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1. Introduction
A linear connection ¥ in an n-dimensional differentiable manifold is said to be a quarter-symmetric connection [6] if its
torsion tensor T is of the form
TXY)= Fxy - Pyx—[X, Y]
=n(Y) ¢X—n(X) ¢Y, (11)

where n is a 1-form and ¢ is a tensor of type (1, 1). In particular, if gX = X, then the quarter-symmetric connection reduces
to the semi-symmetric connection [5]. Thus the notion of quarter-symmetric connection generalizes the idea of the semi-

symmetric connection. And if quarter-symmetric linear connection " satisfies the condition
(V xg)(Y,2) =0,

forall X, Y,Z € X(M), where X(M) is the Lie algebra of vector fields on the manifold M,
then ¥ is said to be a quarter-symmetric metric connection.

In this paper, we study some results on a quarter-symmetric metric connection in an (g) - Lorentzian Para-Sasakian
manifold. This paper is organized is as follows: In Section 2, we give a brief introduction of an (g) - Lorentzian Para-Sasakian
manifold and define quarter-symmetric metric connection. In Section 3, we study the Locally ¢ - symmetric (g)-Lorentzian
Para-Sasakian manifold with respect to a quarter-symmetric metric connection. In Section 4, we study the locally concircular
¢ - symmetric (€) - Lorentzian Para-Sasakian manifold with respect to a quarter-symmetric metric connection and Section 5 is
devoted & -concircularly flat (¢) - Lorentzian Para-Sasakian manifold with respect to the quarter-symmetric metric
connection.

2. Preliminaries
An n-dimensional smooth manifold (M, g) is (g)-Lorentzian Para-Sasakian manifold if it admits a (1, 1)-tensor field ¢, a
contravariant vector field &, a 1-form n and a Lorentzian metric g which satisfy
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FX=X+nX)&, (2.1)
n=-1, (2.2)
88,8 =-¢¢E =0,n(4X)=0, (2.3)
nX)=eg(X,9), (2.4)
9(¢X ¢Y)=gX, Y)—en(X)n(Y) (2.5)

for all vector fields X, Y on M, where € is 1 or -1 according to which is either & is space like or time like vector field.
If an ¢ - contact metric manifold satisfies

(VXY =g(X, Y)E+en (Y )X +2en (X)n(Y )&, (2.6)

where V denotes the Levi-Civita connection with respect to g, then M is called an (g)-LP-Sasakian manifold. An e-contact
metric manifold is an (g)-LP-Sasakian manifold if and only if

Vx &= gg¢X, (2.7)

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in an (¢)-LPSasakian manifold M with respect
to the Levi-Civita connection satisfy [11]

(Vxn)Y =g(¢X, Y), (2.8)

R(X, Y)E =n(Y )X - n(X)Y, (2.9)
RE,X)Y=eg(X,Y)E—n(Y)X, (2.10)
nR X, Y)2)=e[gY.2) n (X) —gX.Z)n (Y)], (2.11)
SX, &) =(m-Dhn(X), Qe=e(m -1, (2.12)

where X, Y,Z € X(M) and g(QX, Y ) =S(X, Y).

The concircular curvature tensor £ is given by
CX,Y)Z=R(X,Y)Z-

3

—nop BV DX —9(X )Y ], (2.13)

For (g)-LP-Sasakian manifold the relation between the quarter-symmetric metric connection % and the Levi-Civita
connection V is given by

TxY = vxy +n(Y )-X - g(#X, Y ) & (2.14)
By the virtue of equations (2.1), (2.7) and (2.8), equation (2.14) reduces to
R (X, Y)Z=R(X, Y)Z +£ M(Y)X -n(X)Y (2 (2.15)
+efg(Y,Zm(X) — gX.Z)n(Y)IE
+e[g(#X,2) Y — g(¢Y.Z) ¢X],

where X, Y, Z e X(M) and R is the Riemannian curvature of the connection V.
From (2.15) it follows that

S(Y,2)=S(Y,2) + &n — On(Y In(2) + £ 2(gY 2)¢, (2.16)
where 5 and S are the Ricci tensors of connection ¥ and V, respectively and ¢ = traceq.
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Contracting the above equation, we get
(2.17) F=r—gn—-1)—¢¢?
where 7 and r are the scalar curvature of the connection ¥ and V, respectively.

