldsymbol{u}), \boldsymbol{S}_{\boldsymbol{G}}(\boldsymbol{v}) \backslash \boldsymbol{u} \boldsymbol{v} \square \boldsymbol{E}(\boldsymbol{G})$	Number of edges
$(2,3)$	2^{n+2}
$(3,4)$	2^{n+2}
$(4,4)$	1
$(4,5)$	$3 \times 2^{n}-6$
$(5,6)$	$3 \times 2^{n}-6$

Theorem 5. The neighborhood Sombor index of a POPAM dendrimer $P O D_{2}[n]$ is

$$
N S O(G)=2^{n+2}(\sqrt{13}+5)+4 \sqrt{2}+\left(3 \times 2^{n}-6\right)(\sqrt{41}+\sqrt{61})
$$

Proof: From the definition and by using Table 2, we have

$$
\begin{aligned}
& \operatorname{NSO}(G)=\sum_{u v \in E(G)} \sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}} \\
& \quad=2^{n+2} \sqrt{2^{2}+3^{2}}+2^{n+2} \sqrt{3^{2}+4^{2}}+1 \sqrt{4^{2}+4^{2}} \\
& \quad+\left(3 \times 2^{n}-6\right) \sqrt{4^{2}+5^{2}}+\left(3 \times 2^{n}-6\right) \sqrt{5^{2}+6^{2}}
\end{aligned}
$$

After simplification, we obtain the desired result.
Theorem 6. The modified neighborhood Sombor index of a POPAM dendrimer $P O D_{2}[n]$ is

$$
{ }^{m} N S O(G)=2^{n+2}\left(\frac{1}{\sqrt{13}}+\frac{1}{5}\right)+\frac{1}{4 \sqrt{2}}+\left(3 \times 2^{n}-6\right)\left(\frac{1}{\sqrt{41}}+\frac{1}{\sqrt{61}}\right)
$$

Proof: From the definition and by using Table 2, we have

$$
\begin{aligned}
{ }^{m} N S O(G) & =\sum_{u v \in E(G)} \frac{1}{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}} \\
& =\frac{2^{n+2}}{\sqrt{2^{2}+3^{2}}}+\frac{2^{n+2}}{\sqrt{3^{2}+4^{2}}}+\frac{1}{\sqrt{4^{2}+4^{2}}}+\frac{3 \times 2^{n}-6}{\sqrt{4^{2}+5^{2}}}+\frac{3 \times 2^{n}-6}{\sqrt{5^{2}+6^{2}}} .
\end{aligned}
$$

After simplification, we get the desired result.
Theorem 7. The neighborhood Sombor exponential of a POPAM dendrimer $P O D_{2}[n]$ is

$$
N S O(G, x)=2^{n+2} x^{\sqrt{13}}+2^{n+2} x^{5}+1 x^{4 \sqrt{2}}+\left(3 \times 2^{n}-6\right) x^{\sqrt{41}}+\left(3 \times 2^{n}-6\right) x^{\sqrt{61}}
$$

Proof: Using the definition and Table 2, we obtain

$$
\begin{aligned}
& N S O(G, x)=\sum_{u v \in E(G)} x^{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}} \\
& \quad=2^{n+2} x^{\sqrt{2^{2}+3^{2}}}+2^{n+2} x^{\sqrt{3^{2}+4^{2}}}+1 x^{\sqrt{4^{2}+4^{2}}}+\left(3 \times 2^{n}-6\right) x^{\sqrt{4^{2}+5^{2}}}+\left(3 \times 2^{n}-6\right) x^{\sqrt{5^{2}+6^{2}}} .
\end{aligned}
$$

After simplification, we obtain the desired result.
Theorem 8. The modified neighborhood Sombor exponential of a POPAM dendrimer $P O D_{2}[n]$ is

$$
{ }^{m} N S O(G, x)=2^{n+2} x^{\frac{1}{\sqrt{13}}}+2^{n+2} x^{\frac{1}{5}}+1 x^{\frac{1}{4 \sqrt{2}}}+\left(3 \times 2^{n}-6\right) x^{\frac{1}{\sqrt{41}}}+\left(3 \times 2^{n}-6\right) x^{\frac{1}{\sqrt{61}}}
$$

