Concircular ϕ-Symmetric (ε)-Lorentzian Para-Sasakian Manifold Admitting Quarter-Symmetric Metric Connection

B. M. Roopa ${ }^{1}$, K. T. Pradeep Kumar ${ }^{2}$, K. H. Arun Kumar ${ }^{3}$, Govardhana Reddy H G ${ }^{4}$
${ }^{1}$ Department of Mathematics, Kumadvathi First Grade College, Shikaripura, India.
${ }^{2}$ Department of Mathematics, A C S College of Engineering, Bengaluru, India.
${ }^{3}$ Department of Mathematics, Don Bosco Institute of Technology, Bengaluru, India.
${ }^{4}$ Department of Mathematics, Alliance University, Bangalore, Karnataka, India

Received: 07 June 2022
Revised: 06 July 2022
Accepted: 14 July 2022
Published: 19 July 2022

Abstract

In this paper we consider a quarter-symmetric metric connection in a (ε)-Lorentzian Para-Sasakian manifold and study Locally ϕ-symmetric, Locally concircular ϕ-symmetric and ξ-concircularly flat (ε)-Lorentzian Para-Sasakian manifold with respect to a quarter-symmetric metric connection.

Keywords - (ε-Lorentzian Para-Sasakian manifold, ϕ-symmetry, concircular curvature tensor, quarter-symmetric metric connection.

AMS Subject Classification - 53C15, 53C25, 53D10

1. Introduction

A linear connection $\widetilde{\nabla}$ in an n-dimensional differentiable manifold is said to be a quarter-symmetric connection [6] if its torsion tensor T is of the form

$$
\begin{align*}
\mathrm{T}(\mathrm{X}, \mathrm{Y}) & =\widetilde{\nabla}_{\mathrm{X}} \mathrm{Y}-\widetilde{\nabla}_{\mathrm{y}} \mathrm{X}-[\mathrm{X}, \mathrm{Y}] \\
& =\eta(\mathrm{Y}) \phi \mathrm{X}-\eta(\mathrm{X}) \phi \mathrm{Y} \tag{1.1}
\end{align*}
$$

where η is a 1 -form and ϕ is a tensor of type (1, 1). In particular, if $\phi X=X$, then the quarter-symmetric connection reduces to the semi-symmetric connection [5]. Thus the notion of quarter-symmetric connection generalizes the idea of the semisymmetric connection. And if quarter-symmetric linear connection $\widetilde{\nabla}$ satisfies the condition

$$
\left(\widetilde{\nabla}_{\mathrm{Vg}}^{\mathrm{xg}}\right)(\mathrm{Y}, \mathrm{Z})=0
$$

for all $X, Y, Z \in X(M)$, where $X(M)$ is the Lie algebra of vector fields on the manifold M, then $\widetilde{\nabla}$ is said to be a quarter-symmetric metric connection.

In this paper, we study some results on a quarter-symmetric metric connection in an (ε) - Lorentzian Para-Sasakian manifold. This paper is organized is as follows: In Section 2, we give a brief introduction of an (ε) - Lorentzian Para-Sasakian manifold and define quarter-symmetric metric connection. In Section 3, we study the Locally ϕ-symmetric (ε)-Lorentzian Para-Sasakian manifold with respect to a quarter-symmetric metric connection. In Section 4, we study the locally concircular ϕ-symmetric (ε) - Lorentzian Para-Sasakian manifold with respect to a quarter-symmetric metric connection and Section 5 is devoted ξ-concircularly flat (ε) - Lorentzian Para-Sasakian manifold with respect to the quarter-symmetric metric connection.

