Calculating Sombor Index of Certain Networks

Vidya S. Umadi^{*a*} and A. M. Sangogi^{*b*}

^aDepartment of Mathematics, Vidya Samvardhak Mandal's Somashekhar R.Kothiwale Institute of Technology, Nipani, Karnataka State, India

^bDepartment of Mathematics, Shaikh College of Engineering and Technology Belagavi, Karnataka State, India

Received: 11 June 2022 Revised: 08 July 2022 Accepted: 18 July 2022 Published: 28 July 2022

Abstract

Recently I. Gutman [5] have put forward a novel topological index viz., Sombor index of molecular graph G. In this paper, we compute the Sombor index of certain chemical networks like hexagonal parallogram, tringular benzoid, zig-zag edge coronoid and dominating networks of three kinds.

Keywords: Sombor index, nanostructures, chemical network.

 $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ Subject Classification: 05C90; 05C35; 05C12.

1 Introduction

In mathematical chemistry, topological indices plays vital role in prediction of physical properties. Topological indices are technically relevent tools for QSPR / QSAR studies. Basically, topological index is just a positive integer to indicate the structural property of a molecule. Various novel topological indices have been studied so far, such as Zagreb indices [4], forgotten index [2] etc., for more details on topological indices refer [7-14].

Sombor index was put forward in [5] which is defined as follows:

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

2 Chemical Structures

R In this section we consider the chemical structures like hexagonal parallelogram P(m, n)nanotube, triangular benzenoid G_n , zigzag-edge coronoid fused with starphene nanotubes ZCS(k, l, m) and dominating derived networks D_1, D_2, D_3 .

Figure 1: (a)P(4,4) (b) S(P(4,4)) (c) L(S(P(4,4)))

Figure 2: (a) G_n for $n = 5(b) S(G_n)$ (c) $L(S(G_n))$

Figure 3: (a) ZCS(k, l, m) for k = l = m = 4 (b) S(ZCS(k, l, m)) (c) L(S(ZCS(k, l, m)))

Theorem 1. Let G denotes the line graph of subdivision graph of the hexagonal parallelogram, then

$$SO(G) = 2\sqrt{2}(\alpha + \beta + 4) + 4\sqrt{13}(\alpha + \beta - 2) + 3\sqrt{2}(9\alpha\beta - 2\alpha + 2\beta - 5)$$

Proof. Let G denotes the line graph of the hexagonal parallelogram $P(m, n); m, n \in \mathbb{Z}^+$. Then the order and size of P(m, n) and G are given by:

Figure 4: (a) $D_1(2)$ (b) $D_2(4)$ (c) $D_3(n)$

Table 1.

Graph	Order	Size
P(m,n)	$2(\alpha + \beta + \alpha\beta)$	$3\alpha\beta+2\alpha+2\beta+1$
G = L(P(m, n))	$2(3\alpha\beta + 2\alpha + 2\beta + 1)$	$9\alpha\beta+4\alpha+4\beta+5$

The edge set of L(P(m, n)) can be partitioned into three disjoint sets $E_{2,2}, E_{2,3}$ and $E_{3,3}$, where $E(G) = E_{2,2} \cup E_{2,3} \cup E_{3,3}$. By algebraic method the edge partition of G is calculated as:

Table 2.

$$\begin{array}{c|cccc} uv \in E(G) & (2,2) & (2,3) & (3,3) \\ \hline \text{Number of edges} & 2(\alpha+\beta+4) & 4(\alpha+\beta-2) & 9\alpha\beta-2m-2n-5 \end{array}$$

Thus, using the information in Table 2, we have

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

=
$$\sum_{uv \in E_{2,2}(G)} \sqrt{d_G(u)^2 + d_G(v)^2} + \sum_{uv \in E_{2,3}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

+
$$\sum_{uv \in E_{3,3}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

=
$$(\sqrt{2^2 + 2^2})2(\alpha + \beta + 4) + \sqrt{2^2 + 3^2}(4(\alpha + \beta - 2)) + \sqrt{3^2 + 3^2}(9\alpha\beta - 2m - 2n - 5).$$

as desired.

