Calculating Sombor Index of Certain Networks

Vidya S. Umadi ${ }^{a}$ and A. M. Sangogi ${ }^{b}$
${ }^{a}$ Department of Mathematics, Vidya Samvardhak Mandal's Somashekhar R.Kothiwale Institute of Technology, Nipani, Karnataka State, India
${ }^{b}$ Department of Mathematics, Shaikh College of Engineering and Technology Belagavi, Karnataka State, India
Received: 11 June 2022
Revised: 08 July 2022
Accepted: 18 July 2022
Published: 28 July 2022

Abstract

Recently I. Gutman [5] have put forward a novel topological index viz., Sombor index of molecular graph G. In this paper, we compute the Sombor index of certain chemical networks like hexagonal parallogram, tringular benzoid, zig-zag edge coronoid and dominating networks of three kinds.

Keywords: Sombor index, nanostructures, chemical network.
$\mathcal{A}_{\mathcal{M}} \mathcal{S}$ Subject Classification: 05C90; 05C35; 05C12.

1 Introduction

In mathematical chemistry, topological indices plays vital role in prediction of physical properties. Topological indices are technically relevent tools for QSPR / QSAR studies. Basically, topological index is just a positive integer to indicate the structural property of a molecule. Various novel topological indices have been studied so far, such as Zagreb indices [4], forgotten index [2] etc., for more details on topological indices refer [7-14].

Sombor index was put forward in [5] which is defined as follows:

$$
S O(G)=\sum_{u v \in E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}
$$

2 Chemical Structures

R In this section we consider the chemical structures like hexagonal parallelogram $P(m, n)$ nanotube, triangular benzenoid G_{n}, zigzag-edge coronoid fused with starphene nanotubes $Z C S(k, l, m)$ and dominating derived networks D_{1}, D_{2}, D_{3}.

(a)

(b)

(c)

Figure 1: (a) $P(4,4)(\mathrm{b}) S(P(4,4))$ (c) $L(S(P(4,4)))$

(a)

(b)

(c)

Figure 2: (a) G_{n} for $n=5(\mathrm{~b}) S\left(G_{n}\right)$ (c) $L\left(S\left(G_{n}\right)\right)$

(a)

(b)

(c)

Figure 3: (a) $Z C S(k, l, m)$ for $k=l=m=4(\mathrm{~b}) S(Z C S(k, l, m))$ (c) $L(S(Z C S(k, l, m)))$

Theorem 1. Let G denotes the line graph of subdivision graph of the hexagonal parallelogram, then

$$
S O(G)=2 \sqrt{2}(\alpha+\beta+4)+4 \sqrt{13}(\alpha+\beta-2)+3 \sqrt{2}(9 \alpha \beta-2 \alpha+2 \beta-5)
$$

Proof. Let G denotes the line graph of the hexagonal parallelogram $P(m, n) ; m, n \in \mathbb{Z}^{+}$. Then the order and size of $P(m, n)$ and G are given by:

Figure 4: (a) $D_{1}(2)$ (b) $D_{2}(4)$ (c) $D_{3}(n)$

Table 1.

$$
\begin{array}{ccc}
\hline \text { Graph } & \text { Order } & \text { Size } \\
\hline P(m, n) & 2(\alpha+\beta+\alpha \beta) & 3 \alpha \beta+2 \alpha+2 \beta+1 \\
\hline G=L(P(m, n)) & 2(3 \alpha \beta+2 \alpha+2 \beta+1) & 9 \alpha \beta+4 \alpha+4 \beta+5 \\
\hline
\end{array}
$$

The edge set of $L(P(m, n))$ can be partitioned into three disjoint sets $E_{2,2}, E_{2,3}$ and $E_{3,3}$, where $E(G)=E_{2,2} \cup E_{2,3} \cup E_{3,3}$. By algebraic method the edge partition of G is calculated as:

Table 2.

$$
\begin{array}{cccc}
\hline u v \in E(G) & (2,2) & (2,3) & (3,3) \\
\hline \text { Number of edges } & 2(\alpha+\beta+4) & 4(\alpha+\beta-2) & 9 \alpha \beta-2 m-2 n-5 \\
\hline
\end{array}
$$

Thus, using the information in Table 2, we have

$$
\begin{aligned}
S O(G) & =\sum_{u v \in E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E_{2,2}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}+\sum_{u v \in E_{2,3}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& +\sum_{u v \in E_{3,3}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\left(\sqrt{2^{2}+2^{2}}\right) 2(\alpha+\beta+4)+\sqrt{2^{2}+3^{2}}(4(\alpha+\beta-2))+\sqrt{3^{2}+3^{2}}(9 \alpha \beta-2 m-2 n-5) .
\end{aligned}
$$

as desired.