2. Preliminaries

An n-dimensional smooth manifold (M, g) is (ε)-Lorentzian Para-Sasakian manifold if it admits a (1, 1)-tensor field ϕ, a contravariant vector field ξ, a 1-form η and a Lorentzian metric g which satisfy

$$
\begin{gather*}
\phi^{2} \mathrm{X}=\mathrm{X}+\eta(\mathrm{X}) \xi \tag{2.1}\\
\eta(\xi)=-1 \tag{2.2}\\
\mathrm{~g}(\xi, \xi)=-\varepsilon, \phi \xi=0, \eta(\phi \mathrm{X})=0, \tag{2.3}\\
\eta(\mathrm{X})=\varepsilon \mathrm{g}(\mathrm{X}, \xi), \tag{2.4}\\
\mathrm{g}(\phi \mathrm{X}, \phi \mathrm{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})-\varepsilon \eta(\mathrm{X}) \eta(\mathrm{Y}), \tag{2.5}
\end{gather*}
$$

for all vector fields X, Y on M , where ε is 1 or -1 according to which is either ξ is space like or time like vector field. If an ε - contact metric manifold satisfies

$$
\begin{equation*}
(\nabla \mathrm{x} \phi) \mathrm{Y}=\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi+\varepsilon \eta(\mathrm{Y}) \mathrm{X}+2 \varepsilon \eta(\mathrm{X}) \eta(\mathrm{Y}) \xi \tag{2.6}
\end{equation*}
$$

where ∇ denotes the Levi-Civita connection with respect to g , then M is called an (ε)-LP-Sasakian manifold. An ε-contact metric manifold is an (ε)-LP-Sasakian manifold if and only if

$$
\begin{equation*}
\nabla \mathrm{x} \xi=\varepsilon \phi \mathrm{X} \tag{2.7}
\end{equation*}
$$

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in an (ε)-LPSasakian manifold M with respect to the Levi-Civita connection satisfy [11]

$$
\begin{align*}
(\nabla \mathrm{x} \eta) \mathrm{Y} & =\mathrm{g}(\phi \mathrm{X}, \mathrm{Y}), \tag{2.8}\\
\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi & =\eta(\mathrm{Y}) \mathrm{X}-\eta(\mathrm{X}) \mathrm{Y}, \tag{2.9}\\
\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y} & =\varepsilon \mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \mathrm{X}, \tag{2.10}\\
\eta(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}) & =\varepsilon[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{X})-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y})], \tag{2.11}\\
\mathrm{S}(\mathrm{X}, \xi) & =(\mathrm{n}-1) \eta(\mathrm{X}), \mathrm{Q} \xi=\varepsilon(\mathrm{n}-1) \xi \tag{2.12}
\end{align*}
$$

where $X, Y, Z \in X(M)$ and $g(Q X, Y)=S(X, Y)$.
The concircular curvature tensor \bar{C} is given by

$$
\begin{equation*}
\bar{C}(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] . \tag{2.13}
\end{equation*}
$$

For (ε)-LP-Sasakian manifold the relation between the quarter-symmetric metric connection \widetilde{V} and the Levi-Civita connection ∇ is given by

$$
\begin{equation*}
\widetilde{\nabla} x Y=\nabla x Y+\eta(Y)-X-g(\phi X, Y) \xi \tag{2.14}
\end{equation*}
$$

By the virtue of equations (2.1), (2.7) and (2.8), equation (2.14) reduces to

$$
\begin{align*}
\tilde{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}= & \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\varepsilon[\eta(\mathrm{Y}) \mathrm{X}-\eta(\mathrm{X}) \mathrm{Y}] \eta(\mathrm{Z}) \tag{2.15}\\
& +\varepsilon[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{X})-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y})] \xi \\
& +\varepsilon[\mathrm{g}(\phi \mathrm{X}, \mathrm{Z}) \phi \mathrm{Y}-\mathrm{g}(\phi \mathrm{Y}, \mathrm{Z}) \phi \mathrm{X}]
\end{align*}
$$

where $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \in \mathrm{X}(\mathrm{M})$ and \tilde{R} is the Riemannian curvature of the connection $\widetilde{\nabla}$.
From (2.15) it follows that

$$
\begin{equation*}
S(\mathrm{Y}, \mathrm{Z})=\mathrm{S}(\mathrm{Y}, \mathrm{Z})+\varepsilon(\mathrm{n}-1) \eta(\mathrm{Y}) \eta(\mathrm{Z})+\varepsilon \mathrm{g}(\phi \mathrm{Y}, \mathrm{Z}) \phi \tag{2.16}
\end{equation*}
$$

where \tilde{S} and S are the Ricci tensors of connection $\widetilde{\nabla}$ and ∇, respectively and $\varphi=$ trace ϕ.