Theorem 2. Let $G = L(S(G_n))$ denotes the line graph of subdivision graph of the hexagonal parallelogram, then

$$SO(L(S(G_n))) = 6\sqrt{2}(n+3) + 6\sqrt{13}(n-1) + \frac{9}{\sqrt{2}}(3\alpha^2 + n - 4)$$

Proof. Let G denotes the line graph of the hexagonal parallelogram G_n . Then the order and size of P(m, n) and G are given by:

Table 3.

Graph	Order	Size
G_n	$\alpha^2 + 4n + 1$	$\frac{3}{2}n(n+3)$
$G = L(S(G_n))$	3n(n+3)	$\frac{3(3\alpha^2+7n+2)}{2}$

The edge set of $L(S(G_n))$ can be partitioned into three disjoint sets $E_{2,2}, E_{2,3}$ and $E_{3,3}$, where $E(L(S(G_n))) = E_{2,2} \cup E_{2,3} \cup E_{3,3}$. By algebraic method the edge partition of G is calculated as:

Table 4.

$uv \in E(G)$	(2, 2)	(2, 3)	(3,3)
Number of edges	3(n+3)	6(n-1)	$\frac{3(3\alpha^2+7n+2)}{2}$

Thus, using the information in Table 4, we have

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

=
$$\sum_{uv \in E_{2,2}(G)} \sqrt{d_G(u)^2 + d_G(v)^2} + \sum_{uv \in E_{2,3}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

+
$$\sum_{uv \in E_{3,3}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

=
$$(\sqrt{2^2 + 2^2})3(n+3) + \sqrt{2^2 + 3^2}(6(n-1)) + \sqrt{3^2 + 3^2}(\frac{3(3\alpha^2 + 7n + 2)}{2}).$$

as desired.

Theorem 3. Let G = L(S(I)) be the line graph of the subdivision graph of zigzag-edge coronoid fused with starphene nanotubes ZCS(k, l, m) for k = l = m = 4. Then

$$SO(G) = 12\sqrt{2}(k+l+m-5) + 24\sqrt{2}(k+l+m-7) + 63\sqrt{2}(k+l+m) - 118\sqrt{2}.$$

Proof. Let G denotes the line graph of the hexagonal parallelogram G_n . Then the order and size of P(m, n) and G are given by:

Table 5.

Graph	Order	Size
ZCS(k, l, m)	36k + 54	15(k+l+m) - 63
$G = L(S(G_n))$	30(k+l+m126)	39(k+l+m) + 153

The edge set of G = L(S(I)) can be partitioned into three disjoint sets $E_{2,2}, E_{2,3}$ and $E_{3,3}$, where $E(L(S(I))) = E_{2,2} \cup E_{2,3} \cup E_{3,3}$. By algebraic method the edge partition of G is calculated as:

Table 6.

$uv \in E(G)$	(2,2)	(2, 3)	(3,3)
Number of edges	6(k+l+m-5)	12(k+l+m-7)	21(k+l+m) - 39

Thus, using the information in Table 4, we have

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

=
$$\sum_{uv \in E_{2,2}(G)} \sqrt{d_G(u)^2 + d_G(v)^2} + \sum_{uv \in E_{2,3}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

+
$$\sum_{uv \in E_{3,3}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

=
$$(\sqrt{2^2 + 2^2})6(k + l + m - 5) + \sqrt{2^2 + 3^2}12(k + l + m - 7) + \sqrt{3^2 + 3^2}(21(k + l + m) - 39)$$

as asserted.