3. Locally ¢-Symmetric (g)-Lorentzian Para-Sasakian Manifold with respect to a Quarter-

Symmetric Metric Connection
A locally ¢-symmetric (¢)-Lorentzian Para-Sasakian manifold with respect to a quarter-symmetric metric connection is
given by N
A(Vw R)(X,Y)2) =0, 3.1

for any vector fields X, Y,Z and W orthogonal to & .
Using (2 14) we get

(PwR)(X, Y)Z=(vw B) X, Y)Z- n(X) R(pW,Y)Z+ 9(¢ W.X) Rey)z (3.2)
-n(Y) B (X, gW)Z +g(¢W, Y) R(X, £)Z.
Now qifferentiating (2.15), with respect to W and using (2.6), we obtain
(Vw B)(X, Y)Z=(VwR)(X, Y )Z + & g(Y.2)2(¢ W.X) £~ 9(X,2)9(s W, Y ) &
+ sig(Y,Z)n(X) oW —e g(X.Zm(Y )g W
+ [ 9(W.X)n(Z) + & g(W,Zm(X) + 2n(W)n(X)n(2)]¢Y

- [f g(W, Y M(Z) + & gW,Zm(Y') + 2n(W)n(Y )n(2)]#X
+9(#X.D[gW, Y ) E+en(Y )W +2e n(W)n(Y) £] 33)
—g(#Y.2)[g(W.X) &+ e n(X)W +2e n (W)n(X) ]
— g(W.Z)[In(Y )X+ n(X)Y ]}.
Using (2. 1) and (3.3) in (3.2) and applymg &, we get
PVWRYX, Y)2) = # (VWRYX, Y)Z) + e {e(Y.Z)g( MW, X) 5 — g(X.Z)g(W, Y )%
+ & g(Y.Zn(X)F(4W) — e gX.Zn(Y ) F#(4W)

+ [& g(W.X)n(Z) + & g(W.Z)n(X) + 2n(W)n(X)n(2)]1#(4Y)
- [f g(W, Y )(Z) + & g(W,Z(Y ) + 2n(W)n(Y )n(2)]#(¢X)
+9(¢X.D)[g(W, Y )F &+ en(Y )FW +2e n(Wn(Y)¢# £] (34)
— g(Y DIW, X)F & + e n(X)FW +2e n (Wn(X)¢# &]
— g(AW.Z)In(Y )#X + n(X)#Y1}.
—n(><)¢2(iLE (MW, Y)Z) + g(pW.X) ¢ (R (5., Y)Z)
—n(Y)FERX, W)Z) +g(W, Y ) AR (X, )2).
IfX,Y,Zand W ortho_g,onal to & , then (3.4) then becomes
3.5) F((Vw R)(X, Y)Z) = #A(VWR)(X, Y )2).
Thus we can state

Theorem 3.1. A (g)-Lorentzian Para-Sasakian manifold is locally g-symmetric with respect to a quarter-symmetric metric
connection ¥ if and only if it is so with respect to Levi-Civita connection V.

4. Locally Concircular ¢-Symmetric (g)-Lorentzian Para-Sasakian Manifold with respect to a

Quarter-Symmetric Metric Connection
A (e)-Lorentzian Para-Sasakian manifold M is said to be locally concircular ¢-symmetric with respect to a quarter-
symmetric metric connection if
#(VwC )X, Y)2) =0, (4.1)
for any vector fields X, Y,Z and W orthogonal to &, where C s the concircular curvature tensor with respect to quarter-
symmetric metric connection given by
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c X,Y)zZ=RX, Y)z- [2(Y,2)X — g(X,2)Y . (4.2)

nin—1}

Using (2.14), we can write
(Vw )X Y)Z=(vwC )X, Y)Z+nC (X, Y)Z)gW — g(#W,C (X, Y )Z) &
~n(X)C (#W, Y)Z-n(Y)C (X, gW)Z - n(2)C (X, Y )gW (43)

