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Abstract
This paper investigates B-Spline Collocation Solution for Burgers’ equation arising in longitudinal dispersion

phenomenon in the fluid flow through porous media. In the porous medium clean water, saltwater or tainted water
disperse longitudinal way offers to increase to a non-linear partial differential condition as Burgers’ equation. The
equation is solved by utilizing the B-Spline Collocation method with suitable initial and boundary conditions. The
issue of miscible displacement can be found in the seaside territories, where new water beds are step by step uprooted
via ocean water. An unequivocally steady B-spline Collocation method has been utilized to discover the concentration
C(X ,T ) of salty or polluted water dispersion in uni-direction. It is completed, that the concentration C(X ,T ) reduce
as distance X just as time T increments. The tables and figures are created by utilizing MATLAB coding.
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1 Introduction
The present paper discusses the problem of longitudinal dispersion, which occurs during two-phase flow of miscible
fluids through porous media.The governing equation non-linear partial differential equation yields into the form of
Burger’s equation and its solution has been obtained by using B-Spline method.There are different methods to solve
the Burgers’ equation numerically. In this paper, B-Spline Collocation method is presented to discuss the solution of
the problem. According to problem, solution shows that a B-spline collocation method is capable of solving Burger’s
equation accurately. This method is easy to implement and requires no any inner iteration or corrector to deal with the
nonlinear terms of the Burger’s equation.

2 Statement of the problem
In porous media, a miscible displacement is a form of double-phase A flow in which two phases are completely solu-
ble in each other. Capillary forces between the fluids, therefore do It didn’t come into effect. Longitudinal dispersion
of the Contaminated or saline water containing C(x, t) It has been considered to flow in the x-direction, the porous
medium is homogeneous and is saturated with fresh water. The Miscible Stream (contaminated or saline and fresh-
water) Under conditions of absolute miscibility, it could be concluded that Behave, at least locally, as a single-phase
fluid that would obey Darcy’s law. In turn, the change of concentration Diffusion along the channels of flow which
would be caused by Thus the bulk coefficients of diffusion are governed by the There’s one fluid in the other. There
is no mass transfer between the It is assumed that the solid and liquid phases [[7],[8]].The Miscible flow occurs both
longitudinally and transversely, but the spreading caused by dispersion is greater than the transverse direction in the
direction of flow.
Describing the growth of the mixed region is the problem, i.e. to find the contaminated water concentration C(X ,T )

As two miscible fluids, as a function of time t and position x, Flow-through Porous Homogeneous Media. Outside of
the field (on either side), the single-fluid equation describes the fluid’s motion.
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Figure 1: Longitudinal and Transverse dispersion

3 Mathematical formulation of the Problem
In the present problem, the dispersion is considered to be The zone is one-way, i.e. x-direction. The One Dimensional
The treatment of dispersion phenomena prohibits circular or radial treatment. Dispersion transverse component. Ac-
cording to Darcy’s law, the continuity equation for the In the case of incompressible fluids, the mixture is provided by
The [[2],[8]] bear.

∂ρ

∂ t
+div · (ρV̄ ) = 0 (1)

where, ρ is the density for mixture and V̄ is the pore seepage velocity vector.
The diffusion equation for the flow of fluid through a Homogeneous porous medium, not growing or increasing The
reduction of the dispersing material is supplied by

∂C
∂ t

+div · (CV̄ ) = ∇ ·
[

ρD̄div
(

C
ρ

)]
(2)

Where, C is the concentration of the fluid A into the other Host fluid B (i.e. C is the mass of fluid A per unit volume
of the mixture) and D̄ is the dispersion tensor coefficient of having unit [length2 · time−1] with nine components Di j .
Flow through a homogeneous porous medium in a laminar flow It can be called stable at a constant temperature. Then

div ·V̄ = 0 (3)

Hence equation (2) can be written as
∂C
∂ t

+V̄ ·∇C = div [D̄.divC] (4)

when the seepage velocity V̄ is along the x-axis, the non zero components are D11 = DL = L
C2

0
(coefficient of longitu-

dinal dispersion) and D22 = D (coefficient of transverse dispersion) and other Di j’s are zero. In this case the equation
(4) becomes [2],[7],[10],[11],[13],

∂C
∂ t

+u
∂C
∂x

= DL
∂ 2C
∂x2 (5)

Where, u is the component of flow velocity V̄ along the X-axis with the dimension [length · time−1]it is time Based in
the non-negative direction along the x-axis, and DL = γ > 0 is the cross-sectional flow velocity of porous Medium. It
has been observed by Mehta[12, 13, 14] that the seepage u flow velocity is correlated with the concentration of the
Material dispersing as material

u =
C(x, t)

C0
, for x > 0 (6)

where, the concentration of the contaminated water at x = 0 is very high and it is constant C0 = 1(Mehta2006) By
using equation (6) in the (5) , we get,