Theorem 4. Let $D_1(n)$ be the dominating derived network of 1st type. Then

$$SO(D_1(n)) = 8\sqrt{2}n + \sqrt{13}(4n - 4) + \sqrt{20}(28n - 16) + 3\sqrt{2}(9\alpha^2 - 13n + 5)$$

+ 5(36\alpha^2 - 56n + 24) + 4\sqrt{2}(36\alpha^2 - 56n + 20).

Proof. Let $D_1(n)$ be the dominating derived network of 1st type. The edge set of $D_1(n)$ can be partitioned into six disjoint sets $E_{2,2}, E_{2,3}, E_{2,4}, E_{3,3}, E_{3,4}$ and $E_{4,4}$, where $E(D_1(n)) = E_{2,2} \cup E_{2,3} \cup E_{2,4} \cup E_{3,3} \cup E_{4,4}$. By algebraic method the edge partition of G is calculated as:

Table 7.

$uv \in E(G)$	(2, 2)	(2, 3)	(2, 4)	(3,3)	(3,4)	(4,4)
Number of edges	4n	4n - 4	28n - 16	$9\alpha^2 - 13n + 5$	$36\alpha^2 - 56n + 24$	$36\alpha^2 - 52n + 20$

Thus, using the information in Table 7, we have

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

= $\sum_{uv \in E_{2,2}(G)} \sqrt{d_G(u)^2 + d_G(v)^2} + \sum_{uv \in E_{2,3}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$
+ $\sum_{uv \in E_{2,4}(G)} \sqrt{d_G(u)^2 + d_G(v)^2} + \sum_{uv \in E_{3,3}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$
+ $\sum_{uv \in E_{3,4}(G)} \sqrt{d_G(u)^2 + d_G(v)^2} + \sum_{uv \in E_{4,4}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$
= $(\sqrt{2^2 + 2^2})4n + (\sqrt{2^2 + 3^2})4n - 4 + (\sqrt{2^2 + 4^2})(28n - 16)$
+ $(\sqrt{3^2 + 3^2})(9\alpha^2 - 13n + 5) + (\sqrt{3^2 + 4^2})(36\alpha^2 - 56n + 24)$

+
$$(\sqrt{4^2+4^2})(36\alpha^2-52n+20).$$

as desired.

Theorem 5. Let $D_2(n)$ be the dominating derived network of 2nd type. Then

$$S_2(D_2(n)) = 8\sqrt{2}n + 2\sqrt{13}(9\alpha^2 - 11n + 3) + 8\sqrt{5}(7n - 6) + 20(9\alpha^2 - 14n + 6) + 16\sqrt{2}(9\alpha^2 - 13n + 5).$$

Proof. Let $D_2(n)$ be the dominating derived network of 2nd type. The edge set of $D_1(n)$ can be partitioned into five disjoint sets $E_{2,2}, E_{2,3}, E_{2,4}, E_{3,4}$ and $E_{4,4}$, where $E(D_2(n)) = E_{2,2} \cup E_{2,3} \cup E_{2,4} \cup E_{3,4} \cup E_{4,4}$. By algebraic method the edge partition of G is calculated as:

Table 8.

$uv \in E(G)$	(2, 2)	(2,3)	(2, 4)	(3,4)	(4,4)
Number of edges	4n	$18\alpha^2 - 22n + 6$	28n - 16	$36\alpha^2 - 56n + 24$	$36\alpha^2 - 52n + 20$

Thus, using the information in Table 8, we have

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

= $\sum_{uv \in E_{2,2}(G)} \sqrt{d_G(u)^2 + d_G(v)^2} + \sum_{uv \in E_{2,3}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$
+ $\sum_{uv \in E_{2,4}(G)} \sqrt{d_G(u)^2 + d_G(v)^2} + \sum_{uv \in E_{3,4}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$
+ $\sum_{uv \in E_{4,4}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$
= $(\sqrt{2^2 + 2^2})4n + (\sqrt{2^2 + 3^2})(18\alpha^2 - 22n + 6) + (\sqrt{2^2 + 4^2})(28n - 16)$
+ $(\sqrt{3^2 + 4^2})(36\alpha^2 - 56n + 24) + (\sqrt{4^2 + 4^2})(36\alpha^2 - 52n + 20).$

as asserted.

