M-Polynomial of Windmill Graphs

B. Basavanagoud ${ }^{1}$, Goutam Veerapur ${ }^{2}$ and Pooja B ${ }^{3}$
1,2 Department of Mathematics, Karnatak University, Dharwad - 580 003, Karnataka, India. ${ }^{3}$ \#134/8, AchutaNivas, More Galli, Cowl Bazar, Ballari-583 102, Karnataka, India.

Received: 16 June 2022 Revised: 28 July 2022 Accepted: 31 July $2022 \quad$ Published: 04 August 2022
Abstract - In this paper, we compute M-polynomial of certain windmill graphs such as French windmill graph $F_{n}^{(m)}$, Dutch windmill graph $D_{n}^{(m)}$, Kulli cycle windmill graph $C_{n+1}^{(m)}$, Kulli path windmill graph $P_{n+1}^{(m)}$. Furthermore, we derive some degreebased topological indices from the obtained M-polynomials.

Mathematics Subject Classification 2020-05C07, 05C09, 05C31.
Keywords - M-polynomial, Windmill graphs, Edge partions, Degree-based topological indices.

1. Introduction

Let $G=(V, E)$ be a simple, undirected graph, $V(G)$ be the vertex set and $E(G)$ be the edge set of the graph G. The degree $d_{G}(v)$ of a vertex $v \in V(G)$ is the number of edges incident to it in G. The graphs G_{1} and G_{2} have disjoint vertex sets V_{1} and V_{2} and edge sets X_{1} and X_{2} respectively. Their union [8] $G=G_{1} \cup G_{2}$ has $V=V_{1} \cup V_{2}$ and $X=X_{1} \cup X_{2}$. Their join [8] denoted by $G_{1}+G_{2} \quad$ and \quad it consists of $G_{1} \cup G_{2}$ and all edges joining V_{1} with V_{2}.

Definition 1. [6] Let G be a graph. Then M-polynomial of G is defined as

$$
M(G ; x, y)=\sum_{i \leq j} m_{i j}(G) x^{i} y^{j}
$$

where $m_{i j}, i, j \geq 1$, is the number of edges $u v$ of G such that $\left.\left\{d_{G}(u)\right), d_{G}(v)\right\}=\{i, j\}$.

Recently, the study of M-polynomial is reported in [4, 15-17]. The topological indices play an important role in determining physico-chemical properties of chemical graphs and are used to predict the bioactivity of chemical compounds, among them the degree-based topological indices can be easily driven from an algebraic expression corresponding to the chemical graphs called M-polynomial. The study of topological indices are reported in [9-14]. The Table 1 shows the some degree based topological indices from the M-polynomial.

Table 1. Operators to derive of some degree-based topological indices from M-polynomial.			
$\left.\begin{array}{\|c\|c\|c\|}\hline \text { Notation } & \text { Topological index } & \mathbf{f}(\mathbf{x , y}) \\ \text { Derivation from } \boldsymbol{M}(\boldsymbol{G} ; \boldsymbol{x}, \boldsymbol{y}) \\ \hline M_{1}(G) & \text { First Zagreb } & x+y \\ \hline M_{2}(G) & \text { Second Zagreb } & x y \\ \left.\hline D_{2}+D_{y}\right)\left.(M(G ; x, y))\right\|_{x=y=1}[6] \\ \hline M_{2}^{m}(G) & \text { Second modified Zagreb } & \frac{1}{x y}\end{array}\right]\left.\left(D_{x} D_{y}\right)(M(G ; x, y))\right\|_{x=y=1}[6]$			
$S_{D}(G)$	Symmetric division index	$\frac{x^{2}+y^{2}}{x y}$	$\left.\left(S_{x} S_{y}\right)(M(G ; x, y))\right\|_{x=y=1}[6]$
$H(G)$		$\frac{2}{x+y}$	$\left.2 D_{y} S_{x}\right)\left.(M(G ; x, y))\right\|_{x=y=1}[6]$
	Harmonic		

$I_{n}(G)$	Invesre sum index	$\frac{x y}{x+y}$	$\left.S_{x} J D_{x} D_{y}(M(G ; x, y))\right\|_{x=1}[6]$
$R_{\alpha}(G)$	General Randic index	$(x y)^{\alpha}$	$\left.D_{x}^{\alpha} D_{y}^{\alpha}(M(G ; x, y))\right\|_{x=y=1}[6]$
$\chi_{\alpha}(G)$	General sum connectivity	$(x+y)^{\alpha}$	$\left.D_{x}^{\alpha}(J(M(G ; x, y)))\right\|_{x=1}[2]$
$M_{1}^{\alpha} G$	First general Zagreb	$x^{\alpha-1}+y^{\alpha-1}$	$\left.\left(D_{x}^{\alpha-1}+D_{y}^{\alpha-1}\right)(M(G ; x, y))\right\|_{x=y=1}[2]$
$M_{(a, b)}(G)$	General Zagreb index	$x^{a} y^{b}+x^{b} y^{a}$	$\left.\left(D_{x}^{a} D_{y}^{b}+D_{x}^{b} D_{y}^{a}\right)(M(G ; x, y))\right\|_{x=y=1}[1]$
$G A(G)$	Geometric-Arithmetic index	$\frac{2 \sqrt{x y}}{x+y}$	$\left.2 S_{x} J D_{x}^{\frac{1}{2}} D_{y}^{\frac{1}{2}}(M(G ; x, y))\right\|_{x=1}[3]$

Where $D_{x}=x \frac{\partial f(x, y)}{\partial x}, D_{y}=y \frac{\partial f(x, y)}{\partial y}, S_{x}=\int_{0}^{x} \frac{f(t, y)}{t} d t S_{y}=\int_{0}^{y} \frac{f(x, t)}{t} d t, D_{x}^{\alpha}=D_{x}\left(D_{x}^{\alpha-1}\right)(f(x, y))$,
$J(f(x, y))=f(x, x)$ are the operators.