Contracting the above equation, we get
(2.17) $\tilde{\tilde{r}}=\mathrm{r}-\varepsilon(\mathrm{n}-1)-\varepsilon \varphi^{2}$,
where $\tilde{\widetilde{r}}$ and r are the scalar curvature of the connection $\widetilde{\nabla}$ and ∇, respectively.

3. Locally ϕ-Symmetric (ε)-Lorentzian Para-Sasakian Manifold with respect to a QuarterSymmetric Metric Connection

A locally ϕ-symmetric (ε)-Lorentzian Para-Sasakian manifold with respect to a quarter-symmetric metric connection is given by

$$
\begin{equation*}
\phi^{2}((\widetilde{\nabla} w \tilde{R})(\mathrm{X}, \mathrm{Y}) \mathrm{Z})=0 \tag{3.1}
\end{equation*}
$$

for any vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W orthogonal to ξ.
Using (2.14) we get

$$
\begin{gather*}
\left(\tilde{V}_{\mathrm{W}} \tilde{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=(\nabla \mathrm{w} \tilde{R})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}-\eta(\mathrm{X}) \tilde{R}(\phi \mathrm{~W}, \mathrm{Y}) \mathrm{Z}+\mathrm{g}(\phi \mathrm{~W}, \mathrm{X}) \tilde{R}(\xi, \mathrm{Y}) \mathrm{Z} \tag{3.2}\\
\\
-\eta(\mathrm{Y}) \tilde{R}(\mathrm{X}, \phi \mathrm{~W}) \mathrm{Z}+\mathrm{g}(\phi \mathrm{~W}, \mathrm{Y}) \tilde{R}(\mathrm{X}, \xi) \mathrm{Z} .
\end{gather*}
$$

Now differentiating (2.15), with respect to W and using (2.6), we obtain
$\left(\nabla_{\mathrm{W}} \widetilde{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=(\nabla \mathrm{w} \mathrm{R})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\varepsilon \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{g}(\phi \mathrm{W}, \mathrm{X}) \xi-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\phi \mathrm{W}, \mathrm{Y}) \xi$

$$
\begin{align*}
& +\varepsilon \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{X}) \phi \mathrm{W}-\varepsilon \mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y}) \phi \mathrm{W} \\
& +\left[\frac{1}{\varepsilon} \mathrm{~g}(\mathrm{~W}, \mathrm{X}) \eta(\mathrm{Z})+\varepsilon \mathrm{g}(\mathrm{~W}, \mathrm{Z}) \eta(\mathrm{X})+2 \eta(\mathrm{~W}) \eta(\mathrm{X}) \eta(\mathrm{Z})\right] \phi \mathrm{Y} \\
& -\left[\frac{1}{\varepsilon} \mathrm{~g}(\mathrm{~W}, \mathrm{Y}) \eta(\mathrm{Z})+\varepsilon \mathrm{g}(\mathrm{~W}, \mathrm{Z}) \eta(\mathrm{Y})+2 \eta(\mathrm{~W}) \eta(\mathrm{Y}) \eta(\mathrm{Z})\right] \phi \mathrm{X} \\
& +\mathrm{g}(\phi \mathrm{X}, \mathrm{Z})[\mathrm{g}(\mathrm{~W}, \mathrm{Y}) \xi+\varepsilon \eta(\mathrm{Y}) \mathrm{W}+2 \varepsilon \eta(\mathrm{~W}) \eta(\mathrm{Y}) \xi] \tag{3.3}\\
& -\mathrm{g}(\phi \mathrm{Y}, \mathrm{Z})[\mathrm{g}(\mathrm{~W}, \mathrm{X}) \xi+\varepsilon \eta(\mathrm{X}) \mathrm{W}+2 \varepsilon \eta(\mathrm{~W}) \eta(\mathrm{X}) \xi] \\
& -\mathrm{g}(\phi \mathrm{~W}, \mathrm{Z})[\eta(\mathrm{Y}) \mathrm{X}+\eta(\mathrm{X}) \mathrm{Y}]\} .
\end{align*}
$$