∂C
∂ t

+C
∂C
∂x

= γ
∂ 2C
∂x2 (7)
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where, γ is the coefficient of longitudinal dispersion. The equation (7) is a non-linear Burgers’ equation governing
Miscible contaminated water for longitudinal dispersion Passage through porous media. As indicated in the declara-
tion, the Dispersion is the movement of uni-directional displacements by Semi-finite homogeneous porous media, the
seepage flow velocity of the contaminated water is believed to be unstable. Here here, The initial dispersion concentra-
tion is known to be an The highest constant concentration of contaminants at the input of x = 0 corresponds to C0.The
porous medium is believed to be nonadsorbent. The governing partial equation of differentials (7) for In a semi finite,
longitudinal hydrodynamic dispersion with In a unidirectional flow field, a non-adsorbent porous medium Where γ

is the longitudinal dispersion coefficient, C is is the average cross-sectional concentration, u is the unsteady seepage
velocity, x is a coordinate parallel to flow and t is time.

4 Numerical Solution of the problem using B-spline method
We set the equation to make the equation (7) dimensionless. Variables dimensionless as X = x

L and T = t
L so that

o≤ X ≤ 1,0≤ T ≤ 1. Hence the equation (7) reduced to

∂C
∂T

+C
∂C
∂X

= γ
∂ 2C
∂X2 (8)

The required initial and boundary conditions are taken as

C(X ,0) = (1−X)2, ,0 < X ≤ 1
C(0,1) =C0 = 1. ,0 < T ≤ 1
C(1,T ) =C1 = 0.001, ,0≤ T < 1

(9)

The region [0,1] is partitioned into uniformly sized finite elements f the length h by knots X j such 0 = X0 <
X1 < · · · < XN = 1. Let Φm(X) be cubic B-splines with knots at the points Xm,m = 0, · · · ,N. The set of splines
{Φ−1,Φ0,Φ1, · · · ,ΦN ,ΦN+1} forms a basis for functions defined over [0,1] .Thus, an approximation CN(X ,T ) to the
exact solution C(X ,T ) can be expressed in terms of the cubic B-splines as trial functions:

CN(X ,T ) =
N+1

∑
m=−1

δm(T )Φm(X), (10)

Cubic B-splines Φm with the required properties are defined by relationship

Φm =
1
h3



(X−Xm−2)
3 [Xm−2,Xm−1],

h3 +3h2(X−Xm−1)+3h(X−Xm−1)
2−3(X−Xm−1)

3 [Xm−1,Xm],

h3 +3h2(Xm+1−X)+3h(Xm+1−X)2−3(Xm+1−X)3 [Xm,Xm+1],

(Xm+2−X)3 [Xm+1,Xm+2],

0 Otherwise,

(11)

where h = Xm+1−Xm,m =−1, · · · ,N +1. The variable of CN(X ,T ) over typical element [Xm,Xm+1] is given by

CN(X ,T ) =
m+2

∑
j=m−1

δ j(T )Φ j(X). (12)

Using trial functon (10) and cubic splines (11), the values of C,C′,C′′ at the knots are determined in terms of the
element parameters δm by

Cm =C(Xm) = δm−1 +4δm +δm+1,

C′ =C′(Xm) =
3
h
(δm+1−δm−1)

C′′ =C′′(Xm) =
6
h2 (δm−1−2δm +δm+1)

(13)
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Where the symbol ′ and ′′ denote first and second differentiation with respect to X , respectively.
At the knots, an approximate solution Cm for the Burgers’ equation

CT +CCX − γCXX = 0 (14)

can be obtained by considering the solution of

(CT )
n
m +(1−Θ) f n

m +Θ f n+1
m = 0 (15)

where ( f )n
m = (CCX )

n
m− γ(CXX )

n
m.

The B-Spline Collocation method to the governing equation (8) with the appropriate conditions of the expression (9)
has been employed as under

δ
n+1
m−1

(
1+Θ∆T L2−

3Θ∆T L1

h
− γ

6θ∆T
h2

)
+δ

n+1
m

(
4+4Θ∆T L2 + γ

12Θ∆T
h2

)

+δ
n+1
m+1

(
1+Θ∆T L2 +

3Θ∆tL1

h
− γ

6Θ∆T
h2

)

= L1− (1−Θ)∆t [L1L4 +L3L2−L3L4− γL5]+Θ∆tL1L2, (16)

Where

L1 = δ
n
m−1 +4δ

n
m +δ

n
m+1, L2 =

3
h

(
δ

n
m+1−δ

n
m−1
)

L3 = δ
n−1
m−1n+4δ

n−1
m +δ

n−1
m+1, L4 =

3
h

(
δ

n−1
m+1−δ

n−1
m−1
)

L5 =
6
h2

(
δ

n
m−1−2δ

n
m +δ

n
m+1
)