Proof: From the definition and by using Table 2, we obtain

$$
\begin{aligned}
{ }^{m} N S O(G, x) & =\sum_{u v \in E(G)} x^{\frac{1}{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}}} \\
& =2^{n+2} x^{\frac{1}{\sqrt{2^{2}+3^{2}}}}+2^{n+2} x^{\frac{1}{\sqrt{3^{2}+4^{2}}}}+1 x^{\frac{1}{\sqrt{4^{2}+4^{2}}}} \\
& +\left(3 \times 2^{n}-6\right) x^{\frac{1}{\sqrt{4^{2}+5^{2}}}}+\left(3 \times 2^{n}-6\right) x^{\frac{1}{\sqrt{5^{2}+6^{2}}}}
\end{aligned}
$$

After simplification, we obtain the desired result.

4. Results for $\mathrm{NS}_{2}[n]$ dendrimers

In this section, we focus on the class of $N S_{2}[n]$ dendrimers with $n \square 1$. The graph of $N S_{2}[3]$ is shown in Figure 3 .

Fig. 3 The graph of $\mathrm{NS}_{2}[3]$

Let G be the graph of $N S_{2}[n]$. By calculation, G has $16 \times 2^{n}-4$ vertices and $18 \times 2^{n}-5$ edges. Also by calculation, we obtain that G has seven types of edges based on $S_{G}(u), S_{G}(v)$ the degrees of end vertices of each edge as given in Table 3.

Table 3. Edge partition of $N S_{2}[n]$ based on $S_{G}(u)$ and $S_{G}(v)$

$\boldsymbol{S}_{\boldsymbol{G}}(\boldsymbol{u}), \boldsymbol{S}_{\boldsymbol{G}}(\boldsymbol{v}) \backslash \boldsymbol{u v} \boldsymbol{E}(\boldsymbol{G})$	Number of edges
$(4,4)$	2×2^{n}
$(5,4)$	2×2^{n}
$(5,5)$	$2 \times 2^{n}+2$
$(5,6)$	6×2^{n}
$(7,7)$	1
$(5,7)$	4
$(6,6)$	$6 \times 2^{n}-12$

Theorem 9. The neighborhood Sombor index of a dendrimer $N S_{2}[n]$ is

$$
N S O(G)=(54 \sqrt{2}+2 \sqrt{41}+6 \sqrt{61}) 2^{n}-55 \sqrt{2}+4 \sqrt{74}
$$

Proof: From the definition and by using Table 3, we have

$$
\begin{aligned}
& N S O(G)=\sum_{u v \in E(G)} \sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}} \\
& \quad=2 \times 2^{n} \sqrt{4^{2}+4^{2}}+2 \times 2^{n} \sqrt{5^{2}+4^{2}}+\left(2 \times 2^{n}+2\right) \sqrt{5^{2}+5^{2}}+6 \times 2^{n} \sqrt{5^{2}+6^{2}} \\
& \quad+1 \sqrt{7^{2}+7^{2}}+4 \sqrt{5^{2}+7^{2}}+\left(6 \times 2^{n}-12\right) \sqrt{6^{2}+6^{2}}
\end{aligned}
$$

gives the desired result after simplification.
Theorem 10. The modified neighborhood Sombor index of a dendrimer $N S_{2}[n]$ is

$$
{ }^{m} N S O(G)=\frac{2 \times 2^{n}}{4 \sqrt{2}}+\frac{2 \times 2^{n}}{\sqrt{41}}+\frac{2 \times 2^{n}+2}{5 \sqrt{2}}+\frac{6 \times 2^{n}}{\sqrt{61}}+\frac{1}{7 \sqrt{2}}+\frac{4}{\sqrt{74}}+\frac{6 \times 2^{n}-12}{6 \sqrt{2}}
$$