Theorem 6. Let $D_3(n)$ be the dominating derived network of 3rd type. Then

$$S_2(D_3(n)) = 8\sqrt{2}n + 8\sqrt{5}(9\alpha^2 - 5n) + 4\sqrt{2}(72\alpha^2 - 108n + 44).$$

Proof. Let $D_3(n)$ be the dominating derived network of 3rd type. The edge set of $D_1(n)$ can be partitioned into three disjoint sets $E_{2,2}, E_{2,4}$ and $E_{4,4}$ By algebraic method the edge partition of G is calculated as:

Table 9.

$uv \in E(G)$	(2, 2)	(2, 4)	(4,4)
Number of edges	4n	$36\alpha^2 - 20n$	$72\alpha^2 - 108n + 44$

Thus, using the information in Table 9, we have

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

=
$$\sum_{uv \in E_{2,2}(G)} \sqrt{d_G(u)^2 + d_G(v)^2} + \sum_{uv \in E_{2,4}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

+
$$\sum_{uv \in E_{4,4}(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

=
$$(\sqrt{2^2 + 2^2})4n + (\sqrt{2^2 + 4^2})(36\alpha^2 - 20n) + (\sqrt{4^2 + 4^2})(72\alpha^2 - 108n + 44)$$

as asserted.

References

- M. S. Ahemad, W. Nazeer, S. M. Kang, M. Imran, W. Gao, *Calculating degree-based topological indices of dominating David derived networks*, Open phys. 15, 1015-1021 (2017).
- [2] B. Furtula, I. Gutman(2015), A forgotten topological index. DOI 10.1007/s10910-015-0480-z.
- W Gao, M. K. Jamil, A. Javed, M. R. Farahani, M. Imran, *Inverse Sum Indeg Index of the Line Graphs of Subdivision Graphs of Some Chemical Structures*, U.P.B. Sci. Bull., Series B, Vol. 80(3), 97–104 (2018).
- [4] I. Gutman, N. Trinajstić (1972), Graph theory and molecular orbitals. Total πelectron energy of alternant hydrocarbons, Chem. Phys. Lett., 17, pp. 535–538.
- [5] I.Gutman, Geometric approach to degree-based topological indices: Sombor indices MATCH Common, Math. Comput. Chem. 86(2021) 11-16.
- [6] F. Harary (1969), *Graph Theory*, Addison–Wesely, Reading.
- [7] S. M. Hosamani, I. Gutman (2014), Zagreb indices of transformation graphs and total transformation graphs, Appl. Math. Comput., 247, pp. 1156-1160.

- [8] S. M. Hosamani, B. Basavanagoud (2015), New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem., 74(1), pp. 97–101.
- [9] S. M. Hosamani, S. H. Malghan and I. N. Cangul, The first geometric-arithmetic index of graph operations, Advances and Applications in Mathematical Sciences, 14(6) (2015) 155–163.
- S. M. Hosamani, Computing Sanskruti index of certain nanostructures, J. Appl. Math. Comput. 1-9 (2016) DOI 10.1007/s12190-016-1016-9.
- [11] V.R.Kulli General reduced second Zagreb index of certain networks, International Journal of Current Research in Life Sciences, 7(11) (2018) 2827-2833.
- [12] V.R.Kulli, Graph indices, in Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society, M. Pal. S. Samanta and A. Pal (eds.) IGI Global, USA (2020) 66-91.
- [13] V.R.Kulli General reduced second Zagreb index of certain networks, International Journal of Current Research in Life Sciences, 7(11) (2018) 2827-2833.
- [14] V.R.Kulli and I. Gutman, Computation of Sombor Indices of Certain Networks, SSRG International Journal of Applied Chemistry, 8(1)(2021), 1-5.