Using (2.1) and (3.3) in (3.2) and applying ϕ^{2}, we get
$\phi^{2}((\widetilde{\nabla} w \widetilde{R})(\mathrm{X}, \mathrm{Y}) \mathrm{Z})=\phi^{2}((\nabla w \widetilde{R})(\mathrm{X}, \mathrm{Y}) \mathrm{Z})+\varepsilon\left\{\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{g}(\phi \mathrm{W}, \mathrm{X}) \phi^{2} \xi-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\phi \mathrm{W}, \mathrm{Y}) \phi^{2} \xi\right.$

$$
\begin{align*}
& +\varepsilon \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{X}) \phi^{2}(\phi \mathrm{~W})-\varepsilon \mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y}) \phi^{2}(\phi \mathrm{~W}) \\
& +\left[\frac{1}{\varepsilon} \mathrm{~g}(\mathrm{~W}, \mathrm{X}) \eta(\mathrm{Z})+\varepsilon \mathrm{g}(\mathrm{~W}, \mathrm{Z}) \eta(\mathrm{X})+2 \eta(\mathrm{~W}) \eta(\mathrm{X}) \eta(\mathrm{Z})\right] \phi^{2}(\phi \mathrm{Y}) \\
& -\left[\frac{1}{\varepsilon} \mathrm{~g}(\mathrm{~W}, \mathrm{Y}) \eta(\mathrm{Z})+\varepsilon \mathrm{g}(\mathrm{~W}, \mathrm{Z}) \eta(\mathrm{Y})+2 \eta(\mathrm{~W}) \eta(\mathrm{Y}) \eta(\mathrm{Z})\right] \phi^{2}(\phi \mathrm{X}) \\
& +\mathrm{g}(\phi \mathrm{X}, \mathrm{Z})\left[\mathrm{g}(\mathrm{~W}, \mathrm{Y}) \phi^{2} \xi+\varepsilon \eta(\mathrm{Y}) \phi^{2} \mathrm{~W}+2 \varepsilon \eta(\mathrm{~W}) \eta(\mathrm{Y}) \phi^{2} \xi\right] \tag{3.4}\\
& -\mathrm{g}(\phi \mathrm{Y}, \mathrm{Z})\left[\mathrm{g}(\mathrm{~W}, \mathrm{X}) \phi^{2} \xi+\varepsilon \eta(\mathrm{X}) \phi^{2} \mathrm{~W}+2 \varepsilon \eta(\mathrm{~W}) \eta(\mathrm{X}) \phi^{2} \xi\right] \\
& \left.-\mathrm{g}(\phi \mathrm{~W}, \mathrm{Z})\left[\eta(\mathrm{Y}) \phi^{2} \mathrm{X}+\eta(\mathrm{X}) \phi^{2} \mathrm{Y}\right]\right\} . \\
& -\eta(\mathrm{X}) \phi^{2}(\widetilde{R}(\phi \mathrm{~W}, \mathrm{Y}) \mathrm{Z})+\mathrm{g}(\phi \mathrm{~W}, \mathrm{X}) \phi^{2}(\widetilde{R}(\xi, \mathrm{Y}) \mathrm{Z}) \\
& -\eta(\mathrm{Y}) \phi^{2}(\widetilde{R}(\mathrm{X}, \phi \mathrm{~W}) \mathrm{Z})+\mathrm{g}(\phi \mathrm{~W}, \mathrm{Y}) \phi^{2}(\widetilde{R}(\mathrm{X}, \xi) \mathrm{Z}) .
\end{align*}
$$

If $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W orthogonal to ξ, then (3.4) then becomes
(3.5)

$$
\phi^{2}((\bar{\nabla} w \tilde{R})(\mathrm{X}, \mathrm{Y}) \mathrm{Z})=\phi^{2}((\nabla \mathrm{wR})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}) .
$$

Thus we can state
Theorem 3.1. A (ε)-Lorentzian Para-Sasakian manifold is locally ϕ-symmetric with respect to a quarter-symmetric metric connection $\widetilde{\nabla}$ if and only if it is so with respect to Levi-Civita connection ∇.