Proof: From the definition and Table 3, we obtain

$$
\begin{aligned}
{ }^{m} N S O(G) & =\sum_{u v \in E(G)} \frac{1}{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}} \\
& =\frac{2 \times 2^{n}}{\sqrt{4^{2}+4^{2}}}+\frac{2 \times 2^{n}}{\sqrt{5^{2}+4^{2}}}+\frac{2 \times 2^{n}+2}{\sqrt{5^{2}+5^{2}}}+\frac{6 \times 2^{n}}{\sqrt{5^{2}+6^{2}}} \\
& +\frac{1}{\sqrt{7^{2}+7^{2}}}+\frac{4}{\sqrt{5^{2}+7^{2}}}+\frac{6 \times 2^{n}-12}{\sqrt{6^{2}+6^{2}}}
\end{aligned}
$$

After simplification, we obtain the desired result.
Theorem 11. The neighborhood Sombor exponential of a dendrimer $N S_{2}[n]$ is

$$
\begin{aligned}
& N S O(G, x)=2 \times 2^{n} x^{4 \sqrt{2}}+2 \times 2^{n} x^{\sqrt{41}}+\left(2 \times 2^{n}+2\right) x^{5 \sqrt{2}}+6 \times 2^{n} x^{\sqrt{61}} \\
& +1 x^{7 \sqrt{2}}+4 x^{\sqrt{74}}+\left(6 \times 2^{n}-12\right) x^{6 \sqrt{2}}
\end{aligned}
$$

Proof: Using definition and Table 3, we obtain

$$
\begin{aligned}
& \operatorname{NSO}(G, x)=\sum_{u v \in E(G)} x^{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}} \\
& \quad=2 \times 2^{n} x^{\sqrt{4^{2}+4^{2}}}+2 \times 2^{n} x^{\sqrt{5^{2}+4^{2}}}+\left(2 \times 2^{n}+2\right) x^{\sqrt{5^{2}+5^{2}}}+6 \times 2^{n} x^{\sqrt{5^{2}+6^{2}}} \\
& \quad+1 x^{\sqrt{7^{2}+7^{2}}}+4 x^{\sqrt{5^{2}+7^{2}}}+\left(6 \times 2^{n}-12\right) x^{\sqrt{6^{2}+6^{2}}}
\end{aligned}
$$

gives the desired result after simplification.
Theorem 12. The modified neighborhood Sombor exponential of a dendrimer $N S_{2}[n]$ is

$$
\begin{aligned}
& { }^{m} N S O(G, x)=2 \times 2^{n} x^{\frac{1}{4 \sqrt{2}}}+2 \times 2^{n} x^{\frac{1}{\sqrt{41}}}+\left(2 \times 2^{n}+2\right) x^{\frac{1}{5 \sqrt{2}}}+6 \times 2^{n} x^{\frac{1}{\sqrt{61}}} \\
& +1 x^{\frac{1}{7 \sqrt{2}}}+4 x^{\frac{1}{\sqrt{74}}}+\left(6 \times 2^{n}-12\right) x^{\frac{1}{6 \sqrt{2}}}
\end{aligned}
$$

Proof: From the definition and by using Table 3, we get

$$
\begin{aligned}
& { }^{m} N S O(G, x)=\sum_{u v \in E(G)} x^{\frac{1}{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}}} \\
& \quad=2 \times 2^{n} x^{\frac{1}{\sqrt{4^{2}+4^{2}}}}+2 \times 2^{n} x^{\frac{1}{\sqrt{5^{2}+4^{2}}}}+\left(2 \times 2^{n}+2\right) x^{\frac{1}{\sqrt{5^{2}+5^{2}}}}+6 \times 2^{n} x^{\frac{1}{\sqrt{5^{2}+6^{2}}}} \\
& \quad+1 x^{\frac{1}{\sqrt{7^{2}+7^{2}}}}+4 x^{\frac{1}{\sqrt{5^{2}+7^{2}}}}+\left(6 \times 2^{n}-12\right) x^{\frac{1}{\sqrt{6^{2}+6^{2}}}}
\end{aligned}
$$

After simplification, we obtain the desired result.