Theorem 2. Let $G=L\left(S\left(G_{n}\right)\right)$ denotes the line graph of subdivision graph of the hexagonal parallelogram, then

$$
S O\left(L\left(S\left(G_{n}\right)\right)\right)=6 \sqrt{2}(n+3)+6 \sqrt{13}(n-1)+\frac{9}{\sqrt{2}}\left(3 \alpha^{2}+n-4\right)
$$

Proof. Let G denotes the line graph of the hexagonal parallelogram G_{n}. Then the order and size of $P(m, n)$ and G are given by:

Table 3.

Graph	Order	Size
G_{n}	$\alpha^{2}+4 n+1$	$\frac{3}{2} n(n+3)$
$G=L\left(S\left(G_{n}\right)\right)$	$3 n(n+3)$	$\frac{3\left(3 \alpha^{2}+7 n+2\right)}{2}$

The edge set of $L\left(S\left(G_{n}\right)\right)$ can be partitioned into three disjoint sets $E_{2,2}, E_{2,3}$ and $E_{3,3}$, where $\left.E\left(L\left(S\left(G_{n}\right)\right)\right)\right)=E_{2,2} \cup E_{2,3} \cup E_{3,3}$. By algebraic method the edge partition of G is calculated as:

Table 4.

$u v \in E(G)$	$(2,2)$	$(2,3)$	$(3,3)$
Number of edges	$3(n+3)$	$6(n-1)$	$\frac{3\left(3 \alpha^{2}+7 n+2\right)}{2}$

Thus, using the information in Table 4, we have

$$
\begin{aligned}
S O(G) & =\sum_{u v \in E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E_{2,2}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}+\sum_{u v \in E_{2,3}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& +\sum_{u v \in E_{3,3}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\left(\sqrt{2^{2}+2^{2}}\right) 3(n+3)+\sqrt{2^{2}+3^{2}}(6(n-1))+\sqrt{3^{2}+3^{2}}\left(\frac{3\left(3 \alpha^{2}+7 n+2\right)}{2}\right) .
\end{aligned}
$$

as desired.
Theorem 3. Let $G=L(S(I))$ be the line graph of the subdivision graph of zigzag-edge coronoid fused with starphene nanotubes $Z C S(k, l, m)$ for $k=l=m=4$. Then

$$
S O(G)=12 \sqrt{2}(k+l+m-5)+24 \sqrt{2}(k+l+m-7)+63 \sqrt{2}(k+l+m)-118 \sqrt{2} .
$$

Proof. Let G denotes the line graph of the hexagonal parallelogram G_{n}. Then the order and size of $P(m, n)$ and G are given by:

Table 5.

Graph	Order	Size
$Z C S(k, l, m)$	$36 k+54$	$15(k+l+m)-63$
$G=L\left(S\left(G_{n}\right)\right)$	$30(k+l+m 126)$	$39(k+l+m)+153$

The edge set of $G=L(S(I))$ can be partitioned into three disjoint sets $E_{2,2}, E_{2,3}$ and $E_{3,3}$, where $E(L(S(I)))=E_{2,2} \cup E_{2,3} \cup E_{3,3}$. By algebraic method the edge partition of G is calculated as:

Table 6.

$u v \in E(G)$	$(2,2)$	$(2,3)$	$(3,3)$
Number of edges	$6(k+l+m-5)$	$12(k+l+m-7)$	$21(k+l+m)-39$

Thus, using the information in Table 4, we have

$$
\begin{aligned}
S O(G) & =\sum_{u v \in E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E_{2,2}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}+\sum_{u v \in E_{2,3}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& +\sum_{u v \in E_{3,3}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\left(\sqrt{2^{2}+2^{2}}\right) 6(k+l+m-5)+\sqrt{2^{2}+3^{2}} 12(k+l+m-7)+\sqrt{3^{2}+3^{2}}(21(k+l+m)-39) .
\end{aligned}
$$

as asserted.