4. Locally Concircular ϕ-Symmetric (ε)-Lorentzian Para-Sasakian Manifold with respect to a Quarter-Symmetric Metric Connection

A (ε)-Lorentzian Para-Sasakian manifold M is said to be locally concircular ϕ-symmetric with respect to a quartersymmetric metric connection if

$$
\begin{equation*}
\phi^{2}\left(\left(\widetilde{\nabla}_{\mathrm{W}} \tilde{\bar{C}}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=0 \tag{4.1}
\end{equation*}
$$

for any vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W orthogonal to ξ, where $\tilde{\bar{C}}$ is the concircular curvature tensor with respect to quartersymmetric metric connection given by

$$
\begin{equation*}
\tilde{\bar{C}}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\tilde{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}-\frac{\tilde{R}}{n(n-1)}[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}] \tag{4.2}
\end{equation*}
$$

Using (2.14), we can write

$$
\begin{align*}
(\widetilde{\nabla} w \widetilde{\bar{C}})(\mathrm{X}, \mathrm{Y}) \mathrm{Z} & =(\nabla \mathrm{w} \overline{\bar{C}})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\eta \tilde{\bar{C}}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}) \phi \mathrm{W}-\mathrm{g}(\phi W, \tilde{\bar{C}}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}) \xi \\
& -\eta(\mathrm{X}) \tilde{\bar{C}}(\phi \mathrm{~W}, \mathrm{Y}) \mathrm{Z}-\eta(\mathrm{Y}) \tilde{\bar{C}}(\mathrm{X}, \phi \mathrm{~W}) \mathrm{Z}-\eta(\mathrm{Z}) \tilde{\bar{C}}(\mathrm{X}, \mathrm{Y}) \phi \mathrm{W} \tag{4.3}\\
& +\mathrm{g}(\phi \mathrm{~W}, \mathrm{X}) \tilde{\bar{C}}(\xi, \mathrm{Y}) \mathrm{Z}+\mathrm{g}(\phi \mathrm{~W}, \mathrm{Y}) \tilde{\bar{C}}(\mathrm{X}, \xi) \mathrm{Z}+\mathrm{g}(\phi \mathrm{~W}, \mathrm{Z}) \tilde{\bar{C}}(\mathrm{X}, \mathrm{Y}) \xi .
\end{align*}
$$

Differentiating (4.2) w.r.t W, we obtain

$$
\begin{equation*}
(\nabla \mathrm{w} \tilde{\bar{C}})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=(\nabla \mathrm{wR})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}-\frac{\nabla_{\mathrm{w}} \tilde{\mathrm{r}}}{n(n-1)}[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}] \tag{4.4}
\end{equation*}
$$