2. M-polynomials of certain class of windmill graphs

In this section, we compute M-polynomials of certain windmill graphs such as, the French windmill graph $F_{n}^{(m)}$, the Dutch windmill graph $D_{n}^{(m)}$, the Kulli cycle windmill graph $C_{n+1}^{(m)}$ and the Kulli path windmill graph $P_{n+1}^{(m)}$. Furthermore, we derive some degree-based topological indices of these graphs from their respective M-polynomial.

Definition 2. [5] The French windmill graph $F_{n}^{(m)}$ is the graph obtained by taking $m \geq 2$ copies of the complete graph K_{n}; $n \geq$ 2 with a vertex in common. This graph is shown in Figure 1 . The French windmill graph $F_{2}^{(m)}$ is called a star graph. The French windmill graph $\mathrm{F}_{3}^{(\mathrm{m})}$ is called a friendship graph and the French windmill graph $\mathrm{F}_{3}^{(2)}$ is called a butterfly graph.

Fig. 1 French windmill graph $F_{n}^{(m)}$.
Theorem 2.1. Let $F_{n}^{(m)}$ be a French windmill graph of order $(m n+1)$ and size $\frac{m n(n+1)}{2}$, then

$$
M\left(F_{n}^{(m)} ; x, y\right)=\left(\frac{m n(n-1)}{2}\right) x^{n} y^{n}+m n x^{n} y^{m n}
$$

Proof. The graph $F_{n}^{(m)}$ has $m n+1$ vertices and $\frac{m n(n+1)}{2}$ edges. The edge set of $F_{n}^{(m)}$ can be partitioned as

$$
\left|E_{\{n, n\}}\right|=\mid u v \in E\left(F_{n}^{(m)}\right): d_{u}=n \text { and } d_{v}=n \left\lvert\,=\frac{m n^{2}-m n}{2}\right.
$$

$$
\left|E_{\{n, m n\}}\right|=\mid u v \in E\left(F_{n}^{(m)}\right): d_{u}=n \text { and } d_{v}=m n \mid=m n
$$

Using the above edge partition and definition of M-polynomial, we get the required result.
Corollary 2.2. If $F_{n}^{(m)}$ is a French windmill graph, then

1. $\quad M_{1}\left(F_{n}^{(m)}\right)=m n\left(n^{2}+m n\right)$,
2. $\quad M_{2}\left(F_{n}^{(m)}\right)=\frac{m n\left(n^{3}-n^{2}+2 m n^{2}\right)}{2}$,
3. $\quad M_{2}^{m}\left(F_{n}^{(m)}\right)=\frac{(m n-m+2)}{2 n}$,
4. $\quad S_{D}\left(F_{n}^{(m)}\right)=m n^{2}-m n+m^{2} n+n$,
5. $H\left(F_{n}^{(m)}\right)=\frac{m^{2} n^{3}-m n^{3}-m^{2} n^{2}+3 m n^{2}}{2\left(m n^{2}+n^{2}\right)}$,
6. $\quad I_{n}\left(F_{n}^{(m)}\right)=\frac{m^{2} n^{5}+m n^{5}-m^{2} n^{4}-m n^{4}+4 m n^{2}}{4\left(m n^{2}+n^{2}\right)}$,
7. $R_{\alpha}\left(F_{n}^{(m)}\right)=\frac{m n(n-1)}{2} n^{2 \alpha}+(m n)^{\alpha+1} n^{\alpha}$,
8. $\quad \chi_{\alpha}\left(F_{n}^{(m)}\right)=m n(n+m n)^{\alpha}+\left(\frac{m n^{2}-m n}{2}\right)(2 n)^{\alpha}$,
9. $\quad M_{1}^{\alpha}\left(F_{n}^{(m)}\right)=\left(m n^{2}-m n\right) n^{\alpha-1}+m n^{\alpha}+(m n)^{\alpha}$,
10. $M_{(a, b)}\left(F_{n}^{(m)}\right)=\left(m n^{2}-m n\right) n^{a+b}+m n^{a+b+1}\left(m^{b}+m^{a}\right)$,
11. $G A\left(F_{n}^{(m)}\right)=\frac{m n(n-1)}{2}+\frac{2 \sqrt[3]{m n} \sqrt{n}}{n(1+m)}$.