The system (16) consists of N +1 linear equations in N +3 unknowns dn =
(
δ n
−1,δ

n
0 ,δ

n
1 ,δ

n
2 , ...,δ

n
N ,δ

n
N+1
)
. To obtain

a unique solution to this system we need two additional constraints. these are obtained from the boundary condition.
Imposition of boundary conditions enables us to elimination of parameters δ−1,δN+1 from the system (16) with of
equation

C(X0) = δ
n+1
−1 +4δ

n+1
0 +δ

n+1
1 = 1⇒ δ

n+1
−1 = 1− (4δ

n+1
0 +δ

n+1
1 )

C(XN) = δ
n+1
N−1 +4δ

n+1
N +δ

n+1
N+1 = 0.001⇒ δ

n+1
N+1 = 0.001− (δ n+1

N−1 +4δ
n+1
N )

(17)

so the system (16) is reduced to (N+1)×(N+1) matrix system, which can be solved by using the Thomas Algorithm.
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5 NUMERICAL AND GRAPHICAL REPRESENTATION OF THE SO-
LUTION

Figure 2: The Concentration C(X ,T ) vs. distance. X Figure 3: The Concentration C(X ,T ) vs. Time T

Figure 4: The Concentration C(X ,T ) vs. distance. X Figure 5: The Concentration C(X ,T ) vs. Time T
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X/T T=0.02 T=0.04 T=0.05 T=0.07 T=0.1 T=0.13
X=0 1 1 1 1 1 1
0.05 0.92435 0.93294 0.93616 0.94144 0.94739 0.95173
0.1 0.84651 0.86356 0.87003 0.88066 0.89265 0.90143

0.15 0.76802 0.79290 0.80250 0.81833 0.83629 0.84945
0.2 0.69034 0.72200 0.73447 0.75519 0.77881 0.79618

0.25 0.61477 0.65189 0.66686 0.69196 0.72076 0.74201
0.3 0.54234 0.58349 0.60052 0.62934 0.66266 0.68733

0.35 0.47384 0.51763 0.53622 0.56799 0.60501 0.63254
0.4 0.40982 0.45500 0.47462 0.50849 0.54827 0.57799

0.45 0.35064 0.39612 0.41626 0.45133 0.49283 0.52400
0.5 0.29649 0.34136 0.36151 0.39687 0.43903 0.47085

0.55 0.24744 0.29094 0.31062 0.34537 0.38710 0.41874
0.6 0.20349 0.24492 0.26369 0.29698 0.33720 0.36784

0.65 0.16453 0.20322 0.22067 0.25170 0.28939 0.31822
0.7 0.13040 0.16563 0.18138 0.20942 0.24364 0.26991

0.75 0.10078 0.13182 0.14553 0.16994 0.19983 0.22285
0.8 0.07528 0.10136 0.11272 0.13295 0.15777 0.17695

0.85 0.05333 0.07370 0.08246 0.09804 0.11720 0.13204
0.9 0.03422 0.04822 0.05418 0.06476 0.07780 0.08790

0.95 0.01710 0.02423 0.02725 0.03260 0.03919 0.04431
X=1 0.001 0.001 0.001 0.001 0.001 0.001

Table 1: Concentration C(X ,T ) h = 0.00625,∆T = 0.0001

6 CONCLUSION
The graphical and numerical solutions of Burger’s equation using the B-spline method have been obtained to Predict
the possible level of contaminated water in the Flow of unstable unidirectional seepage, by semi-finite, Subject to the
source, homogeneous isotropic porous media The concentration varies according to distance X and time T > 0 . It is
inferred from the tabular values and graphs that as Distance X and time T increase the concentration of Contaminant
water decreases. The concentration C(X ,T ) of the contaminated water decreases as the distance X increases for the
given time T > 0.Here the initial concentration of contaminated water at X = 0 is highest and it decreases as distance
X increases for given time T > 0. Physically, it is a fact that the concentration at the source is Contaminated water
is the maximum at all times and decreases And from the source, dispersing.It is also inferred from the Figure (3,5)
of contaminated water concentration Time T for the specified distance X , the concentration of verses Contaminated
water increases for small time T and then it As time T increases for given X = 0.1,0.2,0.3,0.4,0.5.The numerical out-
comes have appeared for the particular estimations of dT uncovers that the B-Spline collocation gives the solution for
Burgers’ equation arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media. The numerical
results are found in good agreement using B-spline collocation method. The numerical solution using the B-spline
Collocation method obtained here is immense. Useful to monitor saline water intrusion until it is Contaminates the
aquifer system with fresh water; it is also helpful in making a quantitative prediction on the possible Contamination of
the sources of groundwater arising from the Movement of groundwater by buried wastes. The outcome is Consistent
with the physical longitudinal phenomenon Miscible fluid dispersion flows through porous media.
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7 NOMENCLATURE
C0=Initial Concentration of concentration of contaminant
C=Concentration of solute in liquid phase
ρ=density of the fluid
V̄ =Pore seepage velocity vector.
DL=Longitudinal dispersion coefficient γ based on u
t=Time(s)
x=Linear distance coordinate (m)
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