+g(W,X)C (EY)Z+g(gW, Y)C (X, 9Z + g(W.2)C (X, Y) &
Differentiating~(4.2) w.r.t W, we obtain
(vwC )(X, Y )Z = (VWR)(X, Y )Z —
Using (3.3) ang (2.16) in (4.4), we can write
(vwC )(X, Y)Z = (Vw RYX, Y)Z + e[g(AW, Y )n(2) + g(AV,Z)n(Y)]X
— &[g(dW, X)N(Z) — g(PW,.Zn(X)]Y + e[g(Y,2)g(¢W.X)] &
—e[gX.2)g(pW, Y)] &+ & n(X)e(Y,Z2) —n(Y )g(X,.2)] ¢ W (4.5)
—¢ [n__(}{;)g(W,Z) —2n(Y m@nW)]g X — g(W, Y )(2)¢ X
—— [2(Y.2X ~gX.2)Y].

[e(Y,2)X — g(X,2)Y]. (4.9

VW
nin—1)

-

nin—1}
Taking account of concircular curvature tensor in (4.5), then use of (4.3) and applying -2, we get

FFwC )X, Y)Z=F(VwC )X, Y)Z +enX)g(Y,Z) = n(Y )g(X,.2)] F(4W)
— e[g(@W. X)) F(Y ) — g(¢W, Y M) F#(X)]
+ e [g(X.2)g(@W, Y )IFE — e[g(Y.2)g(dW, X)] ¢
“NX)FR(EW, Y)Z) = n(Y )FR(X, gW)Z) —n(2Z)F(R(X, Y') 4W) (4.6)
+9(W, X)F((RE, Y )2)) + g(4W, Y )F(R(X, §)2))
+9(W,Z)F(R(X, Y) &)).
If we consider X, Y, Z and W orthogonal to &, then (4.6) becomes
#(VwC (X, Y)2Z) = #VWE)(X, Y)Z. (4.7
Hence we can state the following theorem

Theorem 4.2. A (¢)-Lorentzian Para-Sasakian manifold is locally concircular ¢-symmetric with respect to ¥ if and only if it
is so with respect to Levi-Civita connection V.

Concircular ¢-symmetric (¢)-Lorentzian Para-Sasakian manifold admitting quarter-symmetric metric connection 7

Next using (4.5) in (4.3) and considering X, Y,Z and W orthogonal to , we get

#(VwC (X, Y)Z) = AVWR)(X, Y )Z. (4.8)
Thus we can state:

Theorem 4.3. If M is g-symmetric with respect to a quarter-symmetric metric connection then a (¢)-Lorentzian Para-
Sasakian manifold is locally concircular ¢-symmetric with respect to a quarter-symmetric metric connection ¥ if and only if
it is locally ¢g-symmetric with respect to Levi-Civita connection V.

5. &-Concircularly Flat (¢)-Lorentzian Para-Sasakian Manifold with respect to the Quarter-
Symmetric Metric Connection

A (g)-Lorentzian Para-Sasakian manifold M with respect to the quarter-symmetric metric connection is said to be -
concircularly flat if

Cx.Y)E=0, (6.1)
for all vector fields X, Y on M. If (5.1) holds for X, Y orthogonal to &, then a manifold is a horizontal &-concircularly flat

manifold.
Using (2.15) in (2.13), we get
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C (X, Y)Z=R(X, Y)Z+eM(Y )X (XY In2)
+e[g(Y.2m(X) — gX,.Zm(Y)] &
+e[g(#X,.2)gY — g(4Y.Z) ¢X] (5.2)
VDX~ e(X )Y ]
Taking Z = & and using (2.1), (2.8) an~d (2.16) in (5.2), we get

C(X,Y)E=0. (5.3)

Hence we state:

Theorem 5.4. A (g)-Lorentzian Para-Sasakian manifold is horizontal &-concircularly flat with respect to the quarter-
symmetric metric connection.
Again using (2.17) in (5.2) and taking Z = & , it follows that

CX.Y)e=C(X,Y)& (5.4)
Hence we state:

Theorem 5.5. A (g)-Lorentzian Para-Sasakian manifold is horizontal &-concircularly flat with respect to the quarter-
symmetric metric connection if and only if the manifold is &-concircularly flat with respect to the Levi-Civita connection.
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