Proof. The M-polynomial for French windmill graph $F_{n}^{(m)}$ is given by

$$
M\left(F_{n}^{(m)} ; x, y\right)=\sum_{i \leq j} m_{i j}\left(F_{n}^{(m)}\right) x^{i} y^{j}=\left(\frac{m n^{2}-m n}{2}\right) x^{n} y^{n}+m n x^{n} y^{m n}
$$

Then we have

$$
\begin{aligned}
& D_{x}(f(x, y))=\left(\frac{m n^{3}-m n^{2}}{2}\right) x^{n} y^{n}+m n^{2} x^{n} y^{m n}, \\
& D_{y}(f(x, y))=\left(\frac{m n^{3}-m n^{2}}{2}\right) x^{n} y^{n}+m^{2} n^{2} x^{n} y^{m n}, \\
& S_{x}(f(x, y))=\left(\frac{m n^{2}-m n}{2 n}\right) x^{n} y^{n}+m x^{n} y^{m n}, \\
& S_{y}(f(x, y))=\left(\frac{m n^{2}-m n}{2 n}\right) x^{n} y^{n}+m x^{n} y^{m n}, \\
& D_{x} D_{y}(f(x, y))=n\left(\frac{m n^{3}-m n^{2}}{2}\right) x^{n} y^{n}+m^{2} n^{3} x^{n} y^{m n}, \\
& D_{x}^{\alpha}(f(x, y))=\left(\frac{m n^{2}-m n}{2}\right) n^{\alpha} x^{n} y^{n}+m n^{\alpha+1} x^{n} y^{m n}, \\
& D_{y}^{\alpha}(f(x, y))=\left(\frac{m n^{2}-m n}{2}\right) n^{\alpha} x^{n} y^{n}+(m n)^{\alpha+1} x^{n} y^{m n}, \\
& D_{x}^{\alpha} D_{y}^{\alpha}(f(x, y))=\left(\frac{m n^{2}-m n}{2}\right) n^{2 \alpha} x^{n} y^{n}+(m n)^{\alpha+1} n^{\alpha} x^{n} y^{m n}, \\
& D_{x} S_{y}(f(x, y))=\left(\frac{m n^{2}-m n}{2}\right) x^{n} y^{n}+n m x^{n} y^{m n}, \\
& D_{y} S_{x}(f(x, y))=\left(\frac{m n^{2}-m n}{2}\right) x^{n} y^{n}+m^{2} n x^{n} y^{m n}, \\
& S_{x} S_{y}(f(x, y))=\left(\frac{m n-m}{2 n}\right) x^{n} y^{n}+\frac{m}{n} x^{n} y^{m n}
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}^{a} D_{y}^{b}(f(x, y))=\left(\frac{m n^{2}-m n}{2}\right) n^{a+b} x^{n} y^{n}+(m n)^{b+1} n^{a} x^{n} y^{m n} \\
& D_{x}^{b} D_{y}^{a}(f(x, y))=\left(\frac{m n^{2}-m n}{2}\right) n^{a+b} x^{n} y^{n}+(m n)^{a+1} n^{b} x^{n} y^{m n} \\
& D_{y}^{\frac{1}{2}}(f(x, y))=n^{\frac{1}{2}}\left(\frac{m n^{2}-m n}{2}\right) x^{n} y^{n}+(m n)^{\frac{3}{2}} x^{n} y^{m n} \\
& D_{x}^{\frac{1}{2}} D_{y}^{\frac{1}{2}}(f(x, y))=n\left(\frac{m n^{2}-m n}{2}\right) x^{n} y^{n}+(m n)^{\frac{3}{2}} n^{\frac{1}{2}} x^{n} y^{m n} \\
& 2 S_{x} J D_{x}^{\frac{1}{2}} D_{y}^{\frac{1}{2}}(f(x, y))=\left(\frac{m n^{2}-m n}{2}\right) x^{2 n}+\frac{2 \sqrt[3]{m n} \sqrt{n}}{n(1+m)}
\end{aligned}
$$

Using the Theorem 2.1, and column 4 of Table 1, we get the desired results.

Definition 3. [5] The Dutch windmill graph $D_{n}^{(m)}, m \geq 2, n \geq 5$, is the graph obtained by taking m copies of the cycle C_{n} with a vertex in common. This graph is shown in Figure 2 . The Dutch windmill graph $D_{3}^{(m)}=F_{3}^{(m)}$ is called a friendship graph.

Fig. 2 The Dutch windmill graph $D_{n}^{(m)}$.

Theorem 2.3. Let $D_{n}^{(m)}$ be a Dutch windmill graph of order $m n+1$ and size $m(n+1)$, then

$$
M\left(D_{n}^{(m)} ; x, y\right)=m(n-3) x^{2} y^{2}+2 m x^{2} y^{2 m}
$$

Proof. The graph $D_{n}^{(m)}$ has $(m(n-1)+1)$ vertices and $(m(n+1))$ edges. The edge partition of $D_{n}^{(m)}$ is as follows

$$
\begin{aligned}
& \left|E_{\{2,2\}}\right|=\mid u v \in E\left(D_{n}^{(m)}\right): d_{u}=2 \text { and } d_{v}=2 \mid=m(n-3), \\
& \left|E_{\{2,2 m\}}\right|=\mid u v \in E\left(D_{n}^{(m)}\right): d_{u}=2 \text { and } d_{v}=2 m \mid=2 m .
\end{aligned}
$$

Using the above edge partition and definition of M-polynomial, we get the required result.
Corollary 2.4. If $D_{n}^{(m)}$ is a Dutch windmill graph, then.