Theorem 4. Let $D_{1}(n)$ be the dominating derived network of 1st type. Then

$$
\begin{aligned}
S O\left(D_{1}(n)\right) & =8 \sqrt{2} n+\sqrt{13}(4 n-4)+\sqrt{20}(28 n-16)+3 \sqrt{2}\left(9 \alpha^{2}-13 n+5\right) \\
& +5\left(36 \alpha^{2}-56 n+24\right)+4 \sqrt{2}\left(36 \alpha^{2}-56 n+20\right) .
\end{aligned}
$$

Proof. Let $D_{1}(n)$ be the dominating derived network of 1st type. The edge set of $D_{1}(n)$ can be partitioned into six disjoint sets $E_{2,2}, E_{2,3}, E_{2,4}, E_{3,3}, E_{3,4}$ and $E_{4,4}$, where $E\left(D_{1}(n)\right)=E_{2,2} \cup E_{2,3} \cup E_{2,4} \cup E_{3,3} \cup E_{3,4} \cup E_{4,4}$. By algebraic method the edge partition of G is calculated as:

Table 7.

$u v \in E(G)$	$(2,2)$	$(2,3)$	$(2,4)$	$(3,3)$	$(3,4)$	$(4,4)$
Number of edges	$4 n$	$4 n-4$	$28 n-16$	$9 \alpha^{2}-13 n+5$	$36 \alpha^{2}-56 n+24$	$36 \alpha^{2}-52 n+20$

Thus, using the information in Table 7, we have

$$
\begin{aligned}
S O(G) & =\sum_{u v \in E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E_{2,2}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}+\sum_{u v \in E_{2,3}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& +\sum_{u v \in E_{2,4}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}+\sum_{u v \in E_{3,3}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& +\sum_{u v \in E_{3,4}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}+\sum_{u v \in E_{4,4}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\left(\sqrt{2^{2}+2^{2}}\right) 4 n+\left(\sqrt{2^{2}+3^{2}}\right) 4 n-4+\left(\sqrt{2^{2}+4^{2}}\right)(28 n-16) \\
& +\left(\sqrt{3^{2}+3^{2}}\right)\left(9 \alpha^{2}-13 n+5\right)+\left(\sqrt{3^{2}+4^{2}}\right)\left(36 \alpha^{2}-56 n+24\right)
\end{aligned}
$$

$$
+\left(\sqrt{4^{2}+4^{2}}\right)\left(36 \alpha^{2}-52 n+20\right)
$$

as desired.

Theorem 5. Let $D_{2}(n)$ be the dominating derived network of 2nd type. Then

$$
\begin{aligned}
S_{2}\left(D_{2}(n)\right) & =8 \sqrt{2} n+2 \sqrt{13}\left(9 \alpha^{2}-11 n+3\right)+8 \sqrt{5}(7 n-6)+20\left(9 \alpha^{2}-14 n+6\right) \\
& +16 \sqrt{2}\left(9 \alpha^{2}-13 n+5\right) .
\end{aligned}
$$

Proof. Let $D_{2}(n)$ be the dominating derived network of 2nd type. The edge set of $D_{1}(n)$ can be partitioned into five disjoint sets $E_{2,2}, E_{2,3}, E_{2,4}, E_{3,4}$ and $E_{4,4}$, where $E\left(D_{2}(n)\right)=$ $E_{2,2} \cup E_{2,3} \cup E_{2,4} \cup E_{3,4} \cup E_{4,4}$. By algebraic method the edge partition of G is calculated as:

Table 8.

$u v \in E(G)$	$(2,2)$	$(2,3)$	$(2,4)$	$(3,4)$	$(4,4)$
Number of edges	$4 n$	$18 \alpha^{2}-22 n+6$	$28 n-16$	$36 \alpha^{2}-56 n+24$	$36 \alpha^{2}-52 n+20$

Thus, using the information in Table 8, we have

$$
\begin{aligned}
S O(G) & =\sum_{u v \in E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E_{2,2}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}+\sum_{u v \in E_{2,3}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& +\sum_{u v \in E_{2,4}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}+\sum_{u v \in E_{3,4}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& +\sum_{u v \in E_{4,4}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\left(\sqrt{2^{2}+2^{2}}\right) 4 n+\left(\sqrt{2^{2}+3^{2}}\right)\left(18 \alpha^{2}-22 n+6\right)+\left(\sqrt{2^{2}+4^{2}}\right)(28 n-16) \\
& +\left(\sqrt{3^{2}+4^{2}}\right)\left(36 \alpha^{2}-56 n+24\right)+\left(\sqrt{4^{2}+4^{2}}\right)\left(36 \alpha^{2}-52 n+20\right) .
\end{aligned}
$$

as asserted.