Using (3.3) and (2.16) in (4.4), we can write

$$
\begin{align*}
& \left(\nabla_{\mathrm{w}} \tilde{\bar{C}}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\left(\nabla_{\mathrm{w}} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\varepsilon[\mathrm{g}(\phi \mathrm{~W}, \mathrm{Y}) \eta(\mathrm{Z})+\mathrm{g}(\phi \mathrm{~W}, \mathrm{Z}) \eta(\mathrm{Y})] \mathrm{X} \\
& -\varepsilon[\mathrm{g}(\phi \mathrm{~W}, \mathrm{X}) \eta(\mathrm{Z})-\mathrm{g}(\phi \mathrm{~W}, \mathrm{Z}) \eta(\mathrm{X})] \mathrm{Y}+\varepsilon[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{g}(\phi \mathrm{~W}, \mathrm{X})] \xi \\
& -\varepsilon[g(X, Z) g(\phi W, Y)] \xi+\varepsilon^{2}[\eta(X) g(Y, Z)-\eta(Y) g(X, Z)] \phi W \tag{4.5}\\
& -\varepsilon^{2}[\eta(\mathrm{Y}) \mathrm{g}(\mathrm{~W}, \mathrm{Z})-2 \eta(\mathrm{Y}) \eta(\mathrm{Z}) \eta(\mathrm{W})] \phi \mathrm{X}-\mathrm{g}(\mathrm{~W}, \mathrm{Y})(\mathrm{Z}) \phi \mathrm{X} \\
& -\frac{\nabla w \underset{r}{x}}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \text {. }
\end{align*}
$$

Taking account of concircular curvature tensor in (4.5), then use of (4.3) and applying -2, we get

$$
\begin{align*}
\phi^{2}\left(\left(\widetilde{\bar{V}}_{\mathrm{W}} \tilde{\bar{C}}^{\tilde{C}}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\phi^{2}(\right. & \nabla \mathrm{w} \tilde{\bar{C}})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\varepsilon[\eta(\mathrm{X}) \mathrm{g}(\mathrm{Y}, \mathrm{Z})-\eta(\mathrm{Y}) \mathrm{g}(\mathrm{X}, \mathrm{Z})] \phi^{2}(\phi \mathrm{~W}) \\
& -\varepsilon\left[\mathrm{g}(\phi \mathrm{~W}, \mathrm{X}) \eta(\mathrm{Z}) \phi^{2}(\mathrm{Y})-\mathrm{g}(\phi \mathrm{~W}, \mathrm{Y}) \eta(\mathrm{Z}) \phi^{2}(\mathrm{X})\right] \\
& +\varepsilon[\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\phi \mathrm{~W}, \mathrm{Y})] \phi^{2} \xi-\varepsilon[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{g}(\phi \mathrm{~W}, \mathrm{X})] \phi^{2} \xi \\
& -\eta(\mathrm{X}) \phi^{2}(\mathrm{R}(\phi \mathrm{~W}, \mathrm{Y}) \mathrm{Z})-\eta(\mathrm{Y}) \phi^{2}(\mathrm{R}(\mathrm{X}, \phi \mathrm{~W}) \mathrm{Z})-\eta(\mathrm{Z}) \phi^{2}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \phi \mathrm{W}) \tag{4.6}\\
& +\mathrm{g}(\phi \mathrm{~W}, \mathrm{X}) \phi^{2}((\mathrm{R}(\xi, \mathrm{Y}) \mathrm{Z}))+\mathrm{g}(\phi \mathrm{~W}, \mathrm{Y}) \phi^{2}((\mathrm{R}(\mathrm{X}, \xi) \mathrm{Z})) \\
& +\mathrm{g}(\phi \mathrm{~W}, \mathrm{Z}) \phi^{2}((\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi)) .
\end{align*}
$$

If we consider $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W orthogonal to ξ, then (4.6) becomes

$$
\begin{equation*}
\phi^{2}\left(\left(\widetilde{\nabla}_{\mathrm{w}} \tilde{\bar{C}}_{)}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=\phi^{2}(\nabla \mathrm{w} \overline{\bar{C}})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right. \tag{4.7}
\end{equation*}
$$

Hence we can state the following theorem
Theorem 4.2. A (ع)-Lorentzian Para-Sasakian manifold is locally concircular ϕ-symmetric with respect to $\widetilde{\nabla}$ if and only if it is so with respect to Levi-Civita connection ∇.
Concircular ϕ-symmetric (ε)-Lorentzian Para-Sasakian manifold admitting quarter-symmetric metric connection 7
Next using (4.5) in (4.3) and considering $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W orthogonal to, we get

$$
\begin{equation*}
\phi^{2}\left(\left(\widetilde{\nabla}_{\mathrm{w}} \tilde{\bar{C}}_{)}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=\phi^{2}(\nabla \mathrm{wR})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right. \tag{4.8}
\end{equation*}
$$

Thus we can state:
Theorem 4.3. If M is ϕ-symmetric with respect to a quarter-symmetric metric connection then a (ε)-Lorentzian ParaSasakian manifold is locally concircular ϕ-symmetric with respect to a quarter-symmetric metric connection $\widetilde{\nabla}$ if and only if it is locally ϕ-symmetric with respect to Levi-Civita connection ∇.