1. $M_{1}\left(D_{n}^{(m)}\right)=m(4 n+4 m-8)$,
2. $\quad M_{2}\left(D_{n}^{(m)}\right)=8 m(m+n-3)$,
3. $\quad M_{2}^{m}\left(D_{n}^{(m)}\right)=\frac{m n-3 m+2}{4}$,
4. $\quad S_{D}\left(D_{n}^{(m)}\right)=2\left(m n-3 m+1+m^{2}\right)$,
5. $\quad H\left(D_{n}^{(m)}\right)=\frac{m(n+m n+1-3 m)}{2(1+m)}$,
6. $\quad I_{n}\left(D_{n}^{(m)}\right)=\frac{m(n+m n-3+m)}{1+m}$,
7. $R_{\alpha}\left(D_{n}^{(m)}\right)=m(n-3) 2^{2 \alpha}+(2 m)^{\alpha+1} 2^{\alpha}$,
8. $\chi_{\alpha}\left(D_{n}^{(m)}\right)=m(n-3) 4^{\alpha}+2 m(2 m+2)^{\alpha}$,
9. $M_{1}^{\alpha}\left(D_{n}^{(m)}\right)=m(n-3) 2^{\alpha}+m 2^{\alpha}+(2 m)^{\alpha}$,
10. $M_{(a, b)}\left(D_{n}^{(m)}\right)=2 m(n-3) 2^{a+b}+2^{a+b+1}\left(m^{b+1}+m^{a+1}\right)$.
11. $G A\left(D_{n}^{(m)}\right)=m(n-3)+\frac{\sqrt[3]{2 m} \sqrt{2}}{1+m}$.

Proof. The M-polynomial for Dutch windmill graph $D_{n}^{(m)}$ is given by

$$
M\left(D_{n}^{(m)} ; x, y\right)=\sum_{i \leq j} m_{i j}\left(D_{n}^{(m)}\right) x^{i} y^{j}=m(n-3) x^{2} y^{2}+2 m x^{2} y^{2 m}
$$

Then we have

$$
\begin{aligned}
& D_{x}(f(x, y))=2 m(n-3) x^{2} y^{2}+4 m x^{2} y^{2 m} \\
& D_{y}(f(x, y))=2 m(n-3) x^{2} y^{2}+4 m^{2} x^{2} y^{2 m} \\
& D_{x} D_{y}(f(x, y))=4 m(n-3) x^{2} y^{2}+8 m^{2} x^{2} y^{2 m}, \\
& S_{x}(f(x, y))=\left(\frac{m(n-3)}{2}\right) x^{2} y^{2}+m x^{2} y^{2 m} \\
& S_{y}(f(x, y))=\left(\frac{m(n-3)}{2}\right) x^{2} y^{2}+x^{2} y^{2 m} \\
& S_{x} S_{y}(f(x, y))=\left(\frac{m(n-3)}{4}\right) x^{2} y^{2}+\frac{1}{2} x^{2} y^{2 m} \\
& D_{x} S_{y}(f(x, y))=m(n-3) x^{2} y^{2}+2 x^{2} y^{2 m} \\
& D_{y} S_{x}(f(x, y))=m(n-3) x^{2} y^{2}+2 m^{2} x^{2} y^{2 m} \\
& D_{x}^{\alpha}(f(x, y))=m(n-3) 2^{\alpha} x^{2} y^{2}+2^{\alpha+1} m x^{2} y^{2 m} \\
& D_{y}^{\alpha}(f(x, y))=m(n-3) 2^{\alpha} x^{2} y^{2}+(2 m)^{\alpha+1} x^{2} y^{2 m} \\
& D_{x}^{\alpha} D_{y}^{\alpha}(f(x, y))=m(n-3) 2^{2 \alpha} x^{2} y^{2}+2^{\alpha}(2 m)^{\alpha+1} x^{2} y^{2 m} \\
& D_{x}^{a} D_{y}^{b}(f(x, y))=m(n-3) 2^{a+b} x^{2} y^{2}+2^{a}(2 m)^{b+1} x^{2} y^{2 m}, \\
& D_{x}^{b} D_{y}^{a}(f(x, y))=m(n-3) 2^{a+b} x^{2} y^{2}+2^{b}(2 m)^{a+1} x^{2} y^{2 m}, \\
& D_{y}^{\frac{1}{2}}(f(x, y))=2^{\frac{1}{2}} m(n-3) x^{2} y^{2}+2 m^{\frac{3}{2}} x^{2} y^{2 m} \\
& D_{x}^{\frac{1}{2}} D_{y}^{\frac{1}{2}}(f(x, y))=2 m(n-3) x^{2} y^{2}+(2 m) 2^{\frac{1}{2}} x^{2} y^{2 m}, \\
& 2 S_{x} J D_{x}^{\frac{1}{2}} D_{y}^{\frac{1}{2}}(f(x, y))=m(n-3) x^{4}+\frac{\sqrt[3]{2 m} \sqrt{2}}{1+m} x^{2(1+m)}
\end{aligned}
$$

Using the Theorem 2.3, and column 4 of Table 1, we get the desired results.
Definition 4 . [5] The Kulli cycle windmill graph $C_{n+1}^{(m)}$ is the graph obtained by taking m copies of the graph $K_{1}+C_{n}$ for $n \geq$ 3 with a vertex K_{1} in common. This graph shown in Figure 3. The Kulli cycle windmill graph $C_{4}^{(m)}$ is a French windmill graph and it is denoted by $F_{3}^{(m)}$.