5. Results for $\mathrm{NS}_{3}[n]$ dendrimers

In this section, we focus on another type of dendrimers $N S_{3}[n]$ with $n \square 1$. The molecular structure of $N S_{3}[2]$ is presented in Figure 4.

Let G be the molecular graph of $N S_{3}[n]$. By calculation, we obtain that G has $18 \times 2^{n}-12$ vertices and $21 \times 2^{n}-15$ edges. Also by calculation, we get that G has five types of edges based on $S_{G}(u)$ and $S_{G}(v)$ the degrees of end vertices of each edge as given in Table 4.

Table 4. Edge partition of $N S_{3}[n]$ based on $S_{G}(u)$ and $S_{G}(v)$

$S_{G}(u), S_{G}(v) \backslash u v \square E(G)$	Number of edges
$(4,4)$	3×2^{n}
$(5,4)$	3×2^{n}
$(5,7)$	3×2^{n}
$(6,7)$	$9 \times 2^{n}-12$
$(7,7)$	$3 \times 2^{n}-3$

Theorem 13. The neighborhood Sombor index of a dendrimer $N S_{3}[n]$ is

$$
N S O(G)=3 \times 2^{n}(4 \sqrt{2}+\sqrt{41}+\sqrt{74})+\left(9 \times 2^{n}-12\right) \sqrt{85}+\left(3 \times 2^{n}-3\right) 7 \sqrt{2}
$$

Proof: From the definition and by using Table 4, we have

$$
\begin{aligned}
N S O(G) & =\sum_{u v \in E(G)} \sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}} \\
& =3 \times 2^{n} \sqrt{4^{2}+4^{2}}+3 \times 2^{n} \sqrt{5^{2}+4^{2}}+3 \times 2^{n} \sqrt{5^{2}+7^{2}} \\
& +\left(9 \times 2^{n}-12\right) \sqrt{6^{2}+7^{2}}+\left(3 \times 2^{n}-3\right) \sqrt{7^{2}+7^{2}} .
\end{aligned}
$$

After simplification, we get the desired result.
Theorem 14. The modified neighborhood Sombor index of a dendrimer $N S_{3}[n]$ is

$$
{ }^{m} N S O(G)=3 \times 2^{n}\left(\frac{1}{4 \sqrt{2}}+\frac{1}{\sqrt{41}}+\frac{1}{\sqrt{74}}\right)+\frac{9 \times 2^{n}-12}{\sqrt{85}}+\frac{3 \times 2^{n}-3}{7 \sqrt{2}}
$$

Proof: From the definition and by using Table 4, we have

$$
\begin{aligned}
{ }^{m} N S O(G) & =\sum_{u v \in E(G)} \frac{1}{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}} \\
& =\frac{3 \times 2^{n}}{\sqrt{4^{2}+4^{2}}}+\frac{3 \times 2^{n}}{\sqrt{5^{2}+4^{2}}}+\frac{3 \times 2^{n}}{\sqrt{5^{2}+7^{2}}}+\frac{9 \times 2^{n}-12}{\sqrt{6^{2}+7^{2}}}+\frac{3 \times 2^{n}-3}{\sqrt{7^{2}+7^{2}}} .
\end{aligned}
$$

gives the desired result.
Theorem 15. The neighborhood Sombor exponential of a dendrimer $N S_{3}[n]$ is

$$
\begin{aligned}
N S O(G, x) & =3 \times 2^{n} x^{4 \sqrt{2}}+3 \times 2^{n} x^{\sqrt{41}}+3 \times 2^{n} x^{\sqrt{74}} \\
& +\left(3 \times 2^{n}-6\right) x^{\sqrt{85}}+\left(3 \times 2^{n}-6\right) x^{7 \sqrt{2}}
\end{aligned}
$$