5. ξ-Concircularly Flat (ε)-Lorentzian Para-Sasakian Manifold with respect to the QuarterSymmetric Metric Connection

A (ε)-Lorentzian Para-Sasakian manifold M with respect to the quarter-symmetric metric connection is said to be concircularly flat if

$$
\begin{equation*}
\tilde{\bar{C}}(\mathrm{X}, \mathrm{Y}) \xi=0 \tag{5.1}
\end{equation*}
$$

for all vector fields X, Y on M. If (5.1) holds for X , Y orthogonal to ξ, then a manifold is a horizontal ξ-concircularly flat manifold.
Using (2.15) in (2.13), we get

$$
\begin{align*}
& \tilde{\bar{C}}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\varepsilon[\eta(\mathrm{Y}) \mathrm{X}-\eta(\mathrm{X}) \mathrm{Y}] \eta(\mathrm{Z}) \\
&+\varepsilon[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{X})-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y})] \xi \\
&+\varepsilon[\mathrm{g}(\phi \mathrm{X}, \mathrm{Z}) \phi \mathrm{Y}-\mathrm{g}(\phi \mathrm{Y}, \mathrm{Z}) \phi \mathrm{X}] \tag{5.2}\\
&-\frac{\stackrel{\rightharpoonup}{F}}{n(n-1)}[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}]
\end{align*}
$$

Taking $\mathrm{Z}=\xi$ and using (2.1), (2.8) and (2.16) in (5.2), we get

$$
\begin{equation*}
\tilde{\bar{C}}(\mathrm{X}, \mathrm{Y}) \xi=0 . \tag{5.3}
\end{equation*}
$$

Hence we state:
Theorem 5.4. A (ε)-Lorentzian Para-Sasakian manifold is horizontal ξ-concircularly flat with respect to the quartersymmetric metric connection.
Again using (2.17) in (5.2) and taking $\mathrm{Z}=\xi$, it follows that

$$
\begin{equation*}
\tilde{\bar{C}}(\mathrm{X}, \mathrm{Y}) \xi=\bar{C}(\mathrm{X}, \mathrm{Y}) \xi \tag{5.4}
\end{equation*}
$$

Hence we state:
Theorem 5.5. A (ε)-Lorentzian Para-Sasakian manifold is horizontal ξ-concircularly flat with respect to the quartersymmetric metric connection if and only if the manifold is ξ-concircularly flat with respect to the Levi-Civita connection.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of this paper.