Fig. 3 Kulli cycle windmill graph $C_{n+1}^{(m)}$.
Theorem 2.5. Let $C_{n+1}^{(m)}$ be a Kulli cycle windmill graphs of order $(m n+1)$ and size $2 m n$, then

$$
M\left(C_{n+1}^{(m)} ; x, y\right)=m n x^{3} y^{3}+m n x^{3} y^{m n}
$$

Proof. Let $C_{n+1}^{(m)}$ be a Kulli cycle windmill graph having $m n+1$ vertices and $2 m n$ edges. The edge partition of $C_{n+1}^{(m)}$ is given by

$$
\begin{aligned}
& \left|E_{\{3,3\}}\right|=\mid u v \in E\left(C_{n+1}^{(m)}\right): d_{u}=3 \text { and } d_{v}=3 \mid=m n \\
& \left|E_{\{3, m n\}}\right|=\mid u v \in E\left(C_{n+1}^{(m)}\right): d_{u}=3 \text { and } d_{v}=m n \mid=m n .
\end{aligned}
$$

Using the above edge partition and definition of M-polynomial, we get the required result.
Corollary 2.6. If $C_{n+1}^{(m)}$ is Kulli cycle windmill graph, then.

1. $\quad M_{1}\left(C_{n+1}^{(m)}\right)=m n(9+m n)$,
2. $\quad M_{2}\left(C_{n+1}^{(m)}\right)=3 m n(3+m n)$,
3. $\quad M_{2}^{m}\left(C_{n+1}^{(m)}\right)=\frac{m n+3}{9}$,
4. $S_{D}\left(C_{n+1}^{(m)}\right)=\frac{m^{2} n^{2}+6 m n+9}{3}$,
5. $\quad H\left(C_{n+1}^{(m)}\right)=\frac{m^{2} n^{2}+9 m n}{3 m n+9}$,
6. $\quad I_{n}\left(C_{n+1}^{(m)}\right)=\frac{9\left(m n+m^{2} n^{2}\right)}{2 m n+6}$,
7. $R_{\alpha}\left(C_{n+1}^{(m)}\right)=(m n) 3^{2 \alpha}+(m n)^{\alpha+1} 3^{\alpha}$,
8. $\chi_{\alpha}\left(C_{n+1}^{(m)}\right)=m n\left(6^{\alpha}+(m n+3)^{\alpha}\right)$,
9. $M_{1}^{\alpha}\left(C_{n+1}^{(m)}\right)=(m n) 3^{\alpha}+(m n)^{\alpha}$,
10. $M_{(a, b)}\left(C_{n+1}^{(m)}\right)=2 m n 3^{a+b}+m^{b+1} n^{b+1} 3^{a}+m^{a+1} n^{a+1} 3^{b}$.
11. $G A\left(C_{n+1}^{(m)}\right)=m n+\frac{2 \sqrt{3} \sqrt[3]{m n}}{3+m n}$.

Proof. The M-polynomial for Kulli cycle windmill graph $C_{n+1}^{(m)}$ is given by

$$
M\left(C_{n+1}^{(m)} ; x, y\right)=\sum_{i \leq j} m_{i j}\left(C_{n+1}^{(m)}\right) x^{i} y^{j}=m n x^{3} y^{3}+m n x^{3} y^{m n}
$$

Then we have

$$
\begin{aligned}
& D_{x}(f(x, y))=3 m n x^{3} y^{3}+3 m n x^{3} y^{m n} \\
& D_{y}(f(x, y))=3 m n x^{3} y^{3}+m^{2} n^{2} x^{3} y^{m n} \\
& D_{x} D_{y}(f(x, y))=9 m n x^{3} y^{3}+3 m^{2} n^{2} x^{3} y^{m n}, \\
& S_{x}(f(x, y))=\left(\frac{m n}{3}\right) x^{3} y^{3}+\left(\frac{m n}{3}\right) x^{3} y^{m n}, \\
& S_{y}(f(x, y))=\left(\frac{m n}{3}\right) x^{3} y^{3}+x^{3} y^{m n} \\
& S_{x} S_{y}(f(x, y))=\left(\frac{m n}{9}\right) x^{3} y^{3}+\frac{1}{3} x^{3} y^{m n}, \\
& D_{x} S_{y}(f(x, y))=m n x^{3} y^{3}+3 x^{3} y^{m n} \\
& D_{y} S_{x}(f(x, y))=m n x^{3} y^{3}+\left(\frac{m^{2} n^{2}}{3}\right) x^{3} y^{m n}, \\
& D_{x}^{\alpha}(f(x, y))=3^{\alpha} m n x^{3} y^{3}+3^{\alpha} m n x^{3} y^{m n}, \\
& D_{y}^{\alpha}(f(x, y))=3^{\alpha} m n x^{3} y^{3}+(m n)^{\alpha+1} x^{3} y^{m n}, \\
& D_{x}^{\alpha} D_{y}^{\alpha}(f(x, y))=3^{2 \alpha} m n x^{3} y^{3}+3^{\alpha}(m n)^{\alpha+1} x^{3} y^{m n}, \\
& D_{x}^{a} D_{y}^{b}(f(x, y))=3^{a+b} m n x^{3} y^{3}+3^{a}(m n)^{b+1} x^{3} y^{m n}, \\
& D_{x}^{b} D_{y}^{a}(f(x, y))=3^{a+b} m n x^{3} y^{3}+3^{b}(m n)^{a+1} x^{3} y^{m n}, \\
& D_{y}^{\frac{1}{2}}(f(x, y))=m n 3^{\frac{1}{2}} x^{3} y^{3}+m n^{\frac{3}{2}} x^{3} y^{m n} \\
& D_{x}^{\frac{1}{2}} D_{y}^{\frac{1}{2}}(f(x, y))=3 m n x^{3} y^{3}+3^{\frac{1}{2}} m n^{\frac{3}{2}} x^{3} y^{m n}, \\
& 2 S_{x} J D_{x}^{\frac{1}{2}} D_{y}^{\frac{1}{2}}(f(x, y))=m n x^{6}+\frac{2 \sqrt{3} \sqrt[3]{m n}}{3+m n} x^{3+m n}
\end{aligned}
$$