Theorem 6. Let $D_{3}(n)$ be the dominating derived network of 3rd type. Then

$$
S_{2}\left(D_{3}(n)\right)=8 \sqrt{2} n+8 \sqrt{5}\left(9 \alpha^{2}-5 n\right)+4 \sqrt{2}\left(72 \alpha^{2}-108 n+44\right) .
$$

Proof. Let $D_{3}(n)$ be the dominating derived network of 3rd type. The edge set of $D_{1}(n)$ can be partitioned into three disjoint sets $E_{2,2}, E_{2,4}$ and $E_{4,4}$ By algebraic method the edge partition of G is calculated as:

Table 9.

$u v \in E(G)$	$(2,2)$	$(2,4)$	$(4,4)$
Number of edges	$4 n$	$36 \alpha^{2}-20 n$	$72 \alpha^{2}-108 n+44$

Thus, using the information in Table 9, we have

$$
\begin{aligned}
S O(G) & =\sum_{u v \in E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E_{2,2}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}+\sum_{u v \in E_{2,4}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& +\sum_{u v \in E_{4,4}(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\left(\sqrt{2^{2}+2^{2}}\right) 4 n+\left(\sqrt{2^{2}+4^{2}}\right)\left(36 \alpha^{2}-20 n\right)+\left(\sqrt{4^{2}+4^{2}}\right)\left(72 \alpha^{2}-108 n+44\right)
\end{aligned}
$$

as asserted.

References

[1] M. S. Ahemad, W. Nazeer, S. M. Kang, M. Imran, W. Gao, Calculating degree-based topological indices of dominating David derived networks, Open phys. 15, 1015-1021 (2017).
[2] B. Furtula, I. Gutman(2015), A forgotten topological index. DOI 10.1007/s10910-015-0480-z.
[3] W Gao, M. K. Jamil, A. Javed, M. R. Farahani, M. Imran, Inverse Sum Indeg Index of the Line Graphs of Subdivision Graphs of Some Chemical Structures, U.P.B. Sci. Bull., Series B, Vol. 80(3), 97-104 (2018).
[4] I. Gutman, N. Trinajstić (1972), Graph theory and molecular orbitals. Total π electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17, pp. 535-538.
[5] I.Gutman, Geometric approach to degree-based topological indices: Sombor indices MATCH Common, Math. Comput. Chem. 86(2021) 11-16.
[6] F. Harary (1969), Graph Theory, Addison-Wesely, Reading.
[7] S. M. Hosamani, I. Gutman (2014), Zagreb indices of transformation graphs and total transformation graphs, Appl. Math. Comput., 247, pp. 1156-1160.
[8] S. M. Hosamani, B. Basavanagoud (2015), New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem., 74(1), pp. 97-101.
[9] S. M. Hosamani, S. H. Malghan and I. N. Cangul, The first geometric-arithmetic index of graph operations, Advances and Applications in Mathematical Sciences, 14(6) (2015) 155-163.
[10] S. M. Hosamani, Computing Sanskruti index of certain nanostructures, J. Appl. Math. Comput. 1-9 (2016) DOI 10.1007/s12190-016-1016-9.
[11] V.R.Kulli General reduced second Zagreb index of certain networks, International Journal of Current Research in Life Sciences, 7(11) (2018) 2827-2833.
[12] V.R.Kulli, Graph indices, in Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society, M. Pal. S. Samanta and A. Pal (eds.) IGI Global, USA (2020) 66-91.
[13] V.R.Kulli General reduced second Zagreb index of certain networks, International Journal of Current Research in Life Sciences, 7(11) (2018) 2827-2833.
[14] V.R.Kulli and I. Gutman, Computation of Sombor Indices of Certain Networks, SSRG International Journal of Applied Chemistry, 8(1)(2021), 1-5.