Proof: Using definition and Table 4, we obtain

$$
\begin{aligned}
N S O(G, x) & =\sum_{u v \in E(G)} x^{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}} \\
& =3 \times 2^{n} x^{\sqrt{4^{2}+4^{2}}}+3 \times 2^{n} x^{\sqrt{5^{2}+4^{2}}}+3 \times 2^{n} x^{\sqrt{5^{2}+7^{2}}} \\
& +\left(9 \times 2^{n}-12\right) x^{\sqrt{6^{2}+7^{2}}}+\left(3 \times 2^{n}-3\right) x^{\sqrt{7^{2}+7^{2}}}
\end{aligned}
$$

After simplification, we obtain the desired result.
Theorem 16. The modified neighborhood Sombor exponential of a dendrimer $N S_{3}[n]$ is

$$
\begin{array}{r}
{ }^{m} N S O(G, x)=3 \times 2^{n} x^{\frac{1}{4 \sqrt{2}}}+3 \times 2^{n} x^{\frac{1}{\sqrt{41}}}+3 \times 2^{n} x^{\frac{1}{\sqrt{74}}} \\
+\left(9 \times 2^{n}-12\right) x^{\frac{1}{\sqrt{85}}}+\left(3 \times 2^{n}-3\right) x^{\frac{1}{7 \sqrt{2}}}
\end{array}
$$

Proof: Using definition and Table 4, we obtain

$$
\begin{aligned}
&{ }^{m} N S O(G, x)=\sum_{u v \in E(G)} x^{\frac{1}{\sqrt{S_{G}(u)^{2}+S_{G}(v)^{2}}}} \\
&= 3 \times 2^{n} x^{\frac{1}{\sqrt{4^{2}+4^{2}}}}+3 \times 2^{n} x^{\frac{1}{\sqrt{5^{2}+4^{2}}}}+3 \times 2^{n} x^{\frac{1}{\sqrt{5^{2}+7^{2}}}} \\
&+\left(9 \times 2^{n}-12\right) x^{\frac{1}{\sqrt{6^{2}+7^{2}}}}+\left(3 \times 2^{n}-3\right) x^{\frac{1}{\sqrt{7^{2}+7^{2}}}}
\end{aligned}
$$

After simplification, we get the desired result.

6. Properties of neighborhood Sombor index

Theorem 17. Let G be a connected graph with m edges. Then

$$
\frac{1}{\sqrt{2}} N_{1}(G) \leq N S O(G) \leq N_{1}(G)
$$

Proof: For any two positive numbers a and b,

$$
\frac{1}{\sqrt{2}}(a+b) \leq \sqrt{\left(a^{2}+b^{2}\right)} \leq a+b .
$$

For $a=S_{G}(u)$ and $b=S_{G}(v)$, the above inequalities transform into

$$
\frac{1}{\sqrt{2}}\left(S_{G}(u)+S_{G}(v)\right) \leq \sqrt{\left(S_{G}(u)^{2}+S_{G}(v)^{2}\right)} \leq S_{G}(u)+S_{G}(v)
$$

Now, we obtain

$$
\frac{1}{\sqrt{2}} \sum_{u v \in E(G)}\left(S_{G}(u)+S_{G}(v)\right) \leq \sum_{u v \in E(G)} \sqrt{\left(S_{G}(u)^{2}+S_{G}(v)^{2}\right.} \leq \sum_{u v \in E(G)}\left(S_{G}(u)+S_{G}(v)\right)
$$

with the help of definitions, we arrive the desired result.
Theorem 18. Let G be a connected graph with m edges. Then

$$
N S O(G) \leq \sqrt{m N F(G)}
$$

Proof: Using the Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
\left(\sum_{u v \in E(G)} \sqrt{S(u)^{2}+S(v)^{2}}\right)^{2} & \leq \sum_{u v \in E(G)} 1 \sum_{u v \in E(G)}\left(S(u)^{2}+S(v)^{2}\right) \\
& =m N F(G) \\
N S O(G) & \leq \sqrt{m N F(G)}
\end{aligned}
$$

Thus

7. Conclusion

In this study, the neighborhood Sombor index and the modified neighborhood Sombor index for the tetrathiafulvalene, POPAM, $N S_{2}[n]$ and $N S_{3}[n]$ dendrimers are computed. We also established some properties of the neighborhood Sombor index.