Using the Theorem 2.5, and column 4 of Table 1, we get the desired results.
Definition 5. [5] The Kulli path windmill graph $P_{n+1}^{(m)}, m \geq 2, n \geq 5$, is the graph obtained by taking m copies of the graph $K_{1}+P_{n}$ for $n \geq 2$ with a vertex K_{1} in common. This graph is shown in Figure 4. The Kulli path windmill graph $P_{3}^{(m)}$ is friendship graph and it is denoted by $\mathrm{F}_{3}^{(\mathrm{m})}$.

Fig. 4 Kulli path windmill graph $P_{n+1}^{(m)}$.

Theorem 2.7. Let $P_{n+1}^{(m)}$ be a Kulli Path windmill graph of order $m n+1$ and size $m(2 n-1)$, then

$$
M\left(P_{n+1}^{(m)} ; x, y\right)=2 m x^{2} y^{3}+m(n-3) x^{3} y^{3}+2 m x^{2} y^{m n}+m(n-2) x^{3} y^{m n}
$$

Proof. The $P_{n+1}^{(m)}$ is a graph having $m n+1$ vertices and $m(2 n-1)$ edges. The edge partition of $P_{n+1}^{(m)}$ is given by

$$
\begin{aligned}
& \left|E_{\{2,3\}}\right|=\mid u v \in E\left(P_{n+1}^{(m)}\right): d_{u}=2 \text { and } d_{v}=3 \mid=2 m \\
& \left|E_{\{3,3\}}\right|=\mid u v \in E\left(P_{n+1}^{(m)}\right): d_{u}=3 \text { and } d_{v}=3 \mid=m(n-3), \\
& \left|E_{\{2, m n\}}\right|=\mid u v \in E\left(P_{n+1}^{(m)}\right): d_{u}=2 \text { and } d_{v}=m n \mid=2 m \\
& \left|E_{\{3, m n\}}\right|=\mid u v \in E\left(P_{n+1}^{(m)}\right): d_{u}=3 \text { and } d_{v}=m n \mid=m(n-2) .
\end{aligned}
$$

Using the above edge partition and definition of M-polynomial, we get the required result.
Corollary 2.8. If $P_{n+1}^{(m)}$ is a Kulli path windmill graph, then

1. $M_{1}\left(P_{n+1}^{(m)}\right)=9 m n+m^{2} n^{2}-10 m$,
2. $M_{2}\left(P_{n+1}^{(m)}\right)=9 m n+15 m-2 m^{2} n+3 m^{2} n^{2}$,
3. $\quad M_{2}^{m}\left(P_{n+1}^{(m)}\right)=\frac{m n^{2}+3 n+3}{9 n}$,
4. $S_{D}\left(P_{n+1}^{(m)}\right)=\frac{m^{2} n^{2}+6 m n^{2}+m^{2} n^{3}-5 m n-9 n-6}{3 n}$,
5. $\quad H\left(P_{n+1}^{(m)}\right)=\frac{28 m+4 m^{2} n}{5(m n+2)}+\frac{m^{2} n^{2}-3 m^{2} n+9 m n-21 m}{3(m n+3)}$,
6. $\quad I_{n}\left(P_{n+1}^{(m)}\right)=\frac{9 m^{2} n^{2}+9 m n-21 m^{2} n-27 m}{2(m n+3)}+\frac{32 m^{2} n+24 m}{5(m n+2)}$,
7. $R_{\alpha}\left(P_{n+1}^{(m)}\right)=m(m n)^{\alpha} 2^{\alpha+1}+m 3^{\alpha} 2^{\alpha+1}+m(n-3) 3^{2 \alpha}+m(n-2)(m n)^{\alpha} 3^{\alpha}$,
8. $\chi_{\alpha}\left(P_{n+1}^{(m)}\right)=2 m(m n+2)^{\alpha}+2 m 5^{\alpha}+m(n-3) 6^{\alpha}+m(n-2)(m n+3)^{\alpha}$,
9. $\quad M_{1}^{\alpha}\left(P_{n+1}^{(m)}\right)=m 2^{\alpha+1}+2 m(n-3) 3^{\alpha-1}+m(n-2) 3^{\alpha-1}+m(n-2)(m n)^{\alpha-1}+2 m(m n)^{\alpha-1}+2 m 3^{\alpha-1}$,
10. $M_{(a, b)}\left(P_{n+1}^{(m)}\right)=2 m\left[2^{a}(m n)^{b}+2^{b}(m n)^{a}+2^{a} 3^{b}+2^{b} 3^{a}\right]+2 m(n-3) 3^{(a+b)}+$