References

[1] Ajit Barman, On lorentzian-Sasakian manifolds admitting a type of semi-symmetric metric connection, Novi Sad J. Math. Vol. 44, No. 2, (2014), 77-88.
[2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer-Verlag 1976.
[3] U. C. De and A. Sarkar, On (ع)-Kenmotsu manifold, Hadronic J. 32 (2009), no. 2, 231-242.
[4] D. M. Naik, Venkatesha and D. G. Prakasha, Certain results on Kenmotsu pseudo-metric manifolds, Miskolc Mathematical Notes, Vol. 20 (2019), No. 2, pp. 1083-1099.
[5] A. Friedmann and J. A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragung, Math. Zeitschr. 21 (1924), 211-223.
[6] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor, N.S. 29 (1975), 249-254.
[7] A. Hasseb, A. Prakash and M. D. Siddqi, On a Quarter-Symmetric Metric Connection in an (ε)- Lorentzian Para-Sasakian Manifold, Acta. Math. Univ. Comenianae, Vol. LXXXVI, 1 (2017), pp. 143-152.
[8] C. Ozgur, ϕ-projectively flat Lorentian para-Sasakian manifolds, Radovi Mathematicki 12 (2003) 1-8.
[9] K. T. Pradeep Kumar, C. S. Bagewadi and Venkatesha, On Projective ϕ-symmetric K-contact manifold admitting quarter-symmetric metric connection, Differ. Geom. Dyn. Syst., 13, (2011), 128-137.
[10] D. G. Prakasha, P. Veeresha and Venkatesha, The Fischer-Marsden conjecture on non-Kenmotsu (k, μ) - almost Kenmotsu manifolds, J. Geom. (2019) 110:1.
[11] R. Prasad and V. Srivastava, On ε-Lorentzian Para-Sasakian manifolds, Commun. Korean Math. Soc. 27(2), (2012), 297-306.
[12] S. Sasaki, Lecture note on almost contact manifolds, Part-I, Tohoku University, 1965.
[13] A. A. Shaikh, and S. K. Hui, On Weakly weakly concircular symmetric Manifolds, Ann. Sti. Ale Univ., Al. I. CUZA, Din Iasi, LV,f.1(2009), 167-186.
[14] R. N. Singh and Shravan K. Pandey, On a Quarter-Symmetric Metric Connection in an LP-Sasakian Manifold, Thai Journal of Mathematics, Volume 12(2014) Number 2: 357-371.
[15] T. Takahashi, Sasakian --symmetric spaces, Tohoku Math. J. 29 (1977), 91-113.
[16] Venkatesha, K. T. Pradeep Kumar, C. S. Bagewadi and Gurupadavva Ingalahalli, On concircular ϕ-recurrent K-contact manifold admitting semi-symmetric metric connection, International Journal of Mathematics and Mathematical Sciences, Hindawi Publishing Corporation, Volume 2012, Article ID 757032,
[17] Venkatesha, K. T. Pradeep Kumar and C. S. Bagewadi, On Quarter-Symmetric Metric Connection in a Lorentzian Para-Sasakian Manifold, Azerbaijan Journal of Mathematic,s 5(1), (2015), 3-12.
[18] Venkatesha, Arasaiah, S. V. Vishnuvardhana, R. T. Naveen Kumar, Some Symmetric Properties of Kenmotsu Manifolds admitting Semi-Symmetric Metric Connection, FACTA UNIVERSITATIS, Ser. Math. Inform. 34(1), (2019), 35-44.
[19] Venkatesha and S. V. Vishnuvardhana, ($\boldsymbol{\varepsilon}$)-Kenmotsu maniolds admitting a Semi-Symmetric Metric Connection, Italian Jouranl of Pure and Applied Mathematics, 38, (2017), 615-623.
[20] Venkatesha, C. S. Bagewadi, and K. T. Pradeep Kumar, Some results on Lorentzianpara-Sasakian manifolds, ISRN Geometry, vol. 2011, Article ID 161523, 9 pages, 2011. doi:10.5402/2011/161523.
[21] Venkatesha, K. T. Pradeep Kumar, C. S. Bagewadi and Gurupadavva Ingalahalli, On concircular ϕ-recurrent K-contact manifold admitting semi-symmetric metric connection, International Journal of Mathematics and Mathematical Sciences, Hindawi Publishing Corporation, Volume 2012, Article ID 757032, 9 pages doi:10.1155/2012/757032.
[22] S. V. Vishnuvardhana and Venkatesha, Results on para-Sasakian manifold admitting a quarter symmetric metric connection, $C U B O, A$ Mathematical Journal, 22(2), (2020), 257-271.
[23] T. J. Willmore, An introduction to differential geometry, Oxford Univ. Press, 1959.
[24] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
[25] A. Yildiz and C. Murathan, On Lorentizian α-Sasakian manifolds, Kyungpook Math. J., 45, (2005), 95-103.
[26] A. Yildiz and U. C. De, On a type of Kenmotsu manifolds, Differential Geometry-Dynamical Systems, 12, (2010), 289-298.