References

[1] V.R.Kulli, "College Graph Theory," Vishwa International Publications, Gulbarga, India, 2012.
[2] A.Graovac, M.Ghorbani and M.A.Hosseinzadeh, "Computing Fifth Geometric-Arithmetic Index of Nanostardendrimers," Journal of Mathematical Nanoscience, vol. 1, no. 1, pp. 33-42, 2011.
[3] V.R Kulli, "NeighborhoodSombor Index of Some Nanostructures," International Journal of Mathematics Trends and Technology, vol. 67, no. 5, pp. 101-108, 2021.
[4] I.Gutman, "Geometric Approach to Degree-Based Topological Indices: Sombor Indices," MATCH Commun. Math. Comput.Chem, vol. 86, pp. 11-16, 2021.
[5] V.R.Kulli, "Sombor Indices of Certain Graph Operators," International Journal of Engineering Sciences and Research Technology, vol. 10, no. 1, pp. 127-134, 2021.
[6] K.C. Das, A.S. Cevik, I.N. Cangul and Y. Shang, "On Sombor Index," Symmetry, vol. 13, pp. 140, 2021.
[7] Y.Huang and H.Liu, "Bounds of Modified Sombor Index, Spectral Radius and Energy," AIMS Mathematics, vol. 6, no. 10, pp. 11263-11274, 2021.
[8] V.R.Kulli, "On Banhatti-Sombor Indices," SSRG International Journal of Applied Chemistry, vol. 8, no. 1, pp.20-25, 2021.
[9] V.R.Kulli and I.Gutman, "Computation of Sombor Indices of Certain Networks," SSRG International Journal of Applied Chemistry, vol. 8, no. 1, pp. 1-5, 2021.
[10] V.RKulli, " δ-Sombor Index and Its Exponential for Certain Nanotubes," Annals of Pure and Applied Mathematics, vol. 23, no. 1, pp. 37-42, 2021.
[11] V.R.Kulli, "Computation of Multiplicative Banhatti-Sombor Indices of Certain Benzenoid Systems," International Journal of Mathematical Archive, vol. 12, no. 4, pp. 24-30, 2021.
[12] V.R.Kulli, "On Second Banhatti-Sombor Indices," International Journal of Mathematical Archive, vol. 12, no. 5, pp. 11-16, 2021.
[13] I.Milovanovic, E.Milovanovic and M.Matejic, "On Some Mathematical Properties of Sombor Indices," Bull. Int. Math. Virtual Inst. vol. 11, no. 2, pp. 341-353, 2021.
[14] V.R Kulli, "Multiplicative Sombor Indices of Certain Nanotubes," International Journal of Mathematical Archive, vol. 12, no. 3, pp. 1-5, 2021.
[15] V.R.Kulli and I.Gutman, "RevanSombor Index," Journal of Mathematics and Informatics, vol. 22, pp. 23-27, 2022.
[16] V.R.Kulli, "Revan Somborindices and their Exponentials for Certain Nanotubes," International Journal of Engineering Sciences \& Research Technology, vol. 11, no. 50, pp. 22-31, 2022.
[17] V.R Kulli, "Status Sombor Indices," International Journal of Mathematics and Computer Research, vol. 10, no. 6, pp. 2726-2730, 2022.
[18] H.R.Manjunatha, V.R Kulli and N.D.Soner, "The HDR Sombor Index," International Journal of Mathematics Trends and Technology, vol. 68, no. 4, pp. 1-6, 2022.
[19] R.Aguilar-Sanchez, J.A.Mendez-Bermudez, J.M.Sigaarreta, "Normalized Sombor Indices as Complexity Measures of Random Graphs," arXiv, DOI: arXiv: 2106.03190, 2021.
[20] Z.Lil, T.Zhou, V.R.Kulli and L.Miao, "On the First Banhatti-Sombor Index," J.Int.Math. Virt. Inst. vol. 11, pp. 53-68, 2021.
[21] B.Furtula and I. Gutman, "A Forgotten Topological Index," J. Math. Chem, vol. 53, pp. 1184-1190, 2015.