$$
m(n-2)\left[3^{a}(m n)^{b}+3^{b}(m n)^{a}\right]
$$

11. $G A\left(P_{n+1}^{(m)}\right)=\frac{4 m \sqrt{6}}{5}+m(n-3)+\frac{m \sqrt{m n} \sqrt[5]{2}}{2+m n}+\frac{2 m(n-2) \sqrt{3} \sqrt{m n}}{3+m n}$.

Proof. The M-polynomial for Kulli path windmill graph $P_{n+1}^{(m)}$ is given by

$$
M\left(P_{n+1}^{(m)} ; x, y\right)=\sum_{i \leq j} m_{i j}\left(P_{n+1}^{(m)}\right) x^{i} y^{j}=2 m x^{2} y^{3}+m(n-3) x^{3} y^{3}+2 m x^{2} y^{m n}+m(n-2) x^{3} y^{m n}
$$

Then we have

$$
\begin{aligned}
& D_{x}(f(x, y))=4 m x^{2} y^{m n}+4 m x^{2} y^{3}+3 m(n-3) x^{3} y^{3}+3 m(n-2) x^{3} y^{m n}, \\
& D_{y}(f(x, y))=2 m^{2} n x^{2} y^{m n}+6 m x^{2} y^{3}+3 m(n-3) x^{3} y^{3}+\left(m^{2} n^{2}-2 m^{2} n\right) x^{3} y^{m n}, \\
& S_{x}(f(x, y))=m x^{2} y^{m n}+m x^{3} y^{3}+\left(\frac{m(n-3)}{3}\right) x^{3} y^{3}+\left(\frac{m(n-2)}{3}\right) x^{3} y^{m n}, \\
& S_{y}(f(x, y))=\left(\frac{2}{n}\right) x^{2} y^{m n}+\left(\frac{2 m}{3}\right) x^{2} y^{3}+\left(\frac{m(n-3)}{3}\right) x^{3} y^{3}+\left(\frac{n-2}{n}\right) x^{3} y^{m n}, \\
& D_{x} D_{y}(f(x, y))=4 m^{2} n x^{2} y^{m n}+12 m x^{2} y^{3}+9 m(n-3) x^{3} y^{3}+3\left(m^{2} n^{2}-2 m^{2} n\right) x^{3} y^{m n}, \\
& S_{x} S_{y}(f(x, y))=\left(\frac{2}{2 n}\right) x^{2} y^{m n}+\left(\frac{m}{3}\right) x^{2} y^{3}+\left(\frac{m(n-3)}{9}\right) x^{3} y^{3}+\left(\frac{n-2}{3 n}\right) x^{3} y^{m n},
\end{aligned}
$$

$$
\begin{aligned}
& D_{x} S_{y}(f(x, y))=\left(\frac{4}{n}\right) x^{2} y^{m n}+\left(\frac{4 m}{3}\right) x^{2} y^{3}+m(n-3) x^{3} y^{3}+\left(\frac{3(n-2)}{n}\right) x^{3} y^{m n}, \\
& D_{y} S_{x}(f(x, y))=m^{2} n x^{2} y^{m n}+3 m x^{3} y^{3}+m(n-3) x^{3} y^{3}+\left(\frac{m^{2} n(n-2)}{3}\right) x^{3} y^{m n}, \\
& D_{x}^{\alpha}(f(x, y))=2^{\alpha+1} m x^{2} y^{3}+3^{\alpha} m(n-3) x^{3} y^{3}+2^{\alpha+1} m x^{2} y^{m n}+3^{\alpha} m(n-2) x^{3} y^{m n}, \\
& D_{y}^{\alpha}(f(x, y))=3^{\alpha} 2 m x^{2} y^{3}+3^{\alpha} m(n-3) x^{3} y^{3}+(m n)^{\alpha} 2 m x^{2} y^{m n}+(m n)^{\alpha} m(n-2) x^{3} y^{m n}, \\
& D_{x}^{\alpha} D_{y}^{\alpha}(f(x, y))=2^{\alpha} 3^{\alpha} 2 m x^{2} y^{3}+3^{2 \alpha} m(n-3) x^{3} y^{3}+2^{\alpha}(m n)^{\alpha} 2 m x^{2} y^{m n}+3^{\alpha}(m n)^{\alpha} m(n-2) x^{3} y^{m n}, \\
& D_{x}^{a} D_{y}^{b}(f(x, y))=2^{a} 3^{b} 2 m x^{2} y^{3}+3^{a+b} m(n-3) x^{3} y^{3}+2^{a}(m n)^{b} 2 m x^{2} y^{m n}+3^{a}(m n)^{b} m(n-2) x^{3} y^{m n}, \\
& D_{x}^{b} D_{y}^{a}(f(x, y))=2^{b} 3^{a} 2 m x^{2} y^{3}+3^{a+b} m(n-3) x^{3} y^{3}+2^{b}(m n)^{a} 2 m x^{2} y^{m n}+3^{b}(m n)^{a} m(n-2) x^{3} y^{m n}, \\
& D_{y}^{\frac{1}{2}}(f(x, y))=2^{\frac{3}{2}} m x^{2} y^{3}+3^{\frac{1}{2}} m(n-3) x^{3} y^{3}+(m n)^{\frac{1}{2}} 2 m x^{2} y^{m n}+(m n)^{\frac{1}{2}} m(n-2) x^{3} y^{m n}, \\
& D_{x}^{\frac{1}{2}} D_{y}^{\frac{1}{2}}(f(x, y))=4 m x^{2} y^{3}+3 m(n-3) x^{3} y^{3}+m n^{\frac{1}{2}} 2^{\frac{3}{2}} m x^{2} y^{m n}+3^{\frac{1}{2}}(m n)^{\frac{1}{2}} m(n-2) x^{3} y^{m n}, \\
& 2 S_{x} J D_{x}^{\frac{1}{2}} D_{y}^{\frac{1}{2}}(f(x, y))=\frac{4 m \sqrt{6}}{5} x^{5}+m(n-3) x^{6}+\frac{m \sqrt{m n} \sqrt[5]{2}}{2+m n} x^{2+m n}+\frac{2 m(n-2) \sqrt{3} \sqrt{m n}}{3+m n} x^{3+m n} .
\end{aligned}
$$

Using the Theorem 2.7, and column 4 of Table 1, we get the desired result.

3. Conclusion

In the present paper, we obtained M-polynomial of certain winmdmill graphs and derived their degree-based topological indices using the obtained polynomials.

References

[1] B. Basavanagoud, A. P. Barangi and P. Jakkannavar, "M-Polynomial of Some Graph Operations and Cycle Related Graphs", Iranian J. Math. Chem., vol.10, no. 2, pp. 127-150, 2019.
[2] B. Basavanagoud, A. P. Barangi, "M-Polynomial of Some Cactus Chains and their Topological Indices", Open J. Discrete Appl. Math., vol.2, no.2, pp. 59-67, 2019.
[3] B. Basavanagoud, G. Veerapur, "M-Polynomial of Generalized Transformation Graphs", Electron. J. Math. Anal. Appl., vol.8, no. 2, pp. 305-325, 2020.
[4] B. Basavanagoud, P. Jakkannavar, "M-Polynomial and Degree-Based Topological Indices of Graphs", Electron. J. Math. Anal. Appl., vol.8, no.1, pp.75-99, 2020.
[5] B. Chaluvaraju, H. S. Boregowda and S. A. Diwakar, "Hyper Zagreb Indices and their Polynomials of Some Special Kinds of Windmill Graphs", Int. J. Math., vol.4, pp.21-32, 2017.
[6] E. Deutch, S. Klavžar, "M-Polynomial and Degree-Based Topological Indies", Iranian J. Math. Chem., vol.6, no.2, pp.93-102, 2015.
[7] J. A. Gallian, "Dynamic Survey of Graph Labeling," Electron. J. Combin., \#Ds6, 2007.
[8] F. Harary, Graph theory, Addison-Wesley, Reading, 1969.
[9] V. R. Kulli, B. Chaluvaraju and H. S. Boregouda, "Computation of Connectivity Indices of Kulli Path Windmill Graph", Twms J. Appl. Eng. Math., vol.8, no.1, pp.178-185, 2018.
[10] V. R. Kulli, B. Chaluvaraju and H. S. Boregouda, "Some Degree Based Connectivity Indices of Kulli Cycle Windmill Graphs", South Asian J. Math., vol.6, no.6, pp.263-268, 2016.
[11] V. R. Kulli, "Computation of Status Indices of Graphs," International Journal of Mathematics Trends and Technology, vol.65, no. 12, pp. 54-61, 2019.
[12] V. R. Kulli, "Hyper Zagreb-K-Banhatti Index of a Graphs," International Journal of Mathematics Trends and Technology, vol.66, no. 8, pp.123-130, 2020.
[13] V. R. Kulli, "Harmonic Zagreb-K-Banhatti Indices of Graphs," International Journal of Mathematics Trends and Technology, vol. 66, no.10, pp.123-132, 2020.
[14] V. R. Kulli, Nirmala Index, International Journal of Mathematics Trends and Technology, vol.67, no.3, pp.8-12, 2021.
[15] M. Munir, W. Nazeer, S. Rafique and S. Kang, "M-Polynomial and Realted Tolpological Indices of Nanostar Dendrimers", Symmetry, vol.8, no. 9, pp.97, 2016.
[16] M. Munir, W. Nazeer, S. Rafique and S. Kang, "M-Polynomial and Realted Tolpological Indices of Polyhex Nanotubes", Symmetry, vol.8, no.12, pp.149, 2016.
[17] M. Munir, W. Nazeer, A. Rafique, S. Rafique and S. Kang, "M-Polynomial of Degree-Based Topological Indices of Titania Nanotubes ,"Symmetry, vol.8, no.11, pp.117, 2